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Abstract: Coronary heart disease (CHD) is the leading cause of death worldwide. However, current
diagnostic tools for CHD, such as coronary computed tomography angiography (CCTA), are poorly
suited for monitoring treatment response. Recently, we have introduced an artificial-intelligence-
guided integrated genetic–epigenetic test for CHD whose core consists of six assays that determine
methylation in pathways known to moderate the pathogenesis of CHD. However, whether methyla-
tion at these six loci is sufficiently dynamic to guide CHD treatment response is unknown. To test
that hypothesis, we examined the relationship of changes in these six loci to changes in cg05575921, a
generally accepted marker of smoking intensity, using DNA from a cohort of 39 subjects undergoing
a 90-day smoking cessation intervention and methylation-sensitive digital PCR (MSdPCR). We found
that changes in epigenetic smoking intensity were significantly associated with reversion of the CHD-
associated methylation signature at five of the six MSdPCR predictor sites: cg03725309, cg12586707,
cg04988978, cg17901584, and cg21161138. We conclude that methylation-based approaches could be a
scalable method for assessing the clinical effectiveness of CHD interventions, and that further studies
to understand the responsiveness of these epigenetic measures to other forms of CHD treatment are
in order.

Keywords: coronary heart disease; treatment monitoring; DNA methylation; smoking
cessation; epigenetics

1. Introduction

Coronary heart disease (CHD) is the leading cause of death in the world, with over
9 million individuals dying annually from myocardial infarctions [1]. Up to 90% of these
deaths may be preventable [2]. However, to achieve this goal, more scalable approaches for
both recognizing and monitoring those at risk of CHD for initial preventive intervention
and those with current CHD for more intensive therapy are necessary.

Unfortunately, with respect to the latter, there are significant limitations in utilizing
contemporary CHD diagnostic approaches for monitoring the effectiveness of interventions,
both lifestyle and therapeutic. The currently accepted methods for diagnosing stable
CHD from the American Heart Association/American College of Cardiology include
exercise stress tests with electrocardiograms (ECG), exercise or pharmacological stress tests
with echocardiography, myocardial perfusion imaging, coronary computed tomographic
angiography (CCTA), and coronary angiography [3]. The choice of which test is employed
is dependent on a number of factors, including the degree of clinical suspicion for CHD, the
ability to exercise, the likelihood of experiencing high-risk events, and the availability of
testing resources [4]. Unfortunately, each of those modalities has significant limitations that
affect their clinical implementation. For example, the exercise ECG is the most commonly
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used and least invasive method, but has only 58% sensitivity and 62% specificity [3].
Perfusion imaging has better sensitivity (~87%) and specificity (70%), but requires expensive
infrastructure, specialized interpretation, and requires considerable radiation exposure
(15–35 millisieverts) [5,6]. The final method is coronary angiography, which is considered
by many to be the “gold standard” for the assessment of CHD. However, it is invasive,
entails considerable exposure to radiation and iodinated contrast dyes, and is insensitive
to non-obstructive forms of CHD. More importantly, these diagnostic tools fall short in
providing actionable information to personalize patient care and lack the ability to measure
the effectiveness of interventions. Hence, there is considerable need for less costly and
invasive methods for assessing CHD status that also provide actionable information that
can be leveraged by healthcare providers to tailor, refine, and enhance treatment plans for
each patient more effectively.

Recently, Cardio Diagnostics has introduced an artificial intelligence-guided genetic–
epigenetic test (PrecisionCHD™) for assessing current CHD [7]. The test uses a machine
learning model to interpret the genetically contextual signal of six methylation-sensitive
digital PCR (MSdPCR) assays to determine CHD status, with overall area under the
curve, sensitivity, and specificity values of 82%, 79% and 76%, respectively. The test
uses DNA from whole blood and a relatively inexpensive PCR-based laboratory method;
therefore, unlike many of the current diagnostic tests, this new CHD testing approach is
inherently more scalable and compatible with the operations of most clinical laboratories.
In addition, it presents two distinct potential advantages as compared with current methods
for assessing CHD. First, because the MSdPCR assays each measure DNA methylation
in pathways involved in the pathogenesis of CHD, it allows clinicians to gather patient
specific insight into potentially targetable lifestyle or physiological factors. Second, because
DNA methylation is dynamic, it may also be possible to use DNA methylation to serve as a
proxy for the success of CHD therapy.

