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Abstract: Cilia are microtubule-based organelles that project from the cell surface with motility or
sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia
critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry.
Recent studies have shown that primary cilia and their associated proteins also function in autophagy
and genome stability, which are important players in oncogenesis. Abnormal functions of primary
cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers,
depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated
with specific cancer types. Together, these findings suggest that primary cilia play important, but
distinct roles in different cancer types, opening up a completely new avenue of research to understand
the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting
or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated
proteins in several key processes and related clinical implications.
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1. Introduction

The surface of most eukaryotic cells is characterized by the presence of organelles with
important motility and signaling hub functions: the cilia. These evolutionarily conserved
extracellular structures project from the cell membrane to generate motility or function in
cellular signaling [1].

Cilia consist of a dynamic structure, essentially composed of two functional units:
(a) the basal body (BB), which forms the base of the cilium; (b) the axoneme, a protrusion
that is anchored to the BB and extends out of the cell (Figure 1). The BB, a barrel-like
microtubular structure located near the cell surface, forms the base of the cilium and arises
from the mother centriole of the centrosome [2]. The centrosome as the major microtubule-
organizing center of cells is involved in cell shape, polarity, and motility and has a crucial
role in cell division [3,4]. The axoneme is the skeleton of the ciliary shaft. The cilium
axoneme is characterized by a microtubule-based structure composed of nine microtubule
doublets, anchored to the cell through a BB (Figure 1) [2,4].

Traditionally, vertebrate cilia have been classified on the basis of their axoneme struc-
ture into motile cilia (MCs) and primary cilia (PCs). In fact, the MC axoneme is characterized
by a 9 + 2 microtubule pattern in which 9 peripheral doublets of microtubules surround
2 single centrally localized ones, while the PC has a 9 + 0 pattern with no central mi-
crotubules [5] (Figure 1). However, emerging findings have shown that this dichotomic
classification is too restrictive. In fact, MCs with 9 + 0 microtubule pattern were found on
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the embryonic node deputed to generate fluid movement vital for left–right body axis speci-
fication [6], and specialized immotile 9 + 2 cilia were reported in the cells of the mammalian
auditory and olfactory system [7]. A revised taxonomy of vertebrate ciliary subtypes has
been proposed by Takeda et al. [4]. They added to the classical classification, based on
morphology (structure of axoneme) and motility, a third category based on topography
(number of cilia per cell) [4]. According to this classification, eight categories of cilia have
been identified: classic PCs (solitary 9 + 0 non-motile cilia); classic nodal cilia (solitary
9 + 0 MC); multiple 9 + 0 non-MC; multiple 9 + 0 MC; solitary 9 + 2 non-MCs; solitary
9 + 2 MCs; multiple 9 + 2 non-MCs; conventional MCs (multiple 9 + 2 MCs) [4].
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arms, which produce inter-microtubule movement [2,8]. MCs are present in single or mul-
tiple copies (>100) per cell and are found on the epithelial cells of the reproductive and 
respiratory tracts [8] and on the brain ventricles [9], where they beat in wave-like patterns 
to propel liquids and/or mucus [2,4,8–10]. Solitary MCs are present on the cells of the em-
bryonic node to propel growth factors in a directional fashion for the establishment of 
left–right body axis [6]. Besides their locomotive function, MCs are also involved in the 
sensation of bitter taste to facilitate the beating of cilia as a defense system of the respira-
tory system [8,11]. Nodal cilia are specialized forms of MCs present at “embryonic nodes”, 
developmental structures with a critical role as embryonic organizers and determinants 
of left–right asymmetry [6]. 

The presence of a solitary, immotile PCs on the surface of almost all mammalian ep-
ithelial cells have been well described since the 1960s [12]. However, for decades, it was 
accepted that it had no function other than being a vestigial organelle. 
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axonemal microtubules (grey rods) bound by the ciliary membrane (orange line) throughout the
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quiescence (G0 phase). Acetyl groups (Acs) shown as grey circles. The various proteins that are
discussed in the main text are highlighted in different colors. “P” in a grey circle indicates protein
phosphorylation.

MCs are structurally hair-like protrusions, characterized for their locomotive func-
tion [8]. MC movement is possible because the extra pair of central microtubules is linked
by radial spokes to the nine radial microtubules, which in turn are connected by dynein
arms, which produce inter-microtubule movement [2,8]. MCs are present in single or
multiple copies (>100) per cell and are found on the epithelial cells of the reproductive and
respiratory tracts [8] and on the brain ventricles [9], where they beat in wave-like patterns
to propel liquids and/or mucus [2,4,8–10]. Solitary MCs are present on the cells of the
embryonic node to propel growth factors in a directional fashion for the establishment of
left–right body axis [6]. Besides their locomotive function, MCs are also involved in the
sensation of bitter taste to facilitate the beating of cilia as a defense system of the respiratory
system [8,11]. Nodal cilia are specialized forms of MCs present at “embryonic nodes”,
developmental structures with a critical role as embryonic organizers and determinants of
left–right asymmetry [6].

The presence of a solitary, immotile PCs on the surface of almost all mammalian
epithelial cells have been well described since the 1960s [12]. However, for decades, it was
accepted that it had no function other than being a vestigial organelle.

Research over the past several decades has shed light on the important function of PCs
as signaling hubs [12,13]. In fact, the vast majority of signaling pathways in vertebrates
converge to PCs, which function as a “cells’ antenna”, mediating the transduction of
external stimuli into the cell [14]. Moreover, PCs play key roles in multiple developmental
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pathways [12]. Specialized cilia are also present on the surface of sensorial cells and are
responsible for photoreception [15], olfaction [16], hearing [17], and mechanosensation [18].

Recent studies have provided novel molecular insight for both PCs and MCs in regulat-
ing the communication between the cell cytosol and the external micro-environment [19–21].
High-resolution structural [22] and further functional studies [23–27] have demonstrated
that cilia may mediate the communication between cells by functioning as molecular gates
for extracellular vesicles (EVs) [19,28]. EVs are microparticles released from the cell into the
extracellular space and delimited by a lipid bilayer [19,28]. The ciliary–EV axis has been
shown to participate in intercellular communication through the transport of bioactive
molecules (proteins, lipids, and non-coding RNA) or in the control of ciliary length and
composition, notably through the discard of ciliary components [21,23–25,28].

With the advent of next-generation sequencing (NGS) technologies, the multi-omics
approaches led to deciphering the molecular components of the ciliome [29–31]. The recent
explosion of interest in cilia-related diseases has prompted systematic analyses of the
ciliome (cilia-related genomic, proteomic, and transcriptomic data) and the regulation of
cilia development and function [32,33]. The ciliome currently contains a comprehensive
database of more than 2500 genes implicated in ciliary function [29,34,35]. By applying
NGS approaches with a focus on the ciliome, new human disease genes have recently been
identified [35].

Alterations in genes affecting the structure and function of cilia have been associated
with an emerging class of genetic multisystemic human inherited conditions, known as
ciliopathies. Ciliopathies range from largely organ-specific disorders, such as polycystic
kidney disease (PKD) and nephronophthisis (NPHP), to pleiotropic disorders, such as
cerebello-oculo-renal syndrome (CORS), Bardet–Biedl syndrome (BBS), Joubert syndrome
(JBTS), Alström syndrome (ALMS), Jeune asphyxiating thoracic dystrophy (JATD), Meckel–
Gruber syndrome (MKS), and oral-facial-digital type 1 syndrome (OFD1) [35–37].

Large-scale genomic studies provided accumulating evidence that PCs play an im-
portant role also in cancer formation and regulation [38]. Although MC dysfunction has
been associated with some diseases, there is still no evidence that there is a connection with
tumors originating from these organs [39].

Therapeutic approaches targeting PCs in cancer have been taken into consideration by
several authors, as well as the use of PC components as biomarkers [40,41].

Here, we review the basics of cilia biology and discuss the meaning and significance
of alterations of the ciliome in cancer and the consequent clinical implications. Given the
increasingly emerging data regarding the influence of the PC in cancer progression, we
will mainly focus on the implications in molecular oncology of the PC, rather than the MC,
highlighting the role of PCs in cancer and suggesting directions for future research.

