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Abstract: Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western
Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study,
the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina
HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig
N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences
were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data,
23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total,
67 gene family expansions and 93 gene family contractions were detected in the L. savala genome.
Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis,
we screened a number of candidate genes associated with the specific morphology, behaviour-related
immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed
mechanisms underlying the special morphological and behavioural characteristics of L. savala from
a genomic perspective. Furthermore, this study provides valuable reference data for subsequent
molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
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1. Introduction

Fish have the highest species diversity among vertebrates and highly diverse mor-
phological and ecological properties [1]. More than 32,000 living fish species have been
recorded to date [2]. Their size, morphology, physiological and behavioural characteristics,
and adaptability vary greatly [3]. This variation has generated substantial interest in the de-
velopment of genomic resources and assays of functionally important genes in fishes. With
the development of genome sequencing and analytical methods, more and more genomic
features of various fishes have been reported [4,5], such as zebrafish Danio rerio [6], tiger
puffer Takifugu rubripes [7], yellowfin seabream Acanthopagrus latus [8], and giant grouper
Epinephelus lanceolatus [9], etc. However, the substantial variation in biological properties
and habitats is expected to correspond to significant differences in genome structure among
different fishes [10]. Therefore, exploring the genomic evolution and adaptive mechanisms
of various fishes has become a focus of animal genome research [11,12]. In particular, the
genomes of wild fishes with special biological, behavioural, and ecological characteristics
have gained widespread attention.

During long-term evolution, some fishes have undergone substantial divergence in
morphology, habits, behavioural traits, and survival and propagation strategies [13,14].
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These traits often involve complex evolution of the genome and related developmen-
tal mechanisms. For example, cave fish commonly exhibit a series of specific pheno-
typic changes, including eye degeneration, pigment loss, and increases in taste buds and
mechanosensory organs [15,16]. McGaugh et al. [17] identified candidate genes that cause
eye degeneration by sequencing the genome of the Mexican tetra Astyanax mexicanus. A
genomic analysis of the elephant shark Callorhinchus milii showed that the SCPP (secreted
calcium-binding phosphoprotein) gene loss explains the absence of hard bones in the
endoskeleton of cartilaginous fishes [18]. In the tiger tail seahorse Hippocampus comes,
the disappearance of its ventral fins may be related to the TBX4 gene loss, which regu-
lates hindlimb formation [19]. Moreover, the high expression of the expanded astacin
metalloprotease gene family in the brood pouch of male H. comes contributed to its preg-
nancy [19]. Based on comparative genomic analyses, the accelerated evolution of genes
involved in the growth hormone and insulin-like growth factor 1 axis was revealed to
be an important driving factor for the rapid growth and large size of ocean sunfish Mola
mola [20]. In comparative genomic analyses of Siamese fighting fish Betta splendens and its
five variants, a large number of single nucleotide polymorphisms (SNPs) and genes related
to aggressive behaviour have been detected [21]. Recently, Zhao et al. [22] reported that
fast-swimming fishes (e.g., southern bluefin tuna Thunnus maccoyii, Pacific bluefin tuna
Thunnus orientalis, swordfish Xiphias gladius, and large yellow croaker Larimichthys crocea)
have more haemoglobin genes than relatively slow-moving fishes (e.g., ocean sunfish Mola
mola, tongue sole Cynoglossus semilaevis, and H. comes). These research advances provide
insights into the formation of unique phenotypic and behavioural traits in wild fishes at
the genomic level.

The Savalani hairtail Lepturacanthus savala (Cuvier, 1829), which belongs to the fam-
ily Trichiuridae (Teleostei, Perciformes), is a benthopelagic fish widely distributed in the
tropical and subtropical waters of the Indo-West Pacific region [23,24]. It is one of the main
fishing targets for bottom trawls, shore seines, and bag nets in the coastal countries of
Asia [25]. In China, L. savala can be found in the East China and South China Seas, and is
abundant in the northern South China Sea [26]. Based on a routine fishery resources survey,
the annual catch of L. savala was one-quarter to one-fifth of the total annual catch of trichi-
urids in the northern South China Sea (approximately 300,000 t, 2010–2021), supporting an
important commercial marine fishery. In some Indian Ocean countries, L. savala is also a
major fishery resource [27]. In the period of 1999 to 2009, the annual catch of this species in
Pakistani coastal waters ranged from 31,623 t to 20,375 t [28]. L. savala is a popular hairtail
fish and contributes substantially to the world trichiurid fisheries, second only to the genus
Trichiurus.

Similar to other trichiurid fishes, the body of L. savala is remarkably elongated and
strongly compressed, with a ribbon-like shape. Its total length generally ranges from 30
to 87 cm (maximum about 100 cm) [29], and the number of vertebrae (135 to 141) [30]
exceeds that of most teleost fishes (mainly 21 to 56) [31]. Both the ventral and caudal fins
of L. savala are absent, with a whip-elongated tail that is grey-black at the end [32]. The
first anal-fin spine is large, its length half of the diameter of the eye, and the two small
canine teeth on the upper jaw project forward [25]. These taxonomic traits distinguish L.
savala from other trichiurid species. As a ferocious predatory fish, L. savala occupies a high
trophic level in the marine food chain [33]. It not only has extremely sharp teeth, but also
has strong swimming ability [26]. Moreover, the long-distance migratory behaviour of
L. savala [34] is supported by its excellent swimming motility [35]. L. savala is relatively
derived and is in a special evolutionary position in the family Trichiuridae. L. savala is
also clearly distinguished from other teleost fishes and can be considered a special case
in the genetic evolution of teleosts. Previous studies of L. savala have mainly focused on
fishery resources [28,36], biological characteristics [32], feeding habits [37], mitochondrial
DNA [38], and population genetics [39]. However, the molecular mechanisms underlying
the evolution of its unique traits have not yet been addressed. Therefore, genomic studies
of L. savala are needed to elucidate the evolutionary mechanisms underlying its particular
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morphological and behavioural traits, and also to unravel the molecular determinants of
the formation of this special group of trichiurid fishes.

In this study, we combined Illumina short reads, PacBio long reads, and Hi-C sequenc-
ing data to obtain a chromosome-level genome assembly of L. savala. RNA sequencing
of muscle, liver, and heart tissues was performed using PacBio and Illumina platforms to
assist in the structural and functional annotations of the genome. Finally, we performed the
comparative analyses and searched for the signature of positive selection in genomic data
for L. savala and other fish species to investigate phylogenetic relationships, divergence
times, and gene family contraction and expansion. Our findings clarify the evolutionary
mechanisms underlying specific features of L. savala at the genome-wide level, and provide
important genomic resources and new perspectives for exploring the genomic evolution of
trichiurid fishes.