Devising more scalable methods for assessing the success of CHD therapy could
have a high clinical impact. The introduction of the hemoglobin A1c (HbA1c) metric for
both assessing disease status and monitoring the effects of diabetic therapy revolutionized
the treatment of diabetes [8]. However, unlike diabetes, there is not a single pathway
whose status can be measured to determine the success of therapy for CHD. As a result,
clinicians are relegated to aggregating separate measurements of individual risk factors,
such as high blood pressure, elevated cholesterol, or HbA1c status itself, to determine
the effectiveness of therapy for CHD. However, many of those measures, such as blood
pressure and cholesterol levels, are relatively imprecise, can vary considerably from day to
day, and are not sufficient to fully address CHD [9]. Therefore, a more robust test, such as
the HbA1c assay, which be used to directly and more precisely assess CHD status and the
effectiveness of treatment, would be a significant advancement.

Previously, we have shown that one of the three MSdPCR measures contained in
an integrated genetic–epigenetic test for assessing the 3-year risk for CHD significantly
changed as a function of treatment for smoking [10]. Since smoking is a key driver of
CHD [11,12] and smoking cessation therapy can markedly improve survival in smokers
with CHD, this suggests that methylation at one of more of the six loci assessed in the
PrecisionCHD test may also respond to smoking therapy. Therefore, in this communication,
we assess DNA methylation at each of the six loci in the new CHD test in DNA samples from
39 research subjects collected before and after undergoing 90 days of smoking cessation
therapy [13].

2. Materials and Methods

The methods and procedures used in this smoking cessation study have been described
previously. All methods were approved by the University of Iowa Institutional Review
Board (IRB#201706713).

The 39 subjects who participated in this study were part of a 90-day incentive-based
smoking cessation program (National Clinical Trials NCT02682147) whose overarching
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purpose was to understand the relationship between smoking cessation and pulmonary
inflammation [14]. Each potential participant, who was alerted to the study by a series of
advertisements to patients and staff of the University of Iowa, had to complete a brief online
survey in which they reported smoking at least 10 cigarettes per day with a total of five or
more pack-years of lifetime consumption in order to qualify for the study. After providing
written informed consent, each participant was enrolled in a protocol that included an
intake visit and three subsequent monthly follow-up visits at 30-, 60-, and 90 days post
intake. At each of these visits, each of the subjects were asked about their current levels
of smoking and were phlebotomized to provide DNA for the epigenetic analyses. Due
to concerns that medications for smoking cessation may interfere with the pulmonary
imaging studies, subjects were instructed not to use medications to quit smoking. However,
they were offered USD 400 for having biochemically verified smoking cessation at each of
the three follow-up visits. Smoking cessation can take a variable course and self-reports of
smoking can be unreliable [15,16]; therefore, smoking intensity at each visit was assessed
using digital measures of cg05575921, a generally accepted measure of smoking intensity
and smoking cessation [17,18]. At the time of the preparation of the sample, a total of
75 subjects had enrolled in the study, with 39 successfully attending all four clinic visits.