2. Role of Primary Cilia in Oncogenic Programs

The elucidation of cilia biology has highlighted the key regulatory functions of PCs in
several events regulating cell growth and intercellular and intracellular communication. In
particular, the main role of PCs in regulating the cell cycle and molecular signaling is of
considerable importance in oncology, since their deregulation constitutes the molecular
basis of several cancers.

2.1. The Functional Link between Cilia and Cell-Cycle-Related Oncogenic Programs

Uncontrolled cell proliferation and deregulation of the cell cycle are hallmarks of
cancer cells and neoplastic development. In this section, we describe how the PC works as
a key player in the regulation of the cell cycle and of related oncogenic programs.

The functional interplay between the PC and the cell cycle was first recognized with
the observation that PCs are disassembled before mitosis [42]. Indeed, in most mammalian
cells, the process of PC assembly, named ciliogenesis, occurs in the post-mitotic G0/G1
phase of the cell cycle, while PC disassembly takes place before mitosis, in strict association
with the centriole cycle [42]. Ciliogenesis and the cell cycle are closely related molecular



Genes 2023, 14, 1428 4 of 27

processes that share a common macro-molecular complex, the centrosome. The centrosome
is a microtubule-based structure present at the base of PCs during ciliogenesis, acting as a
template for axonemal growth, while during mitosis, it serves as a microtubule-organizing
center (MTOC) for the generation of the mitotic spindle [42,43]. The centrosome is typically
composed of two cylindrical microtubule-based structures termed centrioles, which recruit
a matrix of associated pericentriolar material. The centriole has a dual life, existing not only
as the core of the centrosome, but also as the BB [44,45].

It is commonly accepted that ciliogenesis and cell division are mutually exclusive
processes since each depends on the exclusive use of the centrosome [8]. In dividing cells,
the PC is disassembled before cell division and centrioles are inherited by daughter cells, in
which they act as templates for the next generation of cilia [46,47].

As ciliogenesis requires a complex program of macromolecular synthesis and assem-
bly, it must be carefully regulated. Given the double function of the centrosome, defects in
cilium formation may affect the cell cycle, or inversely, alterations of the cell cycle affect cili-
ogenesis. Supporting this idea, many highly proliferating cancer cells lack PCs, suggesting
that the absence of cilia may drive mitosis and, consequently, cell proliferation [40].

Several molecular regulators of centrosome function in mitotic spindle assembly also
play a critical role in ciliogenesis [46,47]. Centrosome maturation is a crucial step for
bipolar mitotic spindle assembly, and this process is characterized by the recruitment and
re-organization of additional pericentriolar material, the phosphorylation of centrosomal
proteins, and a dramatic increase in microtubule nucleation and the anchoring capacity of
the centrosome (Figure 1).

A number of protein kinases that act as key molecular players in mitotic events are
crucial for the maturation of centrosomes, including PLK1, AURKA, NEK2, and KIF2/24
(Figure 1). These proteins act by phosphorylating centrosomal proteins and are implicated
in several oncogenetic programs.

PLK1 plays a pivotal role during the M phase of the cell cycle [48,49]. Several mitotic
events are regulated by this kinase, which phosphorylates substrate proteins on centro-
somes, kinetochores, the mitotic spindle, and the midbody, including cyclin-dependent
kinases (Cdks), mitotic kinesin-like motor protein (MKLp), and centrosome components
KIZ, NEDD1, and NINL [50]. PLK1 kinase activity is required to promote PC disassem-
bly before mitotic entry [51]. It is highly overexpressed in various human cancers and is
thought to promote tumorigenesis [52].

Aurora kinase A (AURKA) is a centrosomal mitotic kinase that regulates S-phase
entry. Prior to mitosis, it localizes to the BB and is activated by the scaffold protein human
enhancer of filamentation 1 (HEF1) and calmodulin (CaM) in the presence of calcium [14].
The HEF1-Ca2+/CaM–AURKA complex, in turn, activates deacetylase histone deacetylase
6 (HDAC6), which destabilizes axonemal microtubules, inducing PC disassembly [53].
AURKA was found to be upregulated in non-ciliated ovarian and renal cell carcinoma
cells [53–56], and HDAC6 inhibition restored PCs in chondrosarcoma and cholangiocar-
cinoma cancer cells, suppressing cell proliferation and invasion capacity [57]. Similarly,
HEF1 overexpression has been associated with cell migration and cancer progression in
several tumors, including breast cancer and melanoma [58].

Moreover, PLK1 and AURKA participate in common molecular processes regulating
PC disassembly. Indeed, the activation of the non-canonical Wnt pathway induces the
formation of the PLK1-disheveled segment polarity protein 2 complex (PLK1-DVL2), which
activates AURKA through the stabilization of HEF1, thus inducing cilium disassembly [48].

NEK2 is another important regulator of both centrosomes and BBs [59]. NEK2 exerts
its role in the disassembly of the axonemal microtubules by phosphorylating kinesin family
member 24 (KIF24), a member of the kinesin superfamily of microtubule-based motor pro-
teins, which stimulates its microtubule-depolymerizing activity and prevents the formation
of cilia in proliferating cells [59]. NEK2 and KIF24 have been found to be overexpressed in
several cancers. It has been shown that the inhibition of these proteins in breast cancer cell
lines lacking cilia restores ciliation, thereby reducing cancer growth [59,60].



Genes 2023, 14, 1428 5 of 27

Additionally, cilia are devoid of protein synthesis and rely on efficient intraflagellar
transport (IFT) for the supply of cilia components and for ciliogenesis. IFT is thought to be
the predominant pathway to move proteins into and within cilia [61,62]. IFT multisubunit
complexes mediated the axonemal outgrowth, turnover, and disassembly, thus IFT proteins
are the limiting factors, together with tubulin availability, for cilium formation. The core
elements of the IFT machinery are two sub-complexes, A and B, linked to a BBSome
complex bearing cargo [61,62]. As such, IFT can influence cell cycle progression and
plays an important role in vertebrate development, signaling, cellular motility, sensory
transduction, and homeostasis. Accumulating evidence shows that defects in some IFT
proteins, which result in impaired ciliogenesis, may determine the progression of several
cancers [63].

2.2. The Functional Link between Cilia and Cancer-Related Signaling Networks

Proliferative signaling pathways involved in normal cellular growth and tissue devel-
opment are frequently deregulated during tumor initiation, progression, and therapeutic
response. The PC is a key mediator of altered proliferative signaling due to its function in
sensing signals from the extracellular environment. In recent years, increasing evidence has
attributed the PC with the role of a molecular hub, transducing a plethora of signals from
several well-characterized signaling networks including the Hedgehog, Wnt, and PDGF
pathways [12]. In this section, we will describe the main signaling pathways converging on
the PC, attempting to comprehensively discuss their relationship with cancer (Figure 2).
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2.2.1. Hedgehog Pathway

The Hedgehog (HH) signaling system promotes tumor growth by serving as an onco-
genic driver. HH signaling is mediated by various proteins secreted by epithelial or tumor
cells and exert their function by binding the receptor Patched (PTCH1), which is localized
on the PC membrane of either the HH-secreting or neighboring cells [64]. In the absence
of HH binding, PTCH1 transduces repressive signals that sequester a second protein,
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Smoothened (SMO), in intracellular vesicles. HH binding to PTCH1 causes PTCH1 to be
trafficked outside the PC, allowing SMO to translocate into the cilia, where it activates a
transcriptional program dependent on zinc finger protein GLI effectors [64]. Additional
cellular proteins act as modulators of HH: for example, the G-protein-coupled receptor
(GPR161) has recently been defined as an HH regulator with cancer relevance [65–67].
While GPR161 has been reported to drive oncogenic programs in breast cancer [66], it
acts as a negative regulator of the HH pathway in medulloblastoma (MB), where GPR161
negatively influences MB progenitor proliferation [66,67]. Activated GLI proteins move to
the nucleus, where they bind and activate the transcription of a suite of genes that control
processes relevant to tumor growth and resistance to treatment [68,69]. Among these genes,
there are cyclin D1 (CCND1) and MYC (controlling cancer cell proliferation), zinc-finger
protein SNAI1 (controlling epithelial–mesenchymal transition (EMT)), BCL2 (controlling
survival), transcription factor SOX2 and homeobox protein NANOG (controlling stem cell
identity), and angiopoietin (ANGPT) 1 and 2 (controlling angiogenesis) [68,69].

