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Abstract: SRS (SHI-related sequence) transcription factors play a crucial role in plant growth, develop-
ment, and abiotic stress response. Although Brassica napus (B. napus) is one of the most important oil
crops in the world, the role of SRS genes in B. napus (BnSRS) has not been well investigated. Therefore,
we employed a bioinformatics approach to identify BnSRS genes from genomic data and investigated
their characteristics, functions, and expression patterns, to gain a better understanding of how this
gene family is involved in plant development and growth. The results revealed that there were
34 BnSRS gene family members in the genomic sequence of B. napus, unevenly distributed throughout
the sequence. Based on the phylogenetic analysis, these BnSRS genes could be divided into four
subgroups, with each group sharing comparable conserved motifs and gene structure. Analysis of
the upstream promoter region showed that BnSRS genes may regulate hormone responses, biotic and
abiotic stress response, growth, and development in B. napus. The protein-protein interaction analysis
revealed the involvement of BnSRS genes in various biological processes and metabolic pathways.
Our analysis of BnSRS gene expression showed that 23 BnSRS genes in the callus tissue exhibited
a dominant expression pattern, suggesting their critical involvement in cell dedifferentiation, cell
division, and tissue development. In addition, association analysis between genotype and agronomic
traits revealed that BnSRS genes may be linked to some important agronomic traits in B. napus,
suggesting that BnSRS genes were widely involved in the regulation of important agronomic traits
(including C16.0, C18.0, C18.1, C18.2 C18.3, C20.1, C22.1, GLU, protein, TSW, and FFT). In this
study, we predicted the evolutionary relationships and potential functions of BnSRS gene family
members, providing a basis for the development of BnSRS gene functions which could facilitate
targeted functional studies and genetic improvement for elite breeding in B. napus.

Keywords: SRS gene family; Brassica napus; expression pattern; agronomic traits

1. Introduction

B. napus (AACC, 2n = 38), also known as rapeseed, is a significant industrial crop and
a popular source of edible oil source globally and originated about 7500 years ago from a
cross between two diploid species, B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18) [1]. The
ancestor of B. napus underwent triploidization before hybridization, resulting in multiple
duplication events throughout its evolutionary history. As a result, the copy number of
the gene from B. napus should be six times that of Arabidopsis. B. napus serves multiple
purposes in our daily lives, including being used as edible oil, vegetable, high-quality
protein animal feed, potential energy crop, and so on. SRS transcription factors play an
important role in various biologic processes [2–10]. Nevertheless, their function in B. napus
has not been extensively studied.
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The SRS transcription factors constitute an ancient gene family in plants that are
pivotal in diverse biological processes including plant growth, development, hormone
synthesis, and signal transduction [11,12]. The majority of members in this family share
two constant domains, namely the N-terminal RING-like zinc finger and the C-terminal
IGGH domain [12,13]. The RING-like zinc finger domain contains a conserved cysteine-rich
ring finger domain (RING finger domain), which engages in various physiological and
biochemical processes by acting as E3 ubiquitin ligase or transcription factors [14]. Another
IGGH domain, which is abundant in acidic amino acids, promotes the creation of both
homo- and heterodimer protein complexes [13]. In Arabidopsis, the gene family’s original
discovery site, it has been observed to exert a negative influence on root development by
modulating the biosynthesis of the auxin hormone [3].