2. Materials and Methods
2.1. Sample Collection

During the fishery resource survey along the eastern coast of Leizhou Peninsula
(Zhanjiang City, Guangdong Province, China) in December 2020, three male L. savala
were captured through bottom trawls (Figure 1). Live fish were anaesthetized using
MS-222 (ethyl 3-aminobenzoate methanesulfonate, Sigma-Aldrich, Shanghai, China) at
a concentration of 200 mg/L. After the fish were deeply anaesthetized, the muscle, liver,
and heart tissue samples were collected from each fish using three 1.5 mL sterile tubes. To
avoid contamination, the sampled tissues were not mixed with other tissues (e.g., gills,
intestines, and stomach) or environmental DNA. The samples were immediately placed
in liquid nitrogen for rapid freezing, and then transferred to a −80 ◦C refrigerator in the
laboratory for subsequent construction of sequencing libraries. The experimental animal
protocols in this study were reviewed and approved by the Animal Experimental Ethics
Committee of Guangdong Ocean University, China (approval number: 1201-2020).
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2.2. DNA and RNA Extraction for Library Construction and Sequencing

The genomic DNA was extracted from muscle tissue using the standard phenol/chloroform
extraction protocol [40]. The concentration of extracted DNA was detected by Nanodrop
2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and the purity
and integrity were determined by agarose gel electrophoresis. According to the standard
Illumina protocol, a paired-end library with an insert size of 150 bp was constructed for se-
quencing on the Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA). A SMRTbell
library with a fragment size of 20 kb was constructed using the SMRTbell Express Template
Prep Kit for sequencing on the PacBio Sequel II platform (Pacific Biosciences, Menlo Park,
CA, USA). DNA samples were fragmented by Covaris M220 ultrasonic disruptor (Covaris,
Shanghai, China), followed by enrichment and purification of large DNA fragments using
magnetic beads.

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) for
Illumina library construction for each tissue type (the muscle, liver, and heart), while the
PacBio library was constructed using mixed RNA from the three tissues. The RNA integrity
number (RIN) and RNA concentration of each extracted total RNA were then detected
by Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and agarose
gel electrophoresis, respectively. Total RNA of each tissue was reverse transcribed using
the TUREscript First Stand cDNA Synthesis Kit (AidLab, Beijing, China), and a double-
stranded cDNA library was synthesized, resulting in the construction of three Illumina
paired-end sequencing libraries with insert sizes of about 150 bp. Full-length cDNA was
synthesized using the SMARTer cDNA Synthesis Kit (Takara Bio, Beijing, China), and the
cDNA concentration in the library was measured using Qubit 3.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). Subsequently, the full-length cDNA fragments were end-repaired,
and the SMRT dumbbell adapters were connected for constructing the PacBio sequence
library. Finally, the libraries were sequenced using the Illumina HiSeq 2500 and PacBio
Sequel II platforms, and the resulting data were used for genome annotations.

2.3. Evaluation of Genome Size, Heterozygosity, and Contamination

The raw reads obtained by Illumina sequencing of muscle DNA were filtered using
Trimmomatic v0.39 [41] to obtain clean reads. Ten thousand randomly selected clean reads
(5000 for Read1 and 5000 for Read2) were mapped to the NCBI nucleotide database by
using NCBI blast++, and the top six mapped species were selected in descending order of
mapping time. If all mapped results are homologous, the samples have not been subjected
to exogenous contamination. Jellyfish v1.1.11 [42] was used to mathematically estimate
the genome size based on the K-mer analysis method (base sequence containing K bases).
The 17 bp K-mers (17mers) were extracted from the sequencing data, and the frequency
of each 17mer was calculated. The K-mer depth was the expected value corresponding to
the Poisson distribution. The calculated genome size (unit: Megabits) was defined as the
number of K-mers/depth of K-mers. Total K-mers were assembled using SOAPdenovo
v2.0.0 [43] with K-mer set at 41 bp. The heterozygosity rate of the corrected genome was
obtained by calculating the proportion of heterozygous sites.

2.4. Genome Assembly and Integrity Assessment

The raw sequencing data contained two adaptors, which was the dumbbell-shaped
structural sequence called polymerase reads. Subreads were obtained after the adaptor
sequences were interrupted and filtered out, then the high-precision HiFi reads were
generated using SMRT Link v10.2 [44]. Hifiasm v0.12 [45] was used to quickly assemble
HiFi reads (parameters selected by default), and the contigs and scaffolds with more
complete sequences were constructed in turn. After obtaining contigs, NextPolish v1.2.1 [46]
was used to correct errors with Illumina clean reads obtained in the genome survey step,
and finally obtain more accurate genome sequences.
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Integrities of the assembled genome and the conserved genes in the assembled genome
were judged using Benchmarking Universal Single-copy Orthologs method (BUSCO) [46]
and Core Eukaryotic Genes Mapping Approach (CEGMA) [47], respectively, to evaluate
the integrity of the assembled genome and the uniformity of Illumina and PacBio sequenc-
ing. Illumina clean reads were mapped to the assembled genome sequences using BWA
v0.7.17 [48]. Further, the BWA mapping results (BAM format) were used to detect SNPs
at the genome scale using samtools v1.15.1 [49]. The processing included sorting chromo-
some coordinates and removing duplicate reads, etc. The SNPs contain homology SNPs
and heterozygosis SNPs, and the ratio of homology SNPs to total SNPs could reflect the
correctness of the genome assembly.

2.5. Chromosome Assembly by Hi-C

Hi-C libraries of muscle tissue were built according to the high-throughput chro-
matin conformation capture (Hi-C) library construction technology standards, and then
sequenced using the Illumina HiSeq 2500 platform. Only filtered reads that passed the
HiCUP v0.8.0 [50] quality control pipeline were used for subsequent chromosome assembly.
HiCUP subroutine hicup_truncater was used to identify the restriction sites on clean reads
and cut off redundant chimeric sequences. Paired-end reads were mapped to the preliminar-
ily assembled genome using the hicup_mapper subroutine, and the mapping results were
combined. The resulting data were filtered using the hicup_filter subroutine to obtain valid
pairs used as Di-Tags. Thereafter, PCR repeats were removed by the hicup_deduplicater
subroutine. The data obtained after quality control contained effective genome-wide chro-
mosome cross-linking information, which facilitated genome assembly to the chromosome
level. Since the interaction frequency on the same chromosome decreases as the interaction
distance increases, the contigs or scaffolds of the same chromosome can be sorted and
oriented. Accordingly, ALLHiC program [51] was used to assemble the Hi-C data and to
cluster the assembled contig/scaffold sequences to obtain a chromosome-level genome.