Another mechanism by which GLI proteins are regulated in a cilia-dependent manner
is through the protein Suppressor of Fused (SUFU). SUFU is known to be a negative
regulator of HH signaling that localizes to cilia tips and also has broad cancer relevance
including a role in Gorlin syndrome [70]. Moreover, in human cancers, genetic alterations of
HH-related genes such as PTCH1, SMO, and SUFU significantly influence cilia-dependent
tumorigenesis [68,70].

2.2.2. Notch Pathway

Notch has been recognized as an ancient and highly conserved signaling pathway
regulating cell fate determination and tissue homeostasis [71]. In cancer, the oncogenic
activation of Notch proteins has been observed in lung, breast, and several other tumor
types [72]. Notch signaling drives a plethora of cancer-related programs, including stem cell
proliferation, invasion, metastasis, and angiogenesis [72]. The activation of Notch requires
the cleavage of ligand-bound activated Notch by the γ-secretase complex, which is localized
proximal to the BB, leading to release of the Notch intracellular domain (NICD). The NICD
translocates to the nucleus, where it forms a complex with the transcription factor CSL and
induces MYC, CCND3, the HES family bHLH transcription factor 1 (HES1), and other genes.
The molecular link between Notch signaling and cilia has been demonstrated by Ezratty
et al., who reported that the knockdown of IFT proteins causes defects in Notch signaling
and impairs progenitor cell differentiation during skin development [73]. Furthermore,
the interplay with other signaling networks is fundamental during epidermal and neural
differentiation, where Notch signaling sensitizes progenitor cells to respond to HH, causing
an increase of cilia length [73].

2.2.3. Wnt Pathway

Wnt signaling is implicated in a large number of developmental and disease processes.
Several studies have contributed to elucidating the role of canonical and non-canonical
Wnt signaling in cancer [74]. Aberrant Wnt signaling has been implicated in several steps
of carcinogenesis, including cancer stemness, metastasis, and immune surveillance [74].
The hypothesis that the PC was necessary for Wnt signal transduction was supported by
reports showing that components of the Wnt pathway, including Inversin/Nephrocystin2,
Vangl-2, Gsk3-β, and Apc, are located in proximity to the PC or BB [75]. Altered Wnt
signaling contributes to the loss of cell polarity, which is associated with unbalanced
proliferation in numerous epithelial cancers. Canonical Wnt signaling depends on the
activation of a β-catenin effector. Non-canonical Wnt signaling involves regulation of
planar cell polarity (PCP) effectors and proteins such as phospholipase C (PLC), which
regulate calcium responses [76]. Several studies have focused on the connections between
cilia and the Wnt pathway, demonstrating that the ciliome may have an important role in
regulating the activation and regulation of both canonical and non-canonical pathways.
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Nephrocystin2 localizes to cilia, physically interacts with the core component of the
Wnt pathway, dishevelled (Dvl), and inhibits the ability of Dvl to drive the activation of
Wnt canonical signaling [77]. Several genes associated with Bardet–Biedl syndrome (BBS1,
BB4, and MKKS), which encode BB proteins, interact with components of Wnt signaling.
Their suppression results in stabilization of β-catenin with concomitant hyperactivation of
Wnt response in cultured cells. In cell culture, knockdown of the kinesin motor KIF3a, an
essential player in ciliogenesis, also results in altered response to exogenously supplied
Wnt3a [78]. Moreover, disruption of PCs in mice harboring mutations in KIF3a, IFT88, or
oral-facial-digital syndrome type 1 (OFD1) has been shown to result in a marked increase
in cellular responses to canonical Wnt pathway activation [78].

2.2.4. Receptor Tyrosine Kinases and Other Membrane-Associated Kinases

The dysregulated activity of receptor tyrosine kinases (RTKs) is one of the most-
common oncogenic driver mechanisms. Various studies have shown that cancer-relevant
RTKs including insulin-like growth factor 1 receptor (IGF1R), epidermal growth factor
receptor (EGFR), TEKs (angiopoietin receptors), fibroblast growth factor receptor (FGFR),
platelet-derived growth factor receptor α (PDGFRα), and TGF-β receptor (TGF-βR) are
located within or proximal to PCs [79].

Schneider et al. first demonstrated the localization of RTKs to PCs [80]. They showed
that PDGFRα localizes to the PC in fibroblasts and that PDGFRα activation is strictly
dependent on the presence of PCs. Notably, aberrant PDGFRα signaling has been associated
with several pathologies including gastrointestinal stromal tumors [81].

EGFRs extensively regulate cellular processes during development and in tissue
homeostasis [82]. Amplification of the EGFR gene and mutations of the EGFR tyrosine
kinase domain have been recently demonstrated to occur in carcinoma patients [82,83].
EGFR signaling in PCs was first reported in studies on mechanosensation in cultures
of kidney epithelial cells. EGFR has been associated with the PC also in astrocytes and
neuroblasts [84]. In airway smooth muscle cells [85], EGFR was suggested to play a major
role in mechanosensation and cell migration through the interaction with integrins and
the cilioproteins polycystin 1 and 2 (PKD1 and PKD2) in the PC [85]. Recently, it has been
reported that EGFR suppresses ciliogenesis by directly phosphorylating the deubiquitinase
USP8 in RPE1 cells [86].

FGFR receptors have a well-recognized function in the regulation of PCs. Aberrant
FGFR activity produces abnormal cilia with deregulated signaling, which contributes to
the pathogenesis of FGFR-mediated genetic disorders [87]. FGFR alterations are also found
in cancer [88], raising the possibility of cilia involvement in neoplastic transformation
and tumor progression. Inactivation of the FGF-receptor FGFR1 or its FGF ligands leads
to shorter cilia in zebrafish and Xenopus [89]. In mammals, FGF signaling regulates the
length of primary cilia in skin, lung, kidney, and liver cells, human embryonic and induced
pluripotent stem cells, embryonal fibroblasts, and mesenchymal cells [89]. In addition,
human skeletal dysplasias such as achondroplasia caused by activating FGFR3 mutations
are characterized by abnormal cilia [87,89].

Finally, TGF-βRs have been shown to localize to PCs, and TGF-βR-related effector
signaling components including ERK1/2 and SMAD3 accumulate at the ciliary based on
TGF-β-induced activation [90,91]. Notably, signaling by the TGF-βRs and the PC-localized
HH pathway promotes cell migration and tumor metastasis [90].

2.2.5. Hippo Pathway

Hippo is a conserved signaling pathway regulating organ size in Drosophila melanogaster
and mammals. Dysregulation of this pathway is related to cancer development [92]. The
downstream transcriptional activators such as YAP/TAZ are the major effectors of Hippo
signaling, which play a variety of roles in regulating cell–cell contact inhibition, epithelial–
mesenchymal transition, development, proliferation, and differentiation. Hippo signaling
is commonly considered an oncogenic pathway [92]. According to several reports, YAP and
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TAZ can play different roles in ciliogenesis [92]. Recently, NPHP4, a ciliary protein mutated
in the form of nephronophthisis, has been reported to act as a potent negative regulator of
the tumor-suppressive Hippo pathway [93]. Interestingly, several NPHP-related proteins
have been found to be upregulated in various tumors, including breast cancer [94], pancreas
carcinoma [95], and colorectal cancer [96].