The number of SRS gene family members differs among different plants. Arabidop-
sis thaliana (Arabidopsis), for example, a popular model plant, contains 10 members in-
cluding SHI, STY1(SRS1/STYlISH1), STY2(SRS2/STYlISH2), LRP1(LATERAL ROOT PRI-
MORDIUM1), and SRS3–SRS8 (SHI-related sequence 3–8) [2,4–6], 6 in rice [7], 26 in cot-
ton [8], and 21 in soybean [9]. Extensive research has been conducted on SRS genes since
their discovery in Arabidopsis. Studies have shown that SRS genes can regulate root de-
velopment by inducing the expression of the auxin hormone synthesis gene YUCCA4.
Moreover, when the LPR1 gene is overexpressed, auxin hormone levels rise, inhibiting
root development [2,4]. Both leaf and flower tissues play crucial roles in the vegetative
and reproduction process. A large number of loci associated with the development of
these tissues have been identified in Brassica, such as the FLC gene [14], the MADS-box
genes [15], the BoPLD1 gene [16], the BnDWF/DCL1 locus [17], BoABI1, BoAP1, BoPLD1,
BoTHL1 and PBCGSSRBo39 [18], and the Ll 3.2 locus [19]. In addition, SRS genes can also
affect leaf and flower development. Mutations in a single AtSRS gene can lead to altered
leaf shape and abnormal flower development, and when multiple SRS genes are mutated
simultaneously trait differences also increase, indicating some functional overlap among
the SRS family members [10,12]. Overexpressing the AtSHI gene results in significant
dwarfism and delayed flowering [11,20]. Meanwhile, in barley, SRS genes can regulate
awn length and flower development [21,22]. While in maize, SRS genes could take part in
carbohydrate redistribution during leaf senescence [23]. Abiotic stresses such as drought,
temperature, salt, and nutrient stresses can alter plant biosynthesis and nutrient acquisition
throughout plant growth and development. These stresses emerge as significant factors
that restrict plant growth and impact crop yield and quality [24–26]. In winter rapeseed,
a large number of stable reference genes have been identified under various stresses by
integrating multiple tools under different stress [27]. The co-expression of multiple genes
can improve stress tolerance for better adaptation to different abiotic stresses in B. napus [28].
Glucobrassicin (GBS), a secondary metabolite found in a large number of Brassica species,
exhibits an increase in content under various abiotic stresses [29]. Furthermore, SRS genes
also showed important roles during salt-stressed environments, indicating that they are
also involved in the biological processes of adversity stress [9,30].

The SRS gene family plays a vital role in various biological processes such as plant
growth, hormone regulation, stress response, and development. A comprehensive under-
standing of the SRS gene family‘s functions can assist in breeding superior plant varieties.
Nevertheless, there is limited information available on the SRS gene family in B. napus.
Therefore, this study employs a bioinformatic approach to characterize and investigate the
BnSRS gene family’s structure, expression, distribution, evolutionary patterns, and poten-
tial impact on agronomic traits, aiming to provide a better understanding of its potential
function and assist in the breeding of superior varieties of B. napus in the future.

2. Materials and Methods

To provide a comprehensive overview of the study, a flow chart was created (Figure 1).
In detail, we performed the identification and verification of the BnSRS gene after down-
loading the genome sequence and annotation files. Once the BnSRS genes were obtained,
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evolutionary and gene structural analysis, expression pattern analysis, protein-protein
interacting analysis, and association mapping analysis were performed to reveal the po-
tential function of the BnSRS genes, facilitating targeted functional studies and genetic
improvement for elite breeding in B. napus.
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Figure 1. The pipeline for BnSRS gene family analysis.