2.6. Genome Repetition, Structure, Function, and Noncoding RNA Annotation

Protein-coding genes were predicted by using three methods, ab initio prediction,
homology-based identification, and an RNA-Seq data-assisted method. First, Augustus
v3.4.0 [52], GlimmerHMM v3.01 [53], Geneid v1.4.4 [54], and Genscan v1.0.0 [55] were
used for ab initio prediction by counting codon frequency, exon–intron distribution, and
training dataset, etc. The RNA-Seq data from three tissues act as the input training sets of
Augustus and SNAP programs. Second, genome-wide protein sequences of D. rerio, Homo
sapiens, T. maccoyii, Thunnus albacares, Etheostoma spectabile, Sander lucioperca, Perca fluviatilis,
Perca flavescens, T. rubripes, Gasterosteus aculeatus, and Oryzias latipes were downloaded
from the NCBI database and used for homology mapping to the L. savala genome using
tBlastn [56] and GeneWise v2.4.1 [57] in order to identify known genes with high similarity
(E-value ≤ 1 × 10−5). Third, two methods were used to predict protein coding genes based
on RNA-Seq data from three tissues. That is, the prediction gene after Tophat v2.1.1 [58] and
Trinity v2.13.2 [59] assembly were performed using Cufflinks v2.2.1 [58] and PASA v2.5.2
(https://github.com/PASApipeline/PASApipeline, accessed on 21 March 2022), respectively.
Gene sets predicted by the above three methods were integrated by EVidenceModeler
v1.1.1 [60]. Alternative splicing transcripts were removed, and the longest transcripts
were retained using PASA. Further, the predicted gene sequences were mapped to NR
(nonredundant proteins), SwissProt (Swiss Protein Institute), KEGG (Kyoto Encyclopedia
of Genes and Genomes) [61], and GO (gene ontology) [62] databases for the functional
annotation of protein-coding genes. Conserved functional domain information and protein
families were predicted using the Pfam (protein family) [63] and InterPro (Integrated
Resource of Protein) databases.

https://github.com/PASApipeline/PASApipeline
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Tandem repeats in the genome were searched using TRF program. Database mapping
and ab initio prediction methods were used to identify interspersed repeats in the genome.
Based on the homologous repeat database RepBase [64], RepeatMasker v4.1.2, and Repeat-
ProteinMask v4.1.2 [65], programs were used to identify sequences with similar repeat
sequences of known nucleic acids and amino acids, respectively. The ab initio prediction
method firstly used LTR_Finder v1.0.7 [66], RepeatScout v1.0.5 [53], and RepeatModeler
v2 [53] programs to build de novo repeated sequence database, and then RepeatMasker
v4.1.2 was used to predict interspersed repeats. Annotations of noncoding RNA included
tRNA, rRNA, miRNA, and snRNA. tRNAscan-SE [67] was used to predict tRNA. The rRNA
sequences of closely related species were selected as reference sequences for searches by
blast alignment. MiRNAs and snRNAs were predicted based on the Rfam family covariance
model using INFERNAL.

2.7. Genome Evolution, Gene Family Dynamics, and Positive Selection Analyses

Protein-coding genes of less than 30 amino acids in the genomes of L. savala and 18
other fishes (Acanthopagrus schlegelii, C. semilaevis, D. rerio, Epinephelus akaara, G. aculeatus, H.
comes, Ictalurus punctatus, L. crocea, Monopterus albus, P. flavescens, Seriola dumerili, Scleropages
formosus, Scophthalmus maximus, Sebastes schlegelii, T. albacares, T. maccoyii, T. rubripes, and
Cetorhinus maximus) were removed, and alternative splicing of the longest transcript was
used for a gene family cluster analysis. Similarity relationships between the protein
sequences of these 19 species were calculated by Blastp [56] (E-value = 1 × 10−7). Based on
similarity, orthologous genes from 19 species were clustered using OrthoMCL v2.0.9 [68]
(extension coefficient = 1.5) to obtain single-copy gene families and multi-copy gene families.
Then, the expansion and contraction of gene families were evaluated using CAFE (http:
//sourceforge.net/projects/cafehahnlab/, accessed on 25 March 2022). Further, GO and
KEGG pathway enrichment analyses of expanded and contracted gene families were
carried out using BioSciTools (https://bioscitools.github.io, accessed on 25 March 2022)
with p < 0.05 and FDR (false discovery rate) < 0.05 as thresholds for statistical significance.
Gene families detected only in L. savala and not in other species were considered to be
unique to L. savala.

A maximum likelihood phylogenetic tree was constructed using the RAxML pro-
gram [64] based on alignment of all single-copy genes for the 19 species. Divergence times
between species (95% confidence intervals) were estimated using McMcTree in the PAML
v1.3.1 package [69]. Six calibration times for species divergence were obtained from the
TimeTree database [70], including G. aculeatus and S. schlegelii (68–87 Mya), C. semilaevis
and S. maximus (49–81 Mya), T. rubripes and G. aculeatus (99–127 Mya), T. rubripes and
C. semilaevis (94–115 Mya), T. rubripes and H. comes (106–114 Mya), and T. rubripes and D.
rerio (206–252 Mya). Finally, the convergence of bifurcation times for tree branches was
verified by Tracer v1.7.1 [71].

Candidate genes associated with the special traits of L. savala were screened by set-
ting up two groups of positive selection combinations, and gene function annotation
and enrichment analyses were performed. Group 1 (L. savala) vs. a selection of fishes
(A. schlegelii, L. crocea, and P. flavescens) was used to screen the genes associated with the
ribbon-like shape, scaleless body surface, and absence of ventral fins of L. savala. Group 2
(L. savala, M. albus) vs. the same selection of fishes (A. schlegelii, L. crocea, and P. flavescens)
was set to further screen for genes associated with the body shape of L. savala. Based on
protein sequence alignment data for single-copy gene families of the above five species, the
branch site model in PAML was used to detect whether each gene family was positively
selected in the foreground branch. Finally, GO and KEGG enrichment analyses of positively
selected genes were performed using BioSciTools, and p < 0.05 and FDR < 0.05 were used
as thresholds for statistical significance.

http://sourceforge.net/projects/cafehahnlab/
http://sourceforge.net/projects/cafehahnlab/
https://bioscitools.github.io
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3. Results
3.1. Genome Size Estimation and Initial Characterization of the Genome

In total, 291,902,400 raw paired-end reads were generated by genomic surveys on the
Illumina platform, and 237,372,083 clean reads were obtained for subsequent analyses. The
proportion of clean reads with base quality > Q30 was 90.66%, the sequencing error rate was
0.04%, and the GC content was 39.75%. Mapping results showed that the top six species
were all Perciformes, namely, Dicentrarchus labrax (0.36%), Haplochromis burtoni (0.32%),
Tetraodon nigroviridis (0.2%), T. rubripes (0.19%), O. latipes (0.11%), and Trichiurus lepturus
(0.11%). This indicates that the sequencing data were reliable and free from genomic
contamination by other species, especially microorganisms. Based on the expected value of
the Poisson distribution given by the K-mer analysis (K-mer = 17), the K-mer depth was
78. Accordingly, the genome size of L. savala was estimated to be 815.49 Mbp, revised to
802.34 Mbp, and the genome heterozygosity rate was 0.53%.