2.2.6. DNA Damage/Repair Pathway

The deregulation of DNA damage/repair pathway is associated with the initiation
and progression of cancer [97]. Work from several groups has highlighted the functional
link between the DNA damage response (DDR) pathway and PCs [98]. Indeed, the role
of PCs in the maintenance of the DDR is supported by findings that centrosomes contain
several components belonging to the DDR [98,99]. These factors include the DNA repair
proteins BRCA1, BRCA2, PARP1, and NBS1 and other molecular players that initiate
repair responses such as ATM, ATR, cell cycle checkpoint, and TP53, which also colocalize
with the BB. The existence of an interplay between DDR-related players and centrosome
physiology is supported by several reports showing that TP53 and PARP1 deficiency and
BRCA1 mutations determine an altered centrosome biogenesis, which leads to an aberrant
number of PCs [98]. Additionally, centrosomal protein 164 (CEP164) has been reported to
interact with the DDR-related protein ATM and to be phosphorylated in response to DNA
damage, and its downregulation is concomitant with decreased phosphorylation of other
DDR proteins such as CHK2 and CHK1 [98]. Oral–facial–digital syndrome Type I (OFD1),
a gene with a well-characterized role in the centrosome/basal body/cilia network, can
negatively impact important nuclear events: chromatin plasticity and DNA repair [100]. In
fact, OFD1 patient-derived cells showed pronounced defects in the double-strand break-
induced histone modification, chromatin remodelling, and double-strand break (DSB)
repair [100]. Finally, DNA damaging factors influence centrosome function by causing
distortion and duplication of pericentriolar material [98,99].

2.2.7. Autophagy Network

Autophagy is an evolutionarily conserved process used by cells to sequester intracel-
lular components, to degrade their content, and recycle nutrients back to the cytoplasm.
Autophagy is a tightly regulated pathway that maintains cellular homeostasis. Dysfunction
of autophagy has been linked to a variety of human diseases including cancer and degener-
ative and immune disorders. The mutual crosstalk between ciliogenesis and autophagy has
been established by several reports showing that both ciliogenesis and autophagy are com-
monly stimulated by serum starvation in cultured cells (reviewed in [101,102]). Moreover,
autophagy is an important key step in the biogenesis of PCs by controlling the degradation
of ciliary proteins. The term “ciliophagy” has been proposed for the degradation of ciliary
proteins by autophagy [103]. The first evidence of the role of autophagy in regulating
ciliogenesis was provided by studies on the OFD1 gene [101–103]. The OFD1 protein local-
izes to centrosomes/basal bodies and is necessary for the formation of distal appendages
of the mother centriole, a process required for PC formation [104,105]. Tang et al. and,
more recently, Morleo et al. demonstrated that autophagy-mediated OFD1 degradation
at the centriole satellites is needed for ciliogenesis [102,106]. Depletion of OFD1 by RNA
interference dramatically increased cilia formation in murine embryonic cells and restored
ciliogenesis in MCF7 breast cancer cells that originally lacked cilia [106]. Interestingly,
excessive accumulation of OFD1 due to dysfunctional autophagy has been associated with
endometrioid and oropharyngeal carcinoma [107,108].

Moreover, the intraflagellar transport (IFT) complexes have been implicated in a
reciprocal interplay between autophagy and ciliogenesis [109]. In particular, intraflagellar
transport protein 20 (IFT20) is required for the biogenesis and function of lyso-autophagy
by controlling the lysosomal targeting of acid hydrolases [110]. A repressor role for IFT20
in breast cancer cell migration has been recently described [111].
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Furthermore, HDAC6 has been identified as an important cytoplasmic tubulin deacety-
lase that influences mitosis and chemotaxis through the regulation of tubulin stability and
as an enhancer of autophagosome–lysosome fusion [110]. Overexpression of HDAC6
correlates with tumorigenesis, and inhibitors of HDAC6 were proposed as anti-cancer
therapeutic approaches [40,112].

MTOR is a serine/threonine kinase that participates in different cellular processes
such as cell size regulation, metabolism, growth, proliferation, and survival. PCs regulate
mTOR through the activation of the ciliary protein LKB 116. It has been reported that the
activation of LKB1 leads to the inhibition of migration and invasion in normal ciliated
cholangiocytes [113]. Moreover, LKB1 depletion results in pancreatic cystic tumor formation
in mice, suggesting that the interplay between the LKB1-mTORC1 pathway and PCs may
be an important regulator of tumorigenesis in pancreatic cancer [114].

While autophagy can control ciliogenesis, defects in PCs also have a profound impact
on autophagy activity. The link between PCs and autophagy is conceivable since autophagy
is responsive to mTORC1 activity, which is controlled by PCs. In normal ciliated cells, flow
stress increases autophagy activity and reduces cell size [102].

Experimental evidence suggests that the interplay between autophagy and PC may
have a key role in cancer development since the concomitant loss of PCs and autophagy
upregulation are frequently observed in cancer [40,115]. However, further studies are
needed to decipher the functional role of the autophagy/cilia axis in cancer.

2.2.8. The Polycystin Signaling

Polycystin-1 and polycystin-2 are large transmembrane proteins encoded by the PKD1
and PKD2 genes. They localize at cilia and affect multiple downstream signaling path-
ways [116–118]. Both proteins also function as mechano-sensors and mediate the PC-
sensing abilities of fluid secretion. Mutations in PKD1 and PKD2 cause autosomal dominant
polycystic kidney disease (ADPKD), a progressive inherited disorder in which the renal
tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease
(CKD) and progressive loss of renal function [116,117].

Emerging evidence has demonstrated the involvement of PKD1 and PKD2 in sev-
eral cancer hallmarks, including proliferation, apoptosis, and interaction with the tumor
micro-environment, thus suggesting the potential contribution of this family of proteins to
tumorigenic processes. A study conducted by Gargalionis A. and colleagues investigated
the functional role of PKD1 and PKD2 as the main players in mechano-transduction in
colorectal cancer (CRC) [119]. They provided in vitro and in vivo data demonstrating the
link between polycystins and CRC progression [119]. Clinical relevance in CRC was also
assessed, and PKD1 and PKD2 overexpression was associated with poor survival in a
cohort of 190 CRC patients [119]. On the other hand, other groups proposed a potential
tumor-suppressing role for PKD1, demonstrating that the overexpression of PKD1 in lung
cancer cells, CRC, and hepatocellular carcinoma inhibited the invasion and migration of
tumor cells [120]. In melanoma B16 mice cells, the silencing of PKD2 by siRNAs (small
interfering RNA) resulted in significant suppression of intercellular adhesion [121].

Moreover, the activation of signaling pathways involved in sustaining cancer prolifer-
ation, including EGFR, HER2, B-RAF, ERK, mTOR, AKT, and SRC, have been identified
in association with ADPKD, accumulating evidence that polycystins may be involved
in cancer development and progression [118]. Since ADPKD and cancer present several
common molecular features, several authors proposed that mutations in PKD1 or PKD2
might be relevant in predisposing patients to kidney cancer [122,123]. Studies conducted
by the group of Hajj, P. et al. and Orskov, B. et al. first investigated the prevalence of renal
cell carcinoma (RCC) in patients with ADPKD, describing increasing incidence of RCC
in two different cohorts, but these studies had several limitations due to sampling and
the number of RCCs [124,125]. A more-recent study analyzed the incidence of cancer in
10,166 kidney transplant recipients comparing patients with and without ADPKD [126].
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Interestingly, this study reported a significantly lower risk of kidney cancer in ADPKD
patients [126].

3. Primary Cilia Defects in Cancer: Implication for Molecular Oncology

Several authors proposed that the PC may work as a tumor suppressor
organelle [40,57,127,128]. This hypothesis is supported by two key facts: (1) the PC trans-
duces cancer-related signaling pathways [12,13]; and (2) PCs are absent in different types of
tumors [40,41,57,113,127]. In the following section, the link between PCs and cancers will
be discussed and the clinical relevance of PCs in several kinds of tumors further developed.

3.1. Brain Cancers

In medulloblastoma (MB), a dual function for PCs has been described by Han and
colleagues [68]. Genetic ablation of PCs blocked medulloblastoma growth when this tumor
was driven by a constitutively active SMO, an upstream activator of HH signaling. In
contrast, removal of PCs was required for medulloblastoma growth by a constitutively
active GLI2, a downstream transcription factor. Remarkably, the analysis of PC expression
in 111 MBs revealed that the presence or absence of PCs was associated with specific
variants of medulloblastomas. PCs were found in MBs with activation in HH or Wnt
signaling, but not in most MBs in other distinct molecular subgroups [129]. Recent advances
suggested that driver mutations in several genes belonging to the HH pathway, including
ciliary-related genes, may be involved in MB etiopathogenesis. Interestingly, germline
mutations in SUFU, PTCH1, and GPR161 have been observed in heritable predisposition to
MB, such as Gorlin syndrome [68,70]. Based on these observations, it has been suggested
that the oncogenic or tumor suppressor function of PCs in MB may depend on the initiating
oncogenic event [129].