2.1. Characterization and Physicochemical Characterization of BnSRS Family Members

The analysis utilized the commonly used reference genome, Darmor-bzh (v4.1) [1],
which is the first assembled B. napus genome based on high-depth sequencing data, with
a genome size of approximately 850 Mb, containing 101,040 protein-coding genes. The
genome sequence and gene structure files were obtained from the BRAD database (http:
//brassicadb.cn/, accessed on 6 March 2023). The SRS protein sequence of the model
plant Arabidopsis was downloaded from the TAIR database (https://www.arabidopsis.org,
accessed on 6 March 2023). To identify the BnSRS genes, the Hidden Markov Models
(HMM) file, PF05142, of the SRS gene family was downloaded from the Pfam database
(v35.0, http://pfam.xfam.org, accessed on 6 March 2023) [31]. BnSRS candidate genes were
identified by searching through the B. napus protein sequence using hmmer3.0 software
with a set e-value < 1 × 10−5 [32]. The candidate gene was further verified against
the conserved domain using the online web tool NCBI-CDD (https://www.ncbi.nlm.
nih.gov/Structure/cdd/docs/cdd_search.html, accessed on 6 March 2023) [33] and the
SMART database (http://smart.embl.de/, accessed on 6 March 2023) [34] with a default
parameter. The remaining BnSRS genes were subjected to the online software ExPASy
(http://web.expasy.org/protparam/, accessed on 6 March 2023) to predict the molecular
weights (MW), isoelectric point (pI), Instability Index, aliphatic index, and grand average
of hydropathicity. Then, the subcellular location of BnSRS proteins was predicted using
the WoLFPSORT online tool (https://wolfpsort.hgc.jp/, accessed on 6 March 2023) [35].
Finally, the position of the BnSRS gene on the chromosome was determined based on the
reference genome annotation information.

2.2. The Phylogenetic Analysis of BnSRS

The SRS protein from B. napus, Arabidopsis, rice (Oryza sativa), cotton (Gossypium hirsu-
tum, G. hirsutum), and soybean (Glycine max) were used to construct the phylogenetic tree.
First, multiple sequence alignment was performed on the integrated protein sequences
using MUSCLE software [36]. Next, MEGA software was used to construct a phylogenetic
tree based on the ML method with a bootstrap value set to 5000 [37]. Finally, the phyloge-
netic tree file was uploaded to the online software iTOL v6.5.2 (https://itol.embl.de/) for
visualization [38]. Multiple synteny analysis was also performed between these five species
by using Tbtools software [39]. To identify the duplicated gene pairs of BnSRS, the software
BLASTP was used to align the BnSRS protein sequences with the e-value of 1 × 10−10 [40],

http://brassicadb.cn/
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https://www.arabidopsis.org
http://pfam.xfam.org
https://www.ncbi.nlm.nih.gov/Structure/cdd/docs/cdd_search.html
https://www.ncbi.nlm.nih.gov/Structure/cdd/docs/cdd_search.html
http://smart.embl.de/
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then the software MCScan X [41] was used to identify the duplicated gene pairs of BnSRS
which were visualized using the software Circos [42]. Once the duplicated gene pairs of
BnSRS were obtained, the software Tbtools was used to calculate the evolutionary pressure
of each duplicated gene pair of BnSRS [39].

2.3. The Gene Structure, Conserved Motifs, and Cis-Acting Regulatory Elements Analysis

The exon and intron structures of the BnSRS gene were obtained based on the genome
annotation file. The conserved motifs of the BnSRS gene family were predicted using
the online software MEME (v5.5.3, https://meme-suite.org/tools/, accessed on 6 March
2023) with a maximum number of conserved motifs set to 10 [43]. To identify cis-acting
regulatory elements, the sequences in the 2 kb upstream of the BnSRS genes were extracted,
and then the online software PlantCARE5 (https://bioinformatics.psb.ugent.be/webtools/
plantcare/html/, accessed on 6 March 2023) was used to predict the cis-acting regulatory
elements of each BnSRS gene [44]. Finally, gene structure, conserved motifs, and cis-acting
regulatory elements were visualized by Tbtools [39].

2.4. Analysis of the Expression Pattern of BnSRS in Different Tissues and Different Environments

Transcriptome data were obtained from the previous studies that included a total of
32 tissues containing bud, callus, leaf, stamen, new pistil, blossomy pistil, wilting pistil,
stem, sepal, ovule, 11 time-course seeds and silique walls (0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48), and five stress conditions (Sclerotinia sclerotiorum (S. sclerotiorum), dehydration,
salt, cold, and abscisic acid) [45–47]. These data were aligned to the reference genome by
software hisat2 with the following parameters: -t -p 40—min-intronlen 20—max-intronlen
20,000—dta [48], and the expression quantity based on the transcripts per kilobase million
(TPM) normalization method was calculated by software Stringtie with the setting: -e -B -p
30 -f 0.1 [49]. Finally, the expression of BnSRS was extracted and displayed by Tbtools [39].