DNA for the epigenetic studies was prepared from whole blood using the method de-
veloped by Lahiri and Nurnberger [19]. The MSdPCR assays and bisulfite-sensitive methy-
lation standards used in this study were provided by Cardio Diagnostics Inc. (Chicago, IL,
USA) or Behavioral Diagnostics LLC (cg05575921), then used according to the protocols
described elsewhere [7,20,21]. In brief, determination of DNA methylation at cg05575921
and the six loci in the PrecisionCHD test (cg03725309, cg12586707, cg04988978, cg17901584,
cg21161138, and cg12655112) was conducted using universal droplet digital PCR reagents
and equipment obtained from Bio-Rad (Hercules, CA, USA). In brief, 1 µg of DNA was
bisulfite-converted using a Qiagen EpiTect Bisulfite kit (Hilden, Germany), according
to manufacturer’s directions, with the modified DNA then being eluted in 70 µL of tris
buffer. Fourteen cycles of high-stringency PCR amplification of the target region were
then performed on a 3 µL aliquot of each bisulfite-converted DNA sample using a set of
amplicon-specific proprietary primers. Then, an aliquot of the enriched amplicon target
solution was diluted 1:1500, mixed together with primer and probes specific for the target
loci and droplet digital PCR reagents, partitioned into droplets with a Bio-Rad droplet
generator, and then PCR amplified. Fractional methylation (methylated CpG/(methylated
+ unmethylation CpG)) of each sample was then determined using a Bio-Rad QX-200
reader and its accompanying Bio-Rad QuantaSoft™ software. The results from all bisulfite
methylation testing standards were within their calibrated ranges.

The data were analyzed using the suite of general linear model analytic algorithms
embedded in JMP Version 17 (SAS Institute, Cary, SC, USA). Linear regression was used
to assess the relationship between each of the six DNA methylation markers in the Preci-
sionCHD test and the cg05575921 DNA methylation marker for smoking [22]. Comparisons
between groups were conducted using Student’s t-tests [22]. Bonferroni correction was
used to adjust for multiple comparisons [23].

3. Results

The clinical and demographic characteristics of the 39 subjects who successfully
completed the protocol are given in Table 1. In general, the subjects tended to be White, in
their early 40s, and male (22 of 39, or 56%). The subjects tended to be heavy smokers, with
the average subject smoking 17 cigarettes per day over the month prior to study intake
and having previously had 28 pack-years of total cigarette consumption. The average
serum cotinine at intake was 278 ng/mL, with an average Fagerstrom Test for Nicotine
Dependence score of 3.7 ± 9.7. Notably, the average cg05575921 methylation value, a
generally accepted measure of smoking intensity, was 52.3% at intake.
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Table 1. Demographic and clinical characteristics of the subjects.

N 39

Age 42.7 ± 10.4 years

Gender

Male 22

Female 17

Ethnicity

White 37

African American 1

Other 1

Smoking Variables

Pack-Year Consumption 28 ± 20

Cigarettes per day 17 ± 9.7

FTND 3.7 ± 9.7

Cotinine (ng/mL) 278 ± 135
FTND, Fagerstrom Test for Nicotine Dependence score.

Table 2 details the identity and chromosomal location of the six CpG sites assessed
in the PrecisionCHD test for current CHD assessment, while both Table 2 and Figure 1
delineate the strengths of the linear relationships between methylation at cg05575921 and
methylation values at the each of the six CpG loci used in PrecisionCHD at study intake.
After correction for multiple comparisons, cg05575921 values were significantly associated
with both cg21161138 (Adj R2 = 0.91, p < 0.0001) and cg12655112 (Adj R2 = 0.20, p < 0.0048),
with a nominal association being further noted with cg03725309 (Adj R2 = 0.15, p < 0.0162).
There was no significant relationship between methylation at cg05575921 and methylation
at cg04988978 (Adj R2 = 0.04, p < 0.21), cg17901584 (Adj R2 = 0.09, p < 0.07) or cg12586707
(Adj R2 = 0.07, p < 0.11).

Table 2. Methylation values and association with smoking intensity at intake.