Aberrant ciliogenesis is commonly found in cells derived from astrocytomas/glioblastomas
(GMBs), and this deficiency likely contributes to the phenotype of these malignant cells [130].

A recent study analyzing the transcriptome of glioma patients revealed that those
displaying a high expression of PC-associated genes had significantly poorer prognosis
compared to the rest of the cohort, independent of the grade or other prognostic biomark-
ers [131].

In GBM, PCs are highly associated with tumor progression and therapeutic resis-
tance. Cilia-related signaling pathways, including SHH, cell cycle-related kinase (CCRK),
and HDAC6, are closely connected with the proliferation, malignant development, and
therapeutic resistance of GBM. Other cilium-related pathways, including the lysophos-
phatidic acid receptor 1 (LPAR1) and pericentriolar material 1 (PCM1) pathways, inhibit
the proliferation and development of GBM cell lines. The EGFR, PDGFRα, MGMT, and
isocitrate dehydrogenase 1 (IDH1) pathways promote GBM therapeutic resistance, which
is associated with or modulated by the assembly and disassembly of PCs [132].

3.2. Skin Cancers

Basal cell carcinoma (BCC), one of the most-common skin cancers, is characterized by
dysregulation of the HH pathway. Mutations that lead to the upregulation of HH signaling
are frequently associated with the development of BCC. For instance, mutations in the
tumor suppressor gene PTCH are implicated in the growth of sporadic BCCs and those
that develop due to Gorlin syndrome [133]. As previously described, HH signaling and
PC functions are strictly correlated. In a study by Kuonen et al., an increased number of
mutations in PC-related genes and the loss of PCs in BCC were described. The authors also
showed that the loss of PCs correlated with lower HH and higher Ras/MAPK pathway
activation [134].

A study conducted by Kim et al., involving the analysis of 62 cases composed of
typical melanocytic nevi, in situ melanoma, invasive melanoma, and metastatic melanoma,
described a significant loss of PCs in advanced stages [135]. Moreover, in melanoma, the
oncogene enhancer of zeste homolog 2 (EZH2) has been shown to be a main molecular
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player in the silencing of ciliary genes during melanoma development [136]. The same
authors also demonstrated that the loss of PCs enhances the pro-tumorigenic effects of
Wnt/β-catenin signaling [136]. Moreover, in melanoma, BRAF mutations are linked to a
high expression of EZH2, which is associated with melanoma progression, worse patient
survival, and resistance to MAPK inhibitors [137]. It has been demonstrated also that
therapeutic strategies targeting EZH2 or its downstream targets, such as the ciliary-related
oncogene PLK1, in combination with BRAF inhibitors are potential novel therapeutic
options in melanomas with BRAF mutations [138].

3.3. Gastrointestinal Cancers

Notably, an analysis of ulcerative colitis and colorectal cancer (CRC) patient biopsies
showed a lower number of PCs on colonic fibroblasts in pathological versus surrounding
normal tissue [139,140]. Sénicourt and colleagues analyzed the presence of PCs in CRC
cells and tissues and identified PC-like structures in 58% of cancers at all stages, but not in
adenomas, suggesting that PC appearance may occur relatively early in the carcinogenesis
cascade, but it is not a feature associated with benign intestinal lesions [141].

Using CRC cell lines, they also found a significant correlation between the presence
of PCs and the expression of the final HH effector, GLI1, and provided evidence of a
functional link between the PC and GLI1, by demonstrating the recruitment of the SMO
receptor to the membrane of PCs [141]. Using murine models, Rocha et al. demonstrated
that tubulin glycylases are required for PC formation, the control of cell proliferation, and
tumor development in CRC [142].

In cholangiocarcinoma (CCA), there is a reduction of PCs in vivo and in vitro in hu-
man patient samples and cells, respectively [41]. The deciliation of normal cholangiocyte
cells using drugs such as chloral hydrate or using gene silencing of ciliary proteins such as
IFT88 induces proliferation, anchorage-independent growth, and invasion [41]. Further-
more, it also induces the activation of the HH and MAPK pathways, which are normally
negatively regulated by cilia and which are both involved in establishing malignant cholan-
giocarcinoma phenotypes [41]. The mechanisms leading to deciliation in these tumor cells,
as well as the consequences of such a loss remain understudied.

Genes belonging to the HDAC family have been shown to work as key molecular
players in mechanisms regulating the deciliation in CCA [57,128]. HDACs can inhibit the
acetylation of target proteins and eventually lead to protein degradation. Gradilone et al.
reported that α-tubulin, a ciliary axoneme protein, is targeted by HDAC6, which inhibits
cilia formation [57,113].

It has been demonstrated that dysregulation of microRNAs (miRNAs) in CCA can
promote several oncogenic programs [143–147], and a microRNA-dependent regulation of
PC functions has been reported [148]. In fact, microRNAs are responsible for overexpression
of HDAC6 in CCA leading to ciliary disassembly. Moreover, targeting HDAC6 in CCA cells
decreases the tumorigenic phenotype in a ciliary-re-expression-dependent manner in vitro
and in an animal model of CCA [57]. Similarly, other epigenetic regulators are suggested to
modulate both ciliogenesis and PC functions. For example, a key role for SIRT1 as a tumor
promoter that inhibits PC formation in CCA cells and induces cell proliferation has been
demonstrated by the same group, who also provided a rationale for clinically exploring the
use of SIRT1 inhibitors in CCA [128].

Studies performed on pancreatic adenocarcinoma (PDAC), using human tissue speci-
mens, the PANC-1 cell line, and murine models, demonstrated the absence of PC [149,150].
Two studies assessed the presence and distribution of PCs in PDAC patients [149,150]. In
particular, Seeley et al. studied PC expression in 17 patients with PDAC, reporting that the
loss of PCs occurs in the earliest stages of PDAC development and that PC absence is inde-
pendent of the proliferation status [149]. Moreover, they also showed that overactivation
of the KRAS pathway arrests ciliogenesis [149]. Notably, the EGFR/KRAS axis is com-
monly recognized as an oncogenic driver of both ciliogenesis and tumorigenesis [83,151].
In the study of Emoto et al., PCs were identified in 100 PDAC patients who received no
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therapy prior to initial surgery [152]. A statistically significant association between overall
survival (OS) and tumor size, grade, lymph node metastasis, and the presence of PCs
was found [149]. In their report, they further showed that PC expression constitutes an
independent poor prognostic factor of OS in pancreatic cancer [152].

It has been demonstrated recently that the PC is gradually lost in the epithelium
during pancreatic carcinogenesis, and this loss is accompanied by a gain of PCs in the
surrounding stroma [153]. Notably, the heterogeneity of the tumor microenvironment
(TME) is a main determinant of PDAC progression and therapy resistance [154]. Kobayashi
and colleagues identified HDAC2 and KRAS as the main regulators of ciliogenesis in
PDAC [155], showing that the inhibition of both decreases the expression of AURKA, thus
promoting PC restoration [155].

Deng et al., instead, investigated the biological functions of PCs during malignant
transformation. This study demonstrated that the mevalonate (MVA) pathway is activated
upon inactivation of ciliogenesis and may accelerate oncogene-induced transformation of
normal cells both in vitro and in vivo [156].

3.4. Genito-Urinary and Endocrine Cancers

Ovarian cancer presents a significantly reduced numbers of PCs. The reduction of
cilia in these cells was not due to a failure in growth arrest and correlated with persis-
tent centrosomal localization of AURKA and with decreased HH signaling and PDGRFα
expression [80].

In breast cancer, the reduction of ciliated cells has been described during cancer
progression [157,158], and it has been directly linked to the downregulation of ciliary genes
regulating the PC structure [157,158].