2.5. Prediction of Protein-Protein Interaction Network Analysis

To explore proteins that interact with BnSRS proteins, based on the homologs of the
BnSRS genes in Arabidopsis, we conducted a protein-protein interaction network analysis.
These homologous proteins were subjected to the online software STRING (v12.0, https:
//www.string-db.org/, accessed on 6 March 2023) to obtain the interacting proteins [50].
Subsequently, the sequences of these proteins were aligned to obtain the homologous
protein sequences in B.napus. Finally, these genes will be used to perform the GO and KEGG
enrichment analysis by R package clusterProfiler to investigate the biological functions [51].

2.6. Association Mapping Analysis of BnSRS Genes with Important Agronomic Traits

To investigate the effect of the BnSRS gene on important agronomic traits, we used
previously reported genotype data including 324 B. napus accessions [52]. SNPs within the
BnSRS gene body were extracted and annotated using the software SnpEff [53]. Thereafter,
11 important agronomic traits were selected. These traits include fertility traits (final
flowering time (FFT)). Proper fertility can improve the adaptability of B. napus to the season,
which can be used to determine the area of B. napus promotion, and is very meaningful for
achieving stable and high yields of B. napus. We also selected the yield trait of thousand seed
weight (TSW), which is directly related to the yield of B. napus, and is of great importance
for B. napus breeding. With the improvement of people’s living standards, people pay more
and more attention to the quality of edible oil, therefore, we also investigated some quality
traits (including palmitic acid (C16.0), stearic acid (C18.0), oleic acid (C18.1), linoleic acid
(C18.2), linolenic acid (C18.3), eicosenoic acid (C20.1), erucic acid (C22.1), Glucosinolates
(GLU), and protein). With the general linear model (GLM) method, an association mapping
analysis was performed by the software rMVP between the SNP and these traits [54].

https://meme-suite.org/tools/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://www.string-db.org/
https://www.string-db.org/
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3. Results and Discussion
3.1. Identification of BnSRS Genes and Analysis of Physicochemical Properties of Its Family
Members

The SRS gene family was represented by the Hidden Markov Model (HMM) PF05142,
which was used to search for candidate genes with distinctive SRS domains in B. napus
protein sequences. These candidate genes were verified through the online web tool NCBI-
CDD [33] and SMART [34] database to identify genes with the DUF702 domain. As a
result, 34 BnSRSs, named BnSRS1-BnSRS34 according to their positions in the genome
sequence, were identified. The number of BnSRS genes was six more than in the previous
study, providing an excellent addition to the research of the BnSRS gene family [55]. The
majority of the proteins encoded by these BnSRS genes (30/34) were found to be located in
the nucleus (Table S1), which is in agreement with previous studies [55,56]. Additionally,
various properties of these proteins such as the number of amino acids (AA), molecular
weight (MW), isoelectric point (pI), instability index, aliphatic index, and grand average
of hydropathicity were statistically analyzed using Table S1. The results showed that the
length of the AA ranged from 130 to 346 with an average length of 280.9; the BnSRS29
protein was identified as the shortest, while the BnSRS32 protein was the longest. The MW
of the proteins ranged from 15,066.46 to 38,329.85. The pI values were found to range from
4.56 to 10.06, with 13 pI values less than 7 and 21 pI values greater than 7, indicating that
most of the BnSRS proteins were alkaline. The instability index ranged from 42.17–68.46,
and all were unstable proteins. The aliphatic index ranged from 38.95–84.58. The grand
average of hydropathicity ranged from −0.93 to −0.047, indicating that all the identified
proteins were hydrophilic.