Smoking Intensity

Assay Gene Localization Average Value (%)

Dcg05575921 AHRR 52.3 ± 20.6

Coronary Heart Disease (PrecisionCHD) Association with cg05575921

Adj R2 Nominal p-value

Dcg03725309 SARS1 7.3 ± 2.6 0.12 p < 0.02

Dcg12586707 CXCL1 14.4 ± 4.6 0.04 p < 0.11

Dcg04988978 MPO 14.8 ± 4.4 0.04 p < 0.22

Dcg17901584 DHCR24-DT 36.4 ± 7.6 0.09 p < 0.07

Dcg21161138 * AHRR 72.0 ± 6.2 0.91 p < 0.0001

Dcg12655112 EHD4 74.7 ± 3.3 0.19 p < 0.005
* p-value for significance after multiple corrections is p < 0.0083; Dcg is the MSdPCR assay for its respective cg
methylation marker.

Over the course of the 90-day treatment paradigm, 22 subjects exhibited undetectable
levels of cotinine at all three follow-up visits, while the remaining 17 subjects exhibited
a positive cotinine value at one or more follow-up visits. Overall, those with negative
cotinine levels at all three visits reduced smoking intensity more than those with one or
more positive cotinine tests (∆cg05575921; −7.1% ± 6.2 vs. −2.5% ± 5.4; p < 0.02), but
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both groups had decreases in self-reported intake and increases in overall cg05575921
methylation.
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Figure 1. The relationship between baseline Dcg05575921 and the six loci used to assess CHD
status. Methylation values are expressed as a percentage. The adjusted R2 and p-values of the linear
associations of each of these comparisons are listed in Table 2.

Table 3 and Figure 2 illustrate the relationship between the changes in methylation at
each of the six loci used in the PrecisionCHD test as a function of cg05575921 methylation.
Remarkably, five of the six loci, cg03725309, cg12586707, cg04988978, cg17901584, and
cg21161138, exhibited a significant reversion of CHD-associated methylation as a function
of cg05575921 which indicated a smoking intensity reduction over the 90-day treatment
period. In contrast, there was no significant reversion at cg12655112 (Adj R2 = 0.01, p < 0.53)
at the EH Domain Containing 4 (EHD4) gene CpG site, whose baseline status is associated
with smoking intensity.
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Table 3. Linear associations with 90-day changes in cg05575921 methylation.

Smoking Intensity

Assay Average Change (%)

Dcg05575921 −4.9 ± 6.2

Coronary Heart Disease (PrecisionCHD) Association with ∆cg05575921

Adj R2 Nominal p-value

Dcg03725309 −0.5 ± 1.9 0.29 p < 0.0004

Dcg12586707 −0.9 ± 4.5 0.32 p < 0.0002

Dcg04988978 −0.7 ± 4.2 0.29 p < 0.0004

Dcg17901584 −1.4 ± 6.1 0.33 p < 0.0001

Dcg21161138 −1.3 ± 2.1 0.50 p < 0.0001

Dcg12655112 −0.1 ± 3.4 0.01 p < 0.53
p-value for significance after multiple corrections is p < 0.0083; Dcg is the MSdPCR assay for its respective cg
methylation marker.
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4. Discussion

Creating better, more scalable methods to assess the effectiveness of CHD interventions
may be an important step to increasing the effectiveness of CHD treatment. In that regard,
our demonstration that five of the six loci of the PrecisionCHD test showing significant
changes in response to a 90-day course of smoking cessation is a promising first step. One
of the limitations of this study is the relatively small sample size and the cohort being
almost exclusively White. Furthermore, we only analyzed one CHD-related intervention:
smoking cessation.