3.2. Genome Assembly and Evaluation

A total of 1,591,638 high-quality HiFi reads were obtained by PacBio-SMRT sequencing,
and 215 contigs were assembled (Supplementary Table S1). The assembled genome size
was 790.02 Mbp, close to the estimate from the genome survey (802.34 Mbp), and the contig
N50 length reached 19.01 Mbp.

Taking the database with 3640 orthologous single-copy genes constructed by BUSCO
as a reference, the L. savala genome contained 3491 (95.9%) complete BUSCOs, of which
3459 (95.0%) were complete single-copy BUSCOs, and 32 (0.90%) were complete duplicated
BUSCOs (Supplementary Figure S1). That is, the assembled genome contained more
than 95.9% of orthologous genes, indicating a high rate of gene coverage. A CEGMA
evaluation showed that the assembled genome completely matched 229 (92.34%) of 248
conserved genes in eukaryotic model organisms, and that the conserved genes were fully
assembled, demonstrating the integrity of the L. savala genome. The read mapping rate
was as high as 98.16%, the proportion of the genome covered by reads was 99.91%, and the
average depth of coverage per base by reads was 86.79%. Furthermore, 2,498,432 (0.3918%)
heterozygous SNPs and 641 (0.0001%) homologous SNPs were identified. The low ratio of
homologous SNPs indicated a high single-base accuracy for the assembled genome. The
GC content of the assembled genome sequences calculated with a 10 Kbp window was
concentrated around 39.03%, and no significant GC separation was detected, indicating a
lack of exogenous contamination in the L. savala genome.

3.3. Chromosome Assembly by Hi-C Data

A total of 12,034,266 raw paired-end reads were generated by the Illumina sequencing
of the Hi-C library, and 10,213,512 clean reads were obtained after quality control. A
HiCUP analysis and mapping results showed 6,124,460 clean reads (59.96%) for read1 and
6,124,460 (59.96%) clean reads for read2. There were 5,365,963 valid Di-Tags and 758,497 invalid
Di-tags (containing multiple types) obtained by hup_filter filtering (Supplementary Table S2).
After removing PCR repeats, 5,117,719 unique Di-Tags were retained and 2,189,442 unique cis
Di-Tags (560,836 cis-close Di-Tags and 1,628,606 cis-far Di-Tags) and 2,928,442 unique trans
Di-Tags were identified. Thus, the effective utilization of Hi-C data, calculated as unique
Di-Tags/total read pairs, was 50.11%. These Di-Tags record the frequency of interactions
within and among chromosomes, and the assembled chromosome-level genome contained
219 contigs and 101 scaffolds. Chromosome clustering based on 11 scaffolds (790,034,746 bp)
showed that 24 sequences (758,527,366 bp) were anchored and 77 sequences (31,507,380 bp)
were not anchored to the chromosome, with a genome assembly rate of 96.01% (Figure 2).
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3.4. Genome Annotation

After quality control and filtering, Illumina sequencing of RNAs from muscle, liver,
and heart tissues yielded 22,926,095, 18,722,468, and 20,707,056 clean reads, with Q30
values of 93.77%, 93.64%, and 93.38%, respectively, and GC contents ranging from 49.12%
to 50.89% (Figure 3). The PacBio SMRT sequencing of mixed RNA from three tissues
generated 529,509 polymerase reads (46.52 Gbp) with an average length of 87,857 bp and
an N50 length of 159,345 bp, as well as 13,516,264 subreads (45.51 Gbp) with an average
length of 3368 bp and an N50 length of 3721 bp. These transcriptomic data were used to
assist in genome annotation.

A total of 31,876 genes were predicted by three methods (Table 1, Supplementary
Figure S2A). The longest transcript was selected by filtering out alternative splicing variants
to obtain 23,625 protein-coding genes in the L. savala genome (Table 1). Basic information for
22,670 and 20,571 genes was obtained from the NR and SwissProt databases, respectively.
Biological processes and functions for 15,555 and 20,399 genes were derived from the GO
and KEGG databases, respectively. Annotation information for functional domains and
protein families for 18,926 and 20,429 genes were acquired from the Pfam and InterPro
databases, respectively. Integrating these results, 22,679 (96.0%) genes were successfully
annotated, of which 18,955 genes had complete annotation information in the above six
databases (Supplementary Figure S2B).

In total, 96,078,789 bp of tandem repeats were predicted using TRF, accounting for approxi-
mately 12.16% of the genome. A total of 277,525,905 bp of interspersed repeats were identified
by integrating the results of database mapping and ab initio prediction, accounting for approxi-
mately 35.13% of the genome (Supplementary Table S3). Annotation of nc-RNAs showed that
the L. savala genome had 1434 miRNAs (143,870 bp; 0.0182%), 9086 tRNAs (685,943 bp; 0.0868%),
and 10,263 rRNAs (2,100,089 bp; 0.27%) (Supplementary Table S4).
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Table 1. Structure and parameters of genes predicted by three different methods.

Methods Gene Set Number
Average
Transcript
Length (bp)

Average
CDS
Length (bp)

Average
Exons
per Gene

Average
Exon
Length (bp)

Average
Intron
Length (bp)

De novo

Augustus 33,486 8827.52 1201.39 6.87 174.85 1298.98
GlimmerHMM 76,383 8606.22 686.71 4.6 149.37 2201.43
SNAP 64,956 11,484.45 799.65 5.76 138.71 2242.37
Geneid 34,350 14,311.26 1231.61 6.09 202.2 2569.11
GenScan 33,084 16,121.64 1490.15 8.22 181.34 2027.19

Homolog

Danio rerio 23,256 10,252.69 1494.80 7.53 198.53 1341.28
Etheostoma spectabile 22,973 11,643.93 1604.77 8.3 193.26 1374.52
Gasterosteus aculeatus 27,165 8780.31 1235.59 6.74 183.24 1313.76
Homo sapiens 18,148 11,303.80 1465.64 7.95 184.38 1415.76
Oryzias latipes 23,446 11,206.10 1630.43 8.19 199.16 1332.48
Perca flavescens 26,554 10,560.30 1481.67 7.73 191.65 1348.74
Perca fluviatilis 25,661 10,889.74 1529.66 7.87 194.37 1362.46
Sander lucioperca 25,313 11,255.57 1578.82 8.21 192.27 1341.86
Thunnus albacares 25,361 11,411.78 1589.75 8.25 192.62 1354.14
Thunnus maccoyii 24,446 11,716.77 1631.43 8.48 192.5 1349.21
Takifugu rubripes 22,038 11,995.55 1634.46 8.63 189.42 1358.19