3.2. Phylogenetic Analysis of BnSRS

To reveal the phylogenetic relationship of BnSRS, a maximum likelihood (ML) phy-
logenetic tree was constructed using protein sequences of the SRS gene from 34 BnSRSs,
10 AtSRSs, 6 OsSRSs [7], 26 GhSRSs [8], and 21 GmSRSs [9]. The results showed that all
SRSs could be classified into four groups according to the clustering relationship, with
varying numbers of gene members per group. Group I comprised 25 members, including 1
from Arabidopsis, 4 from B. napus, 2 from rice, 9 from cotton, and 9 from soybean. Group
II comprised 21 members, including 5 from Arabidopsis, 11 from B. napus, 4 from rice, 1
from cotton, and none from soybean. The largest number of members was found in group
III, which had 47 members comprising 3 from Arabidopsis, 16 from B. napus, none from
rice, 16 from cotton, and 12 from soybean. Lastly, group IV comprised 4 members with 1
and 3 members in Arabidopsis and B. napus, respectively (Figure 2). Additionally, multiple
synteny analysis was also performed among the five species (Figure S1), which revealed
that a large and significant number of SRS genes were not homologous to SRS genes in
other species, implying that SRS genes have undergone substantial divergence during the
evolutionary process.
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Figure 2. A phylogenetic tree was constructed using the ML method to analyze the relationship
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3.3. Analysis of Chromosomal Localization and Duplication Events of BnSRS Gene Family
Members

Gene duplication is a widespread phenomenon among various species and plays a
critical role in promoting species diversity and creating novel species [57,58]. This study
focuses on B. napus, which is believed to have originated from natural hybridization
between Brassica rapa and Brassica oleracea about 7500 years ago [1,59,60]. The ancestor of
B. napus underwent triploidization before hybridization, resulting in multiple duplication
events throughout its evolutionary history. As a result, the number of BnSRS gene families
should be six times that of Arabidopsis. However, the annotation file revealed 34 members of
the BnSRS gene family, which was lower than expected. This may be due to the loss of the
BnSRS gene or functional divergence. Twenty-six BnSRS genes were unevenly distributed
over 14 chromosomes, with the highest number of members found on chromosome C07,
which contains 4 BnSRS members. Chromosomes A07 and A09 both had 3 each, while
chromosomes A01, A04, C01, C02, and C08 had 2 members each, and chromosomes A02,
A05, A10, C04, C06, and C09 had only 1 member each (Figure 3 and Table S1). B. napus,
an allotetraploid crop, has undergone multiple duplication events. To further explore
the evolutionary relationships of BnSRS, we identified the duplication events and the
duplicated gene pairs. A total of 20 duplicated gene pairs were found in the BnSRS genes,
with 2 pairs of both genes found within the A subgenome, 1 pair in the C subgenome, and
the remaining 17 duplicated gene pairs between the 2 subgenomes (Figure 3 and Table S2).
Upon analyzing these gene pairs, we found that all had non-synonymous to synonymous
substitutions (Ka/Ks) values less than 1, similar to that in Cassava [61], indicating that they
underwent purifying selection during the evolutionary process. In addition, 23 out of the
34 BnSRS genes had undergone WGD (whole genome duplication) or segmental, which
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indicated that the expansion of the BnSRS gene members mainly resulted from WGD or
segmental events.
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3.4. Analysis of BnSRS Gene Structure and Conserved Motifs