The complex dynamics of the methylomic response to successful CHD therapy detailed
in this manuscript reflect the complexity of the pathways being interrogated by the test [7].
The six CpG loci targeted by the PrecisionCHD test assess six different molecular pathways
moderating vulnerability to CHD. The CpG site in the first pathway, which is assessed
by the cg03725309 MSdPCR assay, maps to a candidate cis regulatory element in intron 1
of the seryl-tRNA synthetase 1 gene (SARS1). Demethylation at this locus is associated
with obesity, coronary artery calcification, and cardiometabolic syndrome [24–26]. The
CpG site in the second pathway, measured by the cg12586707 MSdPCR assay, is found in a
candidate cis regulatory element approximately 1.5 kb downstream of the 5′ UTR of the
CXCL1 gene [27]. CXCL1 is a key member of a group of chemotactic messengers involved
in the pathogenesis of a number of inflammatory disorders, such as CHD, and has an
important role in the regulation of angiogenesis and cardiac remodeling [27,28]. The CpG
site in the third pathway, which is assessed by the cg04988978 MSdPCR assay, maps to the
upstream promoter area of myeloperoxidase (MPO), which has been shown to contribute to
atherosclerosis by the oxidation of LDL [29]. The CpG site in the fourth pathway, which is
assessed by the cg17901584 MSdPCR assay, is found in an intron of 24-Dehydrocholesterol
Reductase Divergent Transcript (DHCR24-DT), a long non-coding RNA (lncRNA) gene
that is in a divergent (head-to-head) configuration with DHCR24, a key gene in cholesterol
biosynthesis [30]. The CpG targeted by the cg21161138 MSdPCR assay maps to the aryl
hydrocarbon receptor repressor (AHRR) 267 kb distal to cg05575921 [31]. Similarly to
cg05575921, this marker assesses activity in the xenobiotic pathway that is essential for
detoxifying the polyaromatic hydrocarbons found in smoke [32]. Finally, the sixth assay,
cg12655112, measures methylation at a regulatory region of the first intron of EH Domain
Containing 4 (EHD4) gene. EHD4 methylation at this site has been negatively associated
with serum glucose levels, while EHD4 expression predicts the success of pancreatic islet
transplants [33–35].

Both cg05575921 and cg21161138 map to the AHRR gene and both demethylate in
response to smoking; therefore, the strong correlation observed between cg05575921 with
this new predictor for CHD is to be expected [31]. However, it is interesting to note
that the other outright (cg12655112) and nominal (cg03725309) associations with smoking
intensity at study baseline were with the two CpG sites whose methylation alterations
were previously associated with diabetes [33,36,37]. Smoking is associated with increased
risk for diabetes; as such, this makes intuitive sense [6,38]. At the same time, smoking has
also been repeatedly implicated as a major cause of inflammation [39]. Thus, the absence
of a robust association of smoking intensity with DNA methylation in the inflammatory
pathway interrogated by cg12586707 (CXCL1) is somewhat surprising. Then again, it
is important to note that the use of the term “inflammation” is often broad, and not all
inflammatory processes may be affected by smoking.

To clinicians familiar with the psychosocial processes involved in smoking cessation,
the finding that methylation at five of the six pathways interrogated by the MSdPCR assays
begin to revert to baseline after only 90 days of therapy is not surprising. In order to
cut down or quit smoking, patients often make radical changes to their lifestyle in order
to avoid stimuli, such as bars or friends who smoke, that can trigger the urge to smoke.
Often, these changes are accompanied with improvements in diet and exercise patterns
and decreases in alcohol consumption [40]. Therefore, it should not be surprising that
methylation at most, but not all, of the CpG loci targeted in this new diagnostic test were
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reverted as a function of the reversion of cg05575921 methylation (i.e., successful smoking
cessation).

Interestingly, the one locus that did not manifest significant reversion in response to
smoking cessation was the EDH4 locus, whose methylation status was associated with
baseline cg05575921 methylation. This lack of a significant finding may be secondary to the
short time scale of this study. There have been several epigenome-wide studies of the time
dependency of methylation reversion in those undergoing smoking cessation [18,41,42].
These studies have demonstrated that the reversion of smoking-associated methylation
changes in the thousands of CpG sites affected can be divided into three categories. The
first is those whose sites whose methylation status changes quickly, such as cg05575921.
The second class is those which revert more slowly, while the third class is those sites
which revert very slowly, if at all. Therefore, it should not be surprising to find variation
in the time scale of responsiveness at these loci which predict CHD status as well. Given
the relationship of cg12655112 (EHD4) methylation