RNA-Seq PASA 43,445 11,533.68 1469.51 9.05 162.38 1250.24
Cufflinks 37,916 13,980.13 2755.81 8.75 315.05 1448.83

EVM (EVidenceModeler) 31,876 10,753.39 1307.47 7.49 174.54 1455.28
PASA-update * 31,434 11,153.72 1339.72 7.67 174.73 1471.95
Final set ** 23,625 13,717.34 1620.82 9.38 172.74 1442.96

*: Contains UTR region. **: This final set contains UTR region.
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3.5. Gene Family Clustering, Expansion and Contraction, and Phylogenetic Analyses

The protein-coding genes screened from the genomes of L. savala and 18 other fishes were in
the range of 18,785 (A. schlegelii) to 25,573 (D. rerio), and a cluster analysis generated 20,932 genes,
of which 2,068 were single-copy gene families (Figure 4A). There were 13,907 gene families
shared by L. savala and three closely species (T. albacares, T. maccoyii, and P. flavescens),
and 407 gene families were unique to L. savala (Figure 4B). KEGG enrichment analysis
showed that these unique gene families were mainly involved in the following pathways:
protein digestion and absorption, PI3K-Akt signaling pathway, focal adhesion, ECM–
receptor interaction, platelet activation, relaxation signaling pathway, lysine degradation,
and amoebiasis.

Genome family expansion and contraction were further analyzed for 20,932 gene
families in 19 species. Based on a comparison with the common ancestors of L. savala,
T. albacares, and T. maccoyii, 67 gene families expanded and 93 gene families contracted
during the evolution of L. savala (Figure 5). KEGG enrichment analysis (Table 2) revealed
that the expanded gene families were involved in several important pathways, such as
focal adhesion, ECM–receptor interaction, platelet activation, relaxation signaling pathway,
protein digestion and absorption, PI3K-Akt signaling pathway, lysine degradation, corti-
sol synthesis and secretion, and PPAR signaling pathway. These pathways were highly
consistent with the pathways associated with the unique gene families of L. savala. The
main pathways related to the contracted gene families included synaptic vesicle cycle,
GABAergic synapse, NOD-like receptor signaling pathway, protein digestion and absorp-
tion, mineral absorption, arachidonic acid metabolism, ECM–receptor interaction, and focal
adhesion (Table 2).
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Figure 4. Types and numbers of gene families in 19 species (A) and quantitative analysis of gene
families in L. savala, T. albacares, T. maccoyii, and P. flavescens (B).

As illustrated in the phylogenetic trees (Figures 5 and 6), L. savala, T. albacares (Bio-
Project: PRJEB47267), and T. maccoyii (BioProject: PRJEB46021) were first clustered into
a monophyletic clade with 100% bootstrap support, and all nodes of other branches also
showed 100% support. As shown in Figure 6, the divergence between L. savala with
T. maccoyii and T. albacares occurred 84.4 (60.1–107.6) million years ago, while T. maccoyii
and T. albacares diverged 3.6 (2.9–4.4) million years ago.
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Table 2. KEGG enrichment analysis of expanded and contracted gene families.

1. Contraction (93 Gene Families, 13 KEGG Pathways)

KEGG pathways p-value Genes

Synaptic vesicle cycle 1.61 × 10−6 SLC6A13, SLC6A1, SLC6A11
GABAergic synapse 5.39 × 10−6 SLC6A13, SLC6A1, SLC6A11
Choline metabolism in cancer 7.27 × 10−5 SLC22A5, SLC5A7
NOD-like receptor signaling pathway 0.0028841 NLRC3, GVIN1, URGCP
Small cell lung cancer 0.0040207 COL4A1, COL4A2, COL4A6

Protein digestion and absorption 0.0044306 COL4A1, COL4A2, COL6A3, SLC6A19,
COL4A6, SLC6A19

Pathogenic Escherichia coli infection 0.0060438 TUBB1, COL6A3
Necroptosis 0.0111952 NLRC3, COL6A3, CAPN2, ALOX5
Mineral absorption 0.0208705 SLC6A19
Gap junction 0.0305233 TUBB1, COL6A3
Arachidonic acid metabolism 0.0311748 ALOX5
ECM–receptor interaction 0.0359224 COL4A1, COL4A2, COL6A3, COL6A6
Focal adhesion 0.0466035 COL4A1, COL4A2, COL6A3, COL6A6

2. Expansion (67 gene families, 18 KEGG pathways)

KEGG pathways p-value Genes

Focal adhesion 0.00 TRIO, TES
ECM–receptor interaction 0.00 TRIO, TES
Platelet activation 0.00 TRIO, TES
Relaxin signaling pathway 0.00 TRIO, TES
AGE-RAGE signaling pathway in diabetic
complications 0.00 TRIO, TES

Protein digestion and absorption 0.00 TRIO, TES
Amoebiasis 0.00 TRIO, IGHM, GPR119, TES
Human papillomavirus infection 1.36 × 10−262 TRIO, F5, EIF3A, TES
PI3K-Akt signaling pathway 6.51 × 10−251 TRIO, IGHM, TES
Olfactory transduction 4.99 × 10−40 NONE
Lysine degradation 2.09 × 10−6 KMT5AA, KMT5A, SET-1

Huntington disease 4.89 × 10−5

DNAH7, DNAH11, DNAH9, NES,
DNAH3, DNAH5, DNAH8, DNAH2,
DHC10, KLF18, SGS4, DNAH1,
DNAH6, QRICH2, DNAH10

Staphylococcus aureus infection 0.0079023 IGLV1-51, IGHM, SFTPD, MBL, MBL2,
IFITM3

Cortisol synthesis and secretion 0.0119558 CACNA1G, CACNA1H, CACNA1I,
CACNA1H

PPAR signaling pathway 0.0169356 SAMD3
Bacterial secretion system 0.017091 SECA3, SECA
Allograft rejection 0.0267611 IGLV1-51, IGHM, PRF1
Glycosphingolipid biosynthesis 0.0462553 ST3GAL1

3.6. Positive Selection Analysis

A total of 903 genes were identified in the first positive selection analysis (Table 3).
These genes were mainly enriched in the GO terms with DNA metabolic process, nuclear
chromosome, and DNA repair, and in the KEGG pathways with JAK-STAT signaling
pathway, novobiocin biosynthesis, Fanconi anemia pathway, cytokine–cytokine receptor
interaction, homologous recombination, nonhomologous end-joining, and complement and
coagulation cascades (Supplementary Figure S3). In the second positive selection analysis,
922 genes were identified (Table 3). The genes were mainly enriched in the GO terms with
methyltransferase activity, amino methyltransferase activity, and nucleic acid binding, and
in the KEGG pathways with cytokine–cytokine receptor interaction, JAK-STAT signaling
pathway, RNA transport, autophagy-other, autophagy-yeast, Fanconi anemia pathway, and
nonhomologous end-joining (Supplementary Figure S3).