The number of exons varied among subgroups. The highest average number of exons
per gene was found in Group I (4). Followed by group II (average of 2, range of 1–3). Exon
counts varied the greatest in group III, from 2 to 5, with an average of 3. Finally, group
IV genes all contained 2 exons (Figure 4A,C). To analyze the domain functions present
in the BnSRS genes, we analyzed their motif distribution. The results showed that the
majority (32/34) of the BnSRS genes contained a RING-like zinc finger (motif 1), while 29
BnSRS genes had the IGGH domain (Motif 2), indicating that these two motifs tend to be
conserved in the BnSRS gene family (Figure 5). In addition, different motifs were observed
to have varying distributions among the different BnSRS subgroups. For example, motif 6
was only present in both group II and group III, while motif 10 was only present in group
II, and motif 9 was only present in group III. The number of motifs also varied among
subgroups, with group III having the highest number of motifs and group I having the
fewest, suggesting that changes in motif number occurred during the evolutionary process
of the BnSRS family members, leading to functional divergences among them (Figure 4B). In
addition, similar motifs were observed among members of the same subgroups, suggesting
potential similarities in evolutionary relationships or functions (Figures 2 and 4).
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3.5. Analysis of Cis-Acting Elements of the BnSRS Genes

Plants have complex regulatory mechanisms that respond to biotic and abiotic stresses,
and many of these mechanisms depend on cis-acting elements present in the promoter
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regions of genes [62,63]. The critical promoter region of a gene plays a crucial role in
regulating its function [64]. To identify cis-acting elements of the BnSRS genes, a sequence
of 2000 bp upstream of the translation starting at the site was extracted and submitted
to PlantCare, an online web tool for cis-acting element analysis [44]. After analyzing the
results, it was discovered that the extracted sequence contained various hormone-related el-
ements, such as auxin-responsive, abscisic acid responsiveness, gibberellin responsiveness,
MeJA-responsive, salicylic acid responsiveness, and others (AuxRR-core, ABRE, TATC-box,
TGACG-motif, TCA-element). Additionally, stress-related elements, light responsiveness,
low-temperature responsiveness, drought-inducibility, anaerobic induction, and others (TC-
rich repeats, ACE, LTR, MBS, ARE) were also present. Furthermore, development-related
elements were also identified, such as circadian control, cell cycle regulation, meristem ex-
pression, endosperm expression, and others (circadian, MSA-like, CAT-box, AACA_motif).
Among these elements, ABRE, ARE, and CAT-box accounted for the highest number of
hormone-related elements, stress-related elements, and development-related elements,
respectively (Figure 6 and Table S3). All of the BnSRS genes’ promoter regions contained
light-responsive elements, suggesting that the BnSRS genes may be involved in the light re-
sponse during the growth and development of B. napus. The promoter regions of 30 BnSRS
genes contained abscisic acid-responsive and anaerobic induction-related elements, while
26 BnSRS genes had MeJA-responsive related elements. Additionally, nearly half of the Bn-
SRS genes (16/34) contained low-temperature responsive elements (Figure S2 and Table S3).
Additionally, some BnSRS genes contained stress-responsive, drought-inducibility, cell
cycle regulation, and other related elements in the promoter region (Figure 6). These results
suggest that BnSRS genes may play a crucial role in regulating hormone responses and in
response to stresses, as well as growth and development, which is consistent with the SRS
gene family in Cassava [61] and cotton [8].
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3.6. Expression Pattern Analysis of BnSRS Gene Family Members