Furthermore, split ends (SPEN), an estrogen receptor co-repressor, is co-expressed
with a dataset of ciliary genes regulating ciliary biogenesis. SPEN positively regulates PC
formation and cell migration in breast cancer, possibly via the transcriptional regulation of
the ciliogenic transcription factor RFX3 [159]. In addition, in breast cancer patients, high
expression of SPEN correlates with early metastasis and the presence of PC exclusively
in patients with hormone-receptor (HR)-negative disease [159]. Furthermore, PCs were
identified only in breast cancer basal B subtype epithelial cells, whereas they were absent
in luminal and basal A subtype cells [157,158].

Moreover, PC frequency and length are decreased in all stages of prostate cancer,
from early preinvasive lesions to invasive stages. In this tumor type, the absence of PCs
correlates with increased levels of Wnt signaling [160].

Renal cell carcinoma (RCC) shows the loss of PCs connected with a downregulation of
the von Hippel–Lindau (VHL) tumor suppressor gene. VHL participates in the control of
oxygen levels and microtubule stabilization through the activation of HIFα and AURKA,
and consequently activation of HDAC6. Mutations of the tumor suppressor gene FLCN, a
protein with a ciliary localization, are linked with Birt–Hogg–Dubé syndrome, which mani-
fests with renal cysts and predisposes to an increased risk of kidney tumor development.
Tuberous sclerosis is caused by mutations of the tumor suppressor genes TSC1 or TSC2 and
can lead to renal manifestations such as renal cell carcinoma and renal cystic disease. TSC1
is located at the base of PCs, and its downregulation produces increased ciliary length.
In a study conducted in 110 patients of various RCC subtypes, a severe reduction of cilia
frequency in various RCC subtypes was observed, suggesting that PC loss is a common
event in renal tumorigenesis and implying that cilia loss is part of a sequence of events
leading to renal tumor development [161].

Thyroid cancer (TC) is the most-common endocrine cancer and has a rapidly increas-
ing incidence, but relatively stable mortality. The main histological subtypes of TC are
papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid
cancer (PDTC), anaplastic thyroid cancer (ATC), and medullary thyroid cancer (MTC) [162].
The first four types originate from thyroid follicular epithelial cells, while MTC arises from
thyroid parafollicular cells. PCs are well preserved in PTC and FTC, and their frequency
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and length appear similar to those of normal thyroid follicles. Interestingly, defects in PC
formation have been observed in ATC. Additionally, oncogenic alterations, coupled to
specific intracellular downstream signaling pathways, lead to the development of different
subtypes of TC. PCs, as a mediator of these signaling pathways, regulate TC development.
Alterations in PC number influence the communication between TC cells and TME, which
in turn affects the therapeutic response and prognosis of TC. The loss of primary cilia results
in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell
death in differentiated thyroid cancers [163]. Interestingly, oncogenic alterations including
fibroblast growth factor receptor 2 (FGFR2) gene fusions with the ciliary gene OFD1 were
reported in TC [164,165]. FGFR2-OFD1 induced transformation in vitro, which was abol-
ished by FGFR kinase inhibitors [164,165]. Furthermore, mice lacking PCs on the thyroid
due to a thyroid-follicular-epithelial-cell-specific deletion of the ciliary gene intraflagellar
transport protein 88 (IFT88) showed follicular cells with the malignant phenotype and
developed papillary solid proliferative thyroid follicles with malignant features [163].

3.5. Sarcomas

Ciliary dysfunction in rhabdomyosarcomas (RMSs) and chondrosarcomas have been
reported. De Andrea et al. revealed deficient ciliogenesis in the early phases of chondrosar-
coma genesis [166]. Furthermore, the abnormal expression of HDAC6 and IFT88 has been
described in chondrosarcoma tissues. The inhibition of HDAC6 causes PC restoration and
suppresses the proliferation and invasion of chondrosarcoma cells [167]. Loss of PCs poten-
tiates BRAF/MAPK pathway activation in rhabdoid cancers [168]. It has been suggested
that primary ciliogenesis [168] and MAPK pathway activation [169] may contribute to
rhabdoid cancer progression and, therefore, may constitute a novel therapeutic target.

Concerning rhabdomyosarcoma, it has been shown that PCs may contribute to the
hyper-activation of HH signaling in a subset of RMSs [170]. Recently, an important role in
controlling RMS cell growth was attributed to the ciliary protein ADP ribosylation factor
like GTPase 6 (Arl6), which acts by regulating both cilia assembly and HH signaling in
RMS [171].

4. Molecular Oncology of Primary Cilia: Clinical Implications

PCs serve as cell surface biomarkers associated with a growing number of pathologies,
including cancer (Table 1).

Table 1. Clinical implications of primary cilia in cancer.

Gene/Gene Signatures Molecular Pathway Type of Cancer Clinical Implication References

PKD1; PKD2 Wnt; RTK;
Mechanotransduction Colorectal, Melanoma Therapeutic Targeting [118]

PTCH1; CTNNB1 HH; Wnt Medulloblastoma Diagnostic biomarkers [68]
SHH; PTCH1; SMO;

GLI HH Glioblastoma Therapeutic Targeting [132]

MGMT HH Glioblastoma/Glioma Drug Resistance [132,172]
LPAR1 GPCR Glioblastoma Therapeutic Targeting [173]

CCRK AR, Wnt, AKT, EZH2,
and NF-κB, HH Glioblastoma Therapeutic Targeting [174,175]

LRGUK, NSUN7,
LRRC27, SPAG17,

EFHB, IFT27, DZIP1L,
FOLR1, RGS22, TEX9,
GALNT3, and GLB1L

Cilium-Associated
Genes Glioma Prognostic Biomarkers [131]

EZH2 Wnt/b-Catenin Melanoma Therapeutic Targeting;
Diagnostic Biomarkers [136]

PTCH, SMO; GLI1 HH Colorectal Cancer Diagnostic and
Predictive Biomarkers [141]

IFT88 HH; MAPK Cholangiocarcinoma;
Thyroid Cancers Diagnostic Biomarker [176]
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Table 1. Cont.

Gene/Gene Signatures Molecular Pathway Type of Cancer Clinical Implication References

HDAC6 HH; MAPK Cholangiocarcinoma;
Chondrosarcoma

Therapeutic Targeting;
Diagnostic, Predictive

Biomarkers
[57,113]

SIRT1 HH; AKT; IL6 Cholangiocarcinoma Therapeutic Targeting [128]

HDAC2 KRAS Pancreatic Ductal
Adenocarcinoma Therapeutic Targeting [155]

AURKA; INPP5E Cilium-Associated
Genes

Pancreatic Ductal
Adenocarcinoma Prognostic Biomarkers [177]

SPEN ERα Breast Cancer Prognostic, predictive
Biomarkers [159]

CDK5 Cell-Cycle-Related Several Cancers
Prognostic, predictive

Biomarkers;
Therapeutic targeting

[178,179]

CILK1 HH Several Cancers Therapeutic targeting [178,180]

4.1. Brain Tumors

In brain tumors such as glioblastoma or medulloblastoma, the study of the ciliome
has provided a detailed view of the genomic alterations and signaling pathways affected.
It has been proposed that this information may be used as diagnostic, prognostic, and
predictive tools.

GBM is commonly stratified into four subtypes: classical, mesenchymal, proneural,
and neural. Since each subtype displays different genomic features that affect the resistance
mechanisms associated with or modulated by the PC, it has been proposed that PCs
could be used as a diagnostic tool to discriminate the different subtypes or to predict
the response to targeted therapies [132]. PCs could also serve as a diagnostic tool in
medulloblastoma, where the presence or absence of cilia is associated with specific variants.
PCs were found in medulloblastomas with activation of HH or Wnt signaling, but not in
most medulloblastomas in other distinct molecular subgroups [68].

In glioma, a recent study identified a cilium-associated signature as a prognostic
predictive biomarker; in fact, the high expression of the cilium-associated signature has
been correlated with poor survival [131]. The authors also introduced a ciliary expression
risk score based on the expression of 12 cilium-associated genes as independent prognostic
biomarkers [131].