We further evaluated the correlations between the functions of positively selected
genes and gene families in L. savala and its biological characteristics, and finally confirmed
that gene families TES, TRIO, DNAH, SLC6, and COL4, the genes MTOR, ATG3, ATG4C,
ATG12, CFI, C1QA, VTN, STAT6, IL5RA, IL10, IL15RA, IL16, IL17RA, IL20RA, IL22RA2,
POLM, PRKDC, BARD1, BRCA1, NBN, XRCC2, EME2, and FAAP100, and autophagy-other,
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complement and coagulation cascades, JAK-STAT signaling pathway, cytokine–cytokine
receptor interaction, nonhomologous end-joining, homologous recombination, Fanconi
anemia pathways play important roles in the evolutionary of unique traits in L. savala.

Table 3. Genome characteristics comparison based on two groups of positive selection analyses.

Group 1 (Genes: 903; GO Terms: 62; KEGG Pathways: 17)
A: L. savala; B. A. schlegelii, L. crocea, P. flavescens

GO terms KEGG Pathways Genes screened

DNA metabolic process JAK-STAT signaling pathway HIRA, IL15RA, PRLR, etc.
Nuclear chromosome Novobiocin biosynthesis TAT
DNA repair Fanconi anemia pathway EME2, FAAP100, BRCA1, etc.
Nucleic acid binding Cytokine–cytokine receptor interaction INHBA, HIRA, TNFRSF26, etc.
Helicase activity Sulfur relay system SYNPR, MOCS2, NFS1
Nuclease activity Ether lipid metabolism TPT1, SH3BGRL3, PLA2G3, etc.
Checkpoint clamp complex Arginine biosynthesis NOS1, ASL, NAGS, GLS2
Spindle RNA transport RANBP2, EIF2B3, RPP30, etc.
Hyaluronic acid binding Homologous recombination BARD1, EME2, BRCA1, etc.

Chromatin binding Phenylalanine, tyrosine, and tryptophan
biosynthesis TAT

Ino80 complex Tropane, piperidine, and pyridine alkaloid
biosynthesis TAT

Protein homodimerization activity Alanine, aspartate, and glutamate metabolism ASNS, ASL, ABAT, etc.

7S RNA binding Ubiquinone and other terpenoid-quinone
biosynthesis TAT, COQ6

Signal recognition particle Thiamine metabolism AK5, CFAP61, NFS1
ATPase activity Ribosome biogenesis in eukaryotes UTP14A, RIOK1, HEATR1, etc.
Isomerase activity Nonhomologous end-joining PRKDC, POLM
DNA damage checkpoint Complement and coagulation cascades F5, PLAU, CPB2, etc.

Group 2 (Genes: 922; GO terms: 70; KEGG Pathways: 18)
A. L. savala, M. albus; B. A. schlegelii, L. crocea, P. flavescens

GO terms KEGG Pathways Genes screened

Methyltransferase activity Cytokine–cytokine receptor interaction TNFRSF13B, OSMR, PRLR, etc.
Aminomethyltransferase activity JAK-STAT signaling pathway OSMR, PRLR, IL15RA, etc.
Nucleic acid binding RNA transport UPF3A, EIF3F, EIF3C, etc.
Neurotransmitter metabolic process Thyroid cancer ANKDD1A, RET, CCDC6, etc.
Catabolic process Ribosome biogenesis in eukaryotes HEATR1, REXO1, VSTM2A, etc.
Organic substance catabolic process Autophagy—other ATG3, TRIM14, MTOR, etc.
Glycine catabolic process Pancreatic cancer E2F3, ANKDD1A, VEGFAA, etc.
RNA cap binding complex Intestinal immune network for IgA production TNFRSF13B, IL15RA, CD28, etc.
RNA binding Autophagy—yeast ATG3, TRIM14, MTOR, etc.
Organonitrogen compound catabolic process Chronic myeloid leukemia E2F3, ANKDD1A, GRAP, etc.
LUBAC complex EGFR tyrosine kinase inhibitor resistance VEGFAA, MTOR, GRAP, etc.
N-methyltransferase activity Fanconi anemia pathway BRCA1, ANKDD1A, RMI1, etc.
Phospholipase A2 activity Phenazine biosynthesis PBLD

Drug catabolic process Ubiquinone and other terpenoid-quinone
biosynthesis COQ2, TAT, COQ6

Threonine-type endopeptidase activity Glycine, serine, and threonine metabolism AMT, CHDH, DMGDH, etc.
Proteasome core complex Nonhomologous end-joining XRCC6, DCLRE1C, DNTT
Kinetochore Prostate cancer E2F3, MTOR, GRAP, BAD, etc.
Protein homodimerization activity Acute myeloid leukemia MTOR, GRAP, BAD, etc.

4. Discussion
4.1. Quality Evaluation of the L. savala Genome

We obtained the first high-quality genome assembly at the chromosome-level of
L. savala by combining PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The
Q20 and Q30 scores of raw data were all greater than 90%, indicating that the sequencing
data were of high quality and could be used for subsequent analyses. The genome size
and GC content of L. savala were 790.02 Mbp and 39.03%, respectively, which were roughly
equivalent to those of T. albacares (792.10 Mbp, 39.5%) and T. maccoyii (782.42 Mbp, 39.5%,).
Based on a genome survey, Song et al. [72] reported that the genome sizes of Trichiurus japonicus,
Trichiurus nanhaiensis, Trichiurus brevis, L. savala, and Eupleurogrammus muticus from the coastal
waters of China were 913 Mb, 868 Mb, 871 Mb, 747 Mb, and 670 Mb, respectively, with
average GC contents of 39.59% to 42.05% and repeat sequence contents of 33.21% to 45.87%.
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Our data were consistent with these previous estimates. As expected, the final number of
chromosomes assembled was 24 for L. savala, as well as for T. albacares and T. maccoyii. A
phylogenetic tree supported the relatively close relationships among these three species,
consistent with morphological classification results.