The expression pattern of genes could be used to infer the molecular functions of genes.
Previous studies have shown that SRS genes were expressed in roots, stems, leaves, flowers,
seeds, and other tissues, and were involved in growth and developmental processes in
plants [2,3,6–9,11,20,23,56,65]. To further explore the function of the BnSRS gene family,
we analyzed their expression patterns in different tissues and under various stresses. The
results showed that only 2 BnSRS genes (BnSRS18 and BnSRS21) were expressed in all
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32 tissues, while 34 BnSRS genes were expressed in 1 or more tissues. Twenty-three of
them showed a dominant expression in callus tissue; indicating the potential importance of
BnSRS genes in cell division, growth, and development (Figure 7). In the silique wall tissue,
only 14 BnSRS genes were expressed at all times. In addition, the expression of BnSRS18
increased as DAP increased, except at 40 DAP, which showed a decrease (Figure S3A).
Meanwhile, the expression of BnSRS21 declined continuously with the increase of DAP
(Figure S3A). In the seed tissue, the expression of BnSRS21 showed a similar pattern to that
in the silique wall tissue; while the expression of BnSRS18 increased and then decreased,
with the highest expression at the 28th DAP (Figure S3B). Moreover, B.napus is exposed
to a variety of biotic and abiotic stresses during its growth and development, and SRS
genes play an important role in response to biotic and abiotic stresses [7]. So, we also
investigated the changes in BnSRS gene expression under biotic and abiotic stresses. The
results showed that only 4 BnSRS genes had expression under all stresses (Figure 8A). The
overall findings demonstrated that only 9 BnSRS genes were expressed under all abiotic
stresses, and most of the genes were expressed at a low level under different abiotic stresses,
except for BnSRS18, which demonstrated up-regulation under different abiotic stresses
except under dehydration for 1 h, with the highest expression up-regulation observed
under salt treatment for 24 h, which was more than 2-fold. Most BnSRS genes displayed
significant down-regulation under diverse abiotic stresses, with BnSRS2 showing the
greatest decrease at 22-fold under ABA treatment for 24 h (Figure 8B). To investigate the
expression profile of the BnSRS genes under biotic stress, we investigated the inoculation
of B. napus at 0 and 24 h with S. sclerotiorum. The results showed that only some BnSRS
genes responded to S. sclerotiorum inoculation (Figure 8B). Only the expression of BnSRS18
showed a significant increase, with a nearly 2-fold up-regulation, while the expression of
BnSRS21 showed a substantial decrease, with a nearly 3-fold down-regulation (Figure 8B).
These results suggested that the BnSRS genes play an important role in response to a variety
of stresses, as in other species [6–9,61].
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Figure 8. The expression pattern of the BnSRS genes under different biotic and abiotic stresses.
(A) The number of BnSRS genes simultaneously expressed under different stresses. The ‘de’ represents
dehydration and “S.s” represents S. sclerotiorum. The yellow bar represented the number of genes with
expression in the tissue, the black dot indicated expression in the corresponding tissues, and the black
bar indicated the number of genes expressed in the corresponding tissues. (B) The expression levels
of the BnSRS genes under different stresses. The red and blue represent high and low expressions,
respectively.

3.7. Prediction of BnSRS Proteins Interactions Analysis

To investigate the function of BnSRS genes in B. napus, we conducted a protein-
protein interaction analysis using their homology to Arabidopsis. The results revealed
that 20,145 genes interacted with these 34 BnSRS genes (Table S4). In the interaction
network, these 34 BnSRS proteins were located in the central node, with most of them
interacting with other proteins of BnSRS (Figure 9A). Furthermore, we performed the
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis on these interacting proteins. The KEGG pathway analysis showed
that the genes encoding the interacting proteins were involved in various biochemical
pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, cytochrome
P450, glycine, serine, and threonine metabolism, and so on (Figure 9B and Table S5).
The GO enrichment analysis revealed that the genes encoding the interacting proteins
were involved in multiple biological processes, such as transition metal ion transport,
auxin-activated signaling pathway, stamen development, and so on. Furthermore, in
terms of cellular components, these proteins were enriched in myosin complex, endosome
membrane, microtubule, and others. In terms of molecular function, these proteins were
enriched in tryptophan synthase activity, motor activity, pectinesterase activity, and so on
(Table S6). Protein-protein interactions analysis showed that BnSRS proteins played an
important role in many aspects of development and growth.
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3.8. Genetic Effects of BnSRS Genes on B. napus Agronomic Traits