4.2. Skin Cancers

The presence of PCs on the cell surface of lesional melanocytes within conventional
melanocytic nevi was first reported in 2011 by Kim et al. [135]. An independent group
validated the original findings by evaluating PCs by immunofluorescence microscopy on
87 cases of melanocytic nevi and melanomas [181]. Both studies proposed the use of PC
expression as a diagnostic tool to identify the early stages of melanomas [135,181].

In melanoma, PCs’ function has been linked to a negative regulation of Wnt pathway
oncogenic activity [182]. Importantly, the Wnt pathway can also mediate cancer immune
evasion and resistance to immunotherapies [182]. Altogether, these findings suggested
the potential use of PC staining as a diagnostic tool for dermatopathologists in ambiguous
melanocytic neoplasms or as a predictive marker for the response to immunotherapies.

4.3. Gastrointestinal Cancers

The prognostic significance of the frequency of PCs in small bowel and colorectal
adenocarcinoma has been assessed by Dvorak and colleagues [140], supporting a potential
use for PC as a biomarker in these types of cancer.

Epigenetic alterations of ciliary genes may also be important for diagnostic and prog-
nostic purposes. An altered DNA methylation pattern of ciliary genes has been reported
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in CCAs [183]. The DNA methylation gene biomarker profile has also been proposed as a
highly sensitive and specific diagnostic tool in CCA. Of note, the expression profile of his-
tone deacetylases (HDACs), known as epigenetic regulators of gene expression including
the ciliary-associated protein HDAC6, has been investigated as a prognostic biomarker in
CCA [57,113,127,183]. The prognostic value of HDAC6 overexpression, which causes PC
shortening and promotes cell growth, has been reported in CCAs [57,113,127,183].

The clinical implications of ciliary genes in PDAC have been recently reviewed [177].
In particular, lower expression of ciliary-associated genes AURKA, PLK1, and NEK2 and
higher expression of ciliary-related HDAC6 and INPP5E were associated with favorable
prognosis. The expression of AURKA, PLK1, NEK2, KIF2A, NEDD9, and calmodulin
(CALM) 1, 2, and 3 is significantly higher in tumors compared with normal tissues. In
particular, the expression profile of AURKA has been associated with a negative prognostic
index, as AURKA is overexpressed in tumors of higher histological grade. On the other
hand, the overexpression of the cilioprotein INPP5E has been associated with a favorable
prognosis [177].

4.4. Genito-Urinary and Endocrine Cancers

Several studies have demonstrated a decreased number of PCs in breast cancer cells
and patients [157,158,184]. Menzl et al. reported a significant decrease in PC number by
analyzing a large cohort of pre-invasive and invasive breast cancers of low- and high-grade
tumors, including Luminal A, Luminal B, Her2+, and Triple-Negative tumors, in all stages
and subtypes [157].

In addition, they observed that the PC number is significatively decreased in pre-
invasive breast carcinoma in situ (CIS), suggesting that the presence of PCs could be
considered a biomarker of this subtype. Of note, the diagnosis and prognosis of CIS
represents a clinical challenge since CIS patients have an increased risk of developing
invasive breast cancer, but not all patients progress to the invasive stage [157]. Thus, the
identification of new prognostic and predictive biomarkers of CIS may potentially address
the above-described clinical needs.

Furthermore, the group of Légaré et al. investigated the clinical significance of the
use of SPEN as a predictive biomarker of metastatic events [159]. The authors found
that the SPEN expression profile is correlated with metastatic events in breast cancer in
independent cohorts of ERα-negative tumors [159]. Moreover, the SPEN expression profile
is associated with the very low abundance of PCs in luminal and ERα-positive breast cancer
cells in vitro [159].

The study of Hassounah and colleagues first characterized the number of PCs in
human tissues from different stages of prostate cancer [160]. They examined the correlation
between PC expression and Wnt signaling and demonstrated that PC frequency is decreased
in all stages of prostate cancer, from early preinvasive lesions to invasive stages. They also
investigated the association between PC number and clinical parameters and most notably
found that a decreased cilium frequency correlated with increased tumor size, suggesting
the potential use as a diagnostic tool in prostate cancer [160].

Interesting, as previously mentioned, FGFR2-OFD1 gene fusions were reported in
TC [164,165]. Of note, FGFR2 fusions’ detection represents reliable biomarkers to predict
the response to FGFR tyrosine kinase inhibitors, recently introduced in the treatment of
several cancers [165,185].

Finally, two studies analyzed cilia expression in tissue sections from renal cancer
patients and observed a severe reduction of cilia number in RCC subtypes, thus supporting
evidence that ciliary dysfunction may be considered a diagnostic biomarker of most renal
tumors [161,186].

4.5. Implication of PC in Cancer Therapeutics

The etiopathology of a plethora of diseases has been associated with alteration in PC
structure and function. Methods to alter cilium number and length have been investigated
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as potential therapeutic strategies. The term “ciliotherapy” refers to a targeted therapy
focused on PCs, and it has been recently introduced as a treatment strategy to target cilia in
several genetic diseases known as ciliopathies [179,187–190]. Intensive pre-clinical studies
have revealed new treatment approaches targeting PCs in ciliopathies, providing promising
results [179,187–190].

For example, genome-wide methylation profiling of PKD has identified epigenetically
regulated genes that are associated with renal cyst development, suggesting epigenetic
therapy as a potential treatment. Due to the molecular similarities between PKD and RCC,
these approaches targeting cystogenesis have been proposed as promising therapeutic
strategies in cancer [191].

Moreover, several drugs including LiCl and fenoldopam have been investigated
to specifically target PCs in patients with PKD [187,188]. Other studies demonstrated
the efficacy of pharmacological inhibition of HDAC6 in renal cystic disease and obesity
associated with BBS syndrome [189]. The impact of pharmacological inhibition of CDK5
and GLI2 was also evaluated at the pre-clinical level [190].

Accumulating evidence has highlighted the role of PCs in cancer, leading scientists
to investigate ciliotherapies as a possible strategy to target cilia in cancer. Data from
solid tumors strongly suggested that the PC functions as a tumor suppressor. Therefore,
the mechanisms that cancer cells develop to inhibit ciliogenesis give them a selective
proliferative advantage. Thus, therapeutic approaches directed towards the restoration of
PC expression have been investigated also in cancer.

HDAC6 has been identified as a major driver of ciliary disassembly, so several authors
suggested that treatment with HDAC6 inhibitors may lead to increased length and number
of PCs, concomitant with a suppression of tumor growth. HDAC6 causes a shortening
of PCs through different mechanisms [57]. It is a cytoplasmatic enzyme that mediates
deacetylation of α-tubulin and cortactin, two important components of cilia, contributing
to microtubule destabilization and ciliary disassembly. HDAC6 inhibition with pharma-
cological or genetic approaches has been used to induce PC restoration and reverse the
malignant phenotype in cholangiocarcinoma (CCA) [57]. Additionally, HDAC6 inhibition
also suppresses proliferation and invasion in chondrosarcoma tumor cells and restores
the expression of PCs [57]. The use of pan-HDAC inhibitors is controversial considering
the potential adverse effects and broad epigenetic changes. Several non-selective HDAC
inhibitors have already been approved by the U.S. Food and Drug Administration (FDA)
for cancer treatment including vorinostat, romidepsin, and panobinostat, but they show
toxicity to normal tissues during cancer therapy. In contrast, specific HDAC6 inhibition is
promising due to its wide tolerability. Efforts have been made to increase the specificity of
the pharmacological inhibitors of HDAC6, developing compounds based on the structure
of its enzymatic active site. The therapeutic use of tubacin, tubastatin A, CAY10603, and
ACY1215, previously shown to be efficient also in several ciliopathies including PKD, was
shown to be effective in cancer [167]. Furthermore, the study of specific inhibitors of other
HDACs has been the object of several investigations. In an orthotopic rat CCA model, the
inhibitor of sirtinol (SIRT1) reduced tumor size and tumorigenic protein expression. In vitro
and in vivo experiments using SIRT1 inhibitors showed a reduction in tumor growth as-
sociated with enhanced ciliary expression, suggesting that the reestablishment of PCs in
CCA cells by means of SIRT1 inhibitors may be a potential therapeutic approach [128].
Using in vitro and in vivo models of CCA, chalcones have been described to activate the
tumor suppressor activity of LKB1, a tumor suppressor gene involved in the modulation
of ciliogenesis [176]. Kobayashi and colleagues demonstrated that inhibition of KRAS
and HDAC2 may restore PCs in PDAC cells, suggesting that HDAC2 inhibitors may be
proposed as a new ciliotherapy [155]. In line with these results, Ischenko et al. reported
that the combination of HDACs and KRAS inhibitors provides an effective strategy for the
treatment of PDAC [192].