Heterozygosity reflects the difficulty of whole-genome sequencing and assembly [73].
The genomic heterozygosity rate of 0.53% in our study was slightly lower than that (0.72%)
reported by Song et al. [72]. This may be related to the different K-mer depths obtained by
the two survey analyses (78 in our study and 45 in the previous study). According to the
repeat sequence content (40.54%) and heterozygosity rate (0.53%) of L. savala, we believed
that the L. savala genome was a typical diploid genome. Additionally, contig N50 and
scaffold N50 values are important indexes for judging the quality of species genomes [74].
The contig N50 and scaffold N50 obtained for the assembly of the L. savala genome were
19,013,249 bp and 32,774,443 bp, respectively, which were similar to other fishes reported in
recent years [75–77]. Such high-quality genomic data provide a reliable basis for studies of
the special morphological and behavioural characteristics of L. savala at the genomic level.

4.2. Genes Associated with the Specific Morphology of L. savala

In this study, we detected a significant expansion of the TES gene family in L. savala.
TES encodes a novel focal adhesion protein that contains three C-terminal LIM domains, and
is involved in cell motility and adhesion [78]. This protein is widely expressed in normal
tissues of animals, and may play key role in the reorganization of the actin cytoskeleton [79,80].
Dingwell and Smith [81] demonstrated that TES protein deficiency caused a sharp decrease
in the number of posterior trunk and tail somites during embryonic development in the
African clawed frog Xenopus laevis. This indicated that the TES gene plays a crucial role
in regulating axial elongation in X. laevis in the late gastrula stage. The expansion of the
TES gene family is likely to be essential for the formation of the elongated ribbon body
axis in L. savala. In positive selection analysis (group 2), we screened several key genes
that were significantly enriched in the autophagy pathway, such as MTOR, ATG3, ATG4C,
and ATG12. MTOR encodes phosphatidylinositol kinase-related kinases, composed of
two complexes (mTORC1 and mTORC2) [82,83]. mTORC1 controls protein synthesis, cell
growth, and proliferation [84]. As a pivotal regulator of skeletal growth [85], mTORC1 plays
an important role in the growth of long bones in mice by regulating the proliferation and
differentiation of chondrocytes [86]. mTORC2 is a regulator of the actin cytoskeleton and
promotes cell survival and cell cycle progression [87]. Chen et al. [88] reported that mTORC2
signaling mediated by Rictor (a core subunit of mTORC2) plays a crucial role in promoting
chondrocyte hypertrophy and enhancing osteoblast activity in mice. Accordingly, we infer
that the MTOR gene promotes the proliferation and differentiation of L. savala vertebrae,
resulting in a significantly greater number of vertebrae than is found in most teleost fishes.

Moreover, the autophagy-related proteins encoded by the ATG gene family screened
here are essential for autophagosome formation [89], and play pivotal roles in the au-
tophagic process [90,91]. ATG3 encodes a ubiquitin-like-conjugating enzyme, which is
a component of the autophagy-related ubiquitination-like systems, and is involved in
autophagosome formation [92,93]. ATG4C encodes a cysteine protease that plays an es-
sential role in autophagy by mediating both proteolytic activation and delipidation of
ATG8 family proteins [94,95]. Autophagy is an important pathway in many developmental
processes in higher eukaryotes [96]. It is involved in apoptosis and tissue remodeling
during embryogenesis [97], and is responsible for the degradation of normal proteins
during animal metamorphosis and development [96]. Autophagy is also induced by amino
acid deficiencies in the animal starvation response [98,99]. Previous studies have demon-
strated that the remodeling of larval organs in most lepidopterans during metamorphosis
involved autophagy, which is considered essential in the process of organ degeneration in
arthropods [100,101]. Franzetti et al. [102] observed that the expression levels of autophagy-
related genes (ATG5, ATG6, and ATG8) in the midgut cells increase significantly during
midgut remodeling of the larvae of the silkworm Bombyx mori. Autophagy is a prereq-
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uisite for the regeneration of the caudal fin in D. rerio, which promotes the survival and
differentiation of blastema cells (a highly proliferative tissue) [103]. Therefore, we propose
that the autophagy mechanism involving the ATG gene family plays an important role in
the formation of the elongated whip-like tail of L. savala. Based on the above analyses, we
suggest that the TES gene family, MTOR gene, and ATG gene family play key regulatory
roles in the formation of the specific body type L. savala (i.e., the elongated ribbon body
axis, substantial number of vertebrae, and whip-like tail).

We also found that the TRIO gene family expanded significantly in the L. savala
genome. TRIO encodes a large protein that functions as a GDP to GTP exchange factor,
with a role in cell migration and growth by facilitating the reorganization of the actin
cytoskeleton [104]. Chen et al. [105] confirmed that mice were born with shorter teeth and
thinner dentin layers following the inactivation of TRIO in dental papilla mesenchymal
cells. Further, in vitro cell culture assays showed that TRIO silencing resulted in the loss
of proliferation and migration ability, and a higher apoptosis rate of human stem cells of
the apical papilla (SCAPs) [105]. These results reveal that the TRIO gene acts as a positive
mediator during the root formation and odontogenic differentiation of human SCAPs via
the p38 signaling pathway [106]. Therefore, we speculate that the expansion of the TRIO
gene family may drive the formation of sharp teeth in L. savala.

4.3. Movement and Immunity in L. savala

In positive selection analyses, genes involved in the immune-related pathways (e.g.,
complement and coagulation cascades) were significantly enriched, including CFI, C1QA,
and VTN. The serine proteinase encoded by CFI plays a crucial role in the regulation
of complement cascade reactions and the induced-fit factor responsible for controlling
the complement-mediated processes [106]. It also participates in the regulation of the
immune response [107]. C1QA encodes the A-chain polypeptide of serum complement
subcomponent C1q [108]. C1q is a versatile innate immune molecule that combines with
the proteases C1r and C1s to yield C1 [109], thus forming the first component of the serum
complement system [110]. Complement proteins act synergistically to clear pathogens and
induce a series of inflammatory responses to protect against infection and maintain immune
homeostasis [111,112]. The complement system involving CFI and C1QA is an essential
component of the innate immune response, and the first line of defence against pathogenic
infections [113,114]. Vitronectin encoded by VTN is a cell adhesion and spreading factor
in the serum and tissues [115]. A potential role of VTN was discovered in regulating
the innate immunity of Japanese flounder Paralichthys olivaceus [116]. The STAT6 gene
and many interleukin-related genes (i.g., IL5RA, IL10, IL15RA, IL16, IL17RA, IL20RA, and
IL22RA2) in the JAK-STAT signaling pathway and cytokine–cytokine receptor interaction
pathway were screened in our positive selection analyses. STAT6 encodes a member of
the STAT family of transcription factors, with dual functions in signal transduction and
transcriptional activation [117]. STAT6 contributes to defence against viral infection by
mediating immune signaling in the endoplasmic reticulum [118]. As an important cytokine,
interleukins encoded by the IL gene family play crucial roles in the intercellular signal
transmission, activation, and regulation of immune cells [119]. In one of these, the protein
encoded by IL10 acts as an immunomodulatory cytokine, with pleiotropic effects in the
immunoregulation and inflammatory response [120]. It could limit the excessive tissue
disruption caused by inflammation [121].