Previous studies have demonstrated that SRS genes have an impact on various
plant traits, including flower development [12], root development [2,4], plant height,
etc [11,20,66]. To investigate the impact of BnSRS genes on agronomic traits in B. napus, a
natural population of 324 B. napus accessions was employed, and the relationship between
BnSRS and agronomic traits was analyzed [52]. After filtering, a total of 3,320,299 SNPs
were identified from the SNP genotype data of these natural populations, out of which
168 SNPs were located on the 34 gene sequences, with 111 on the A subgenome and 57 on
the C subgenome. Interestingly, the density of SNPs within the BnSRS genes was found to
be higher in the A subgenome (5/kb) than in the C subgenome (2/kb), indicating an asym-
metric evolution of the BnSRS genes between the A and C subgenomes (Table S7). However,
the SNP density within the BnSRS gene (3.4/kb) was lower than the genome-wide SNP
density (4.5/kb), implying its relative conservation. Furthermore, annotation of all the
SNPs identified 86 SNPs in the exon region (including 48 nonsynonymous, 37 synonymous,
and 1 splicing junction mutation). Remarkably, group II had the highest number of SNPs
per BnSRS gene on average, approximately 15, followed by group III (12 SNPs per gene),
and group I (11 SNPs per gene). The minimum in group IV showed only about 4 SNPs
per gene. Additionally, significant differences were observed in the distribution of SNP
numbers among duplicated gene pairs. For instance, BnSRS31 had no SNP distribution,
while 17 SNPs were identified in its corresponding duplicated gene, BnSRS14. Finally, an
association analysis between SNPs and agronomic traits was conducted to examine the
effect of the BnSRS gene on agronomic traits in B. napus. The results showed that a total
of 27 SNPs were associated with at least one trait. For example, the gene BnSRS1 was
significantly associated with protein content, final flowering time (FFT), and thousand
seeds weight (TSW) (Figure 10A). Furthermore, the B. napus population was divided into
different subgroups according to the significant loci, the results showed that the phenotypic
differences between subgroups were also highly significant (Figure 10B–D). These findings
suggest that BnSRS genes play a significant role in regulating essential agronomic traits
in B. napus. Additionally, the identified SNPs can serve as valuable genetic resources for
future research exploring the functional properties of BnSRS genes.
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Figure 10. The association analysis between BnSRR1 and agronomic traits in B. napus. (A) Manhattan
plot with protein content, final flowering time (FFT), and thousand seeds weight (TSW). (B–D)
Phenotypic analysis of different genotypic groups at significant loci for protein content, FFT, and
TSW. There were 106 and 203 B. napus accessions in Hap1 and Hap2 populations, respectively.

4. Conclusions

In this study, we identified a total of 34 BnSRS genes and categorized them into four
subgroups based on their phylogenetic relationships. Most members within each subgroup
exhibit similar motifs, while variations in motifs among subgroups may contribute to the
functional diversity of BnSRS genes. The presence of cis-acting elements in the BnSRS
genes promoters, the expression patterns in different tissues and under various abiotic and
biotic stresses, as well as the protein-protein interaction analysis indicated their potential
role in regulating various aspects of plant growth, development, and adversity stress. Fur-
thermore, association analysis revealed the involvement of BnSRS genes in the regulation
of several important agronomic traits. Overall, These findings contribute significantly to
our understanding of the BnSRS gene family and establish a solid foundation for further
research on the biological and functional properties of BnSRS genes.
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www.mdpi.com/article/10.3390/genes14071421/s1, Figure S1: Multiple synteny among five species.
A, B, C, D, and E represent rice, Arabidopsis, B. napus, cotton, and soybean, respectively; Figure S2:
The abundance of the identified cis-acting elements in the promoters of BnSRS genes; Figure S3:
The expression levels of BnSRS genes in silique (a) and seed (b) tissues. Table S1: Characteristics of
physicochemical properties of the BnSRS genes.; Table S2: Ka/Ks analysis for duolicated gene pairs
of BnSRS genes.; Table S3: The position of cis-acting regulatory elements of BnSRS genes.; Table S4:
Predicted protein-protein interactions of SRS Proteins in B. napus.; Table S5: The GO enrichment
analysis results of interacting proteins.; Table S6: The KEGG pathway analysis results of interacting
proteins.; Table S7: SNPs of the SRS genes identified in 324 B. napus accessions.
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