Khan et al. screened 1600 drugs for their efficacy in restoring PCs and concomitantly
suppressing tumor growth [193]. They identified 110 compounds able to increase ciliogene-
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sis and decrease cell proliferation, including clofibrate, gefitinib, sirolimus, imexon, and
dexamethasone [193]. Several authors suggested that therapeutic strategies targeting PCs
to inhibit oncogenic pathways, including HH, Wnt, and the autophagy–lysosome pathway,
could represent promising approaches [194–196]. In PDAC, the suppression of ciliogenesis
causes upregulation of metabolic-related mevalonate pathway (MVA) enzymes through
Wnt-β catenin signaling and induces neoplastic transformation in both mouse models and
human samples of PDAC. In line with these findings, the authors also proposed the use of
statin as an inhibitor of MVA as a possible treatment of PDAC [156].

The HH pathway promotes cancer growth, so novel drugs that antagonize HH sig-
naling components, such as SMO, could prove of therapeutic value. A high-throughput
screen for inhibitors of SMO ciliary localization and ciliogenesis led to the identification
of two ciliogenesis antagonists that disrupt ciliogenesis, inhibit the activation of the HH
pathway, and abrogate the proliferation of basal-cell-carcinoma-like cancer cells (BCC) [194].
Several clinical trials are evaluating the potential use of SMO inhibitors for a variety of
cancer treatments including Cyclopamine, Saridegib, Vismodegib, Cur61414, XL-139, and
Sonidegib [197–201]. Vismodegib showed an acceptable safety profile and encouraging
anti-tumor activity in advanced BCC and MB [201]. Recent studies have also shown that
drugs, including budesonide, which acts by interfering with SMO ciliary trafficking, have
been proposed as a novel potential therapeutic approach to inhibit oncogenic HH pathway
activation [202].

In glioblastoma, several therapeutic strategies have been proposed to target factors
belonging to HH signaling, including PTCH-SMO [132]. O6-methylguanine-DNA methyl-
transferase (MGMT), a DNA repair enzyme and downstream effector of the HH cascade,
has been reported to significantly contribute to the development of drug resistance in both
glioma and glioblastoma [172].

In most cell types of the human body, signaling by PCs involves G-protein-coupled
receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate
cellular and physiological events. Historically, GPCRs have been demonstrated to be potent
targets of a large group of drugs [195]. High-throughput screening campaigns have suc-
cessfully identified potent GPCR drug candidates, suggesting the possibility that selective
manipulation of converging GPCR pathways specifically in the ciliary compartment could
be feasible [196]. These studies promise to offer key insights into the role of PCs as critical
pharmacological targets in the treatment of cancer.

A recent report identified lysophosphatidic acid receptor (1LPAR1) as a therapeutic
target in GBM [173]. The same authors demonstrated that LPAR1 may drive GBM prolifer-
ation in a cilia-dependent manner and proposed a therapeutic targeting strategy against
LPAR1 [173].

In several cancers, including GBM, the overexpression of cell-cycle-related kinase
(CCRK) and its substrate intestinal cell kinase (ICK) inhibits ciliogenesis and promotes
tumor growth [174]. Further analysis revealed that CCRK is involved in the modulation
of signaling networks comprising AR, Wnt, AKT, EZH2, NF-κB, and HH, and CCRK
inhibitors have been found to suppress tumor proliferation [174,175].

EZH2 has been shown to promote tumorigenesis by suppressing PC genes, and
numerous EZH2 inhibitors have entered clinical trials [203]. In melanoma, the EZH2 gain
in benign melanocytic lesions has been shown to promote the loss of PCs, to enhance pro-
tumorigenic Wnt/β-catenin signaling, and to drive metastatic processes. Specific inhibitors
of EZH2 activity induce ciliogenesis and cilia-dependent tumor growth suppression and
are, thus, considered as a strategy for treating melanoma [136].

Cyclin-dependent kinases (CDKs) have emerged as key primary ciliogenesis reg-
ulators [179]. In earlier studies, the efficacy of CDK5 inhibitors was assessed in PKD
mouse models [179]. Notably, CDK5 participates in numerous tumorigenic processes. Pre-
clinical and early clinical studies have confirmed that CDK5 inhibitors are potent anticancer
agents [178].
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A proposed approach to target the PC is by the inhibition of ciliogenesis-associated
kinase 1 (CILK1), a negative regulator of cilia length [180]. Alvocidib, a semi-synthetic
flavone related to a natural product extracted from Indian plants, has been shown to
be a potent inhibitor of CILK1 in cells, suggesting a potential use for targeting PCs in
cancer [180].

5. Conclusions

Cilia are organelles present in the majority of mammalian cells with a high level of
conservation across a variety of species. These two main features suggest an important
role in development and normal physiological functions. Recent studies have taken this
organelle from obscurity to the forefront of cutting-edge research, showing its importance
in human diseases including ciliopathies and cancer. Several studies have demonstrated
that the primary cilium (PC) takes part in two principal molecular processes: (a) a plethora
of external stimuli converges on PCs, which works as a signaling hub, participating in
signal transduction inside the cell; (b) ciliogenesis and mitosis are two processes mutu-
ally interconnected; this overlap makes PCs an important regulator of the cell cycle and
cell survival.

In this review, we discussed the involvement of PCs in cancer at a molecular level,
highlighting the implications of altered cilia-related factors at the clinical level, as well as
the more-recent therapeutic strategies designed to target the PC or PC-related molecular
components. Further studies are required to understand the complexity of the ciliome and
identify cilia-related therapeutic targets to be introduced in clinical trials.

Understanding and manipulating PCs not only in cancer cells, but also in cells of the
TME could identify novel cancer pathogenetic factors and related anticancer therapies.
Among future topics of interest are: (a) ectosome-mediated signaling, which passes through
and is driven and regulated by the PC; (b) the modulation of immune system functions
operated by the PC; (c) the molecular links between PCs and cell metabolism.

The use of ciliotherapy in cancer is a promising strategy that is still under preclinical
study, and the relevance of these therapeutic approaches is under discussion. Instead, the
use of PC-related factors as diagnostic, predictive, or prognostic biomarkers are at a more
advanced stage in cancer and cancer therapeutics.

In the emerging era of individualized medicine, further investigation is required to
fully characterize the ciliome in cancer and transfer this information to clinical studies to
evaluate the potential use of PCs as candidate targets or biomarkers in cancer.
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Abbreviations

MCs motile cilia
PCs primary cilia
BB basal body
PKD polycystic kidney disease
NPHP nephronophthisis
BBS Bardet–Biedl
OFD1 oral–facial–digital type 1 syndrome
MTOC microtubule-organizing center
PLK1 polo-like kinase 1
AURKA Aurora A kinase
CDK1 cyclin-dependent kinase
NEK2 never-in-mitosis-A-related kinase
HEF1 human enhancer of filamentation 1
CaM calmodulin
Dvl dishevelled
Dvl2 disheveled segment polarity protein 2
IFT intraflagellar transport
KIF24 kinesin family member 24
HDAC6 deacetylase histone deacetylase 6
HH Hedgehog
PTCH1 patched 1
GPR161 G-protein-coupled receptor
CCND1 cyclin D1
SMO Smoothened
NICD Notch intracellular domain
RTKs receptor tyrosine kinases
CEP164 centrosomal protein 164
IFT20 intraflagellar transport protein 20
PCM1 pericentriolar material 1
MVA mevalonate
PTC thyroid cancer
FTC follicular thyroid cancer
PDTC poorly differentiated thyroid cancer
ATC anaplastic thyroid cancer
MTC medullary thyroid cancer
OS overall survival
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