Given that several genes under positive selection analyses were enriched in the
immune-related pathways mentioned above, we can infer that L. savala has evolved a
sophisticated immune system. This may be related to behavioural traits and motility in the
species. L. savala is a predatory fish with better swimming ability and greater migratory
behaviour than those of typical marine fishes [32,34,35]. Studies have demonstrated a
strong correlation between immunity and exercise [122,123]. In juvenile Atlantic salmon
Salmo salar, the inherent swimming performance and disease resistance have a positive
correlation [124], and appropriate aerobic swimming exercises could promote growth and
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disease resistance [125]. Appropriate aerobic exercise improving antipredation and im-
munologic function was also revealed in the juvenile rock carp Procypris rabaudi [126]. In
a study of water flow velocity focused on juvenile tinfoil barb Barbonymus schwanenfeldii,
Zhu et al. [127] found that sustained aerobic swimming exercise improved the oxygen-
carrying capacity and immune parameters. This indicated that swimming training could
enhance the innate immune system of fishes [127]. Moreover, the domesticated and wild
S. salar differ in swimming ability and immune responses, and the expression levels of
immune-related genes (CD40, C3-3, IL1B, CD276, etc.) were significantly lower in the
domesticated than in the wild S. salar with stronger swimming ability [125]. Therefore,
we suggest that some immune-related genes undergo rapid evolution during the gain of
aggressive predation and high-intensity swimming movements in L. savala, which may
contribute to the sophisticated immune system.

In addition, we found that the DNAH gene family was significantly expanded in L.
savala, and the enriched genes included DNAH1 to DNAH11, except for DNAH4. The
DNAH gene family encodes axonemal heavy chains associated with cell movement, which
is involved in sperm flagellum assembly and motility [128,129]. Mutations in these genes
could cause human sperm malformations [130,131]. Hu et al. [132] determined that sperm
motility in Cyprinidae fishes is associated with high levels of gene expression in the DNAH
gene family. Thus, we suggest that the expansion of the DNAH gene family may enhance
the sperm motility of L. savala. However, studies of sperm motility in this species are
lacking. Therefore, the specific regulatory relationship between sperm motility and the
DNAH gene family in L. savala should be investigated further.

4.4. Contribution of DNA Repair Mechanisms to the Maintenance of Genomic Stability in L. savala

In our positive selection analyses, several genes associated with DNA repair were
screened in the L. savala genome, including POLM, PRKDC, BARD1, BRCA1, NBN, XRCC2,
EME2, and FAAP100. These genes were mainly enriched in three pathways, i.e., nonhomol-
ogous end-joining, homologous recombination, and Fanconi anemia. DNA polymerase Mu
encoded by POLM participates in DNA double-strand break repair via the nonhomologous
end-joining pathway [133,134]. There were five genes (PRKDC, BARD1, BRCA1, NBN, and
XRCC2) involved in the homologous recombination pathway. During the gastrulation
and early organogenesis of mice, the protein encoded by PRKDC promoted the repair of
DNA double-strand breaks by combining with ATM (ataxia-telangiectasia mutated) to
maintain its genomic stability [135]. The proteins encoded by BARD1 and BRCA1 combine
to form a heterodimeric complex [136], which acts as a functional unit in mammalian
cells in homologous recombination and DNA repair [137,138]. This heterodimer plays
a role in DNA damage repair and transcriptional regulation to maintain genomic stabil-
ity [139,140]. As a component of the MRN complex (MRE11-RAD50-NBN), the protein
encoded by NBN is involved in DNA double-strand break repair and initiation of the
DNA damage response to maintain genomic stability [141,142]. XRCC2 encodes a member
of the RecA/Rad51-related protein family, which participates in homologous recombina-
tion to maintain chromosome stability during cell division [143]. Based on cell cloning
experiments of Chinese hamster Cricetulus barabensis, the chromosomal instability in cells
with an XRCC2 deficiency may be caused by defective homologous recombination [144].
Another two genes (EME2 and FAAP100) were significantly enriched in the Fanconi anemia
pathway. The protein encoded by EME2 forms a heterodimer with MUS81 and functions
as an XPF-type flap/fork endonuclease in DNA repair [145]. The protein encoded by
FAAP100 regulates FANCD2 monoubiquitination and the stability of the Fanconi anemia
core complex, playing a role in the Fanconi anemia-associated DNA damage response [146].
In summary, the above-mentioned genes and pathways may play essential roles in the
recombination of homologous chromosomes and maintenance of genomic stability in L.
savala.

Additionally, we found that the SLC6 gene family (SLC6A1, SLC6A11, SLC6A13, and
SLC6A19) and the COL4 gene family (COL4A1, COL4A2, and COL4A6) were significantly
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contracted in the L. savala genome. SLC6 is involved in the transport of neurotransmitters
(e.g., dopamine, norepinephrine, serotonin, GABA, and glycine) [147,148]. This suggests
that the contraction of the SLC6 gene family may be related to nervous system evolution in
L. savala. Type IV collagen encoded by the COL4 gene family is the major component of
the basement membrane in many tissues [149]. It plays a pivotal role in the remodeling of
endometrial tissue in mammals by regulating the structure, viability, and differentiation of
endometrial cells [150,151]. On this basis, we speculate that the COL4 gene family is related
to the formation of the smooth body surface in L. savala. Owing to the lack of detailed
information on the nervous system and body surface development in L. savala, it is difficult
to clearly establish the effects of the contractions of these two gene families on these traits,
and further studies are needed.

5. Conclusions

In this study, we obtained a high-quality chromosomal-level genome assembly of
L. savala, providing the first genomic dataset for trichiurid fishes. Based on comparative
genomic analyses, we found that MTOR gene, and the TES, ATG, and TRIO gene families
may be key factors driving the formation of the unique body shape and sharp teeth in
L. savala. Moreover, several immune-related genes (CFI, C1QA, VTN, STAT6 genes, and
the IL gene family) underwent rapid evolution, likely contributing to the sophisticated
immune system in L. savala. These changes may also be related to the evolution of ag-
gressive predation and intense swimming movements in this species. In addition, DNA
repair mechanisms may play crucial roles in maintaining the evolutionary stability of the
L. savala genome. Our study preliminarily reveals the molecular mechanisms underly-
ing the special morphological and behavioural characteristics of L. savala at the genomic
level, and provides an invaluable reference for genomic and evolutionary studies of other
trichiurid fishes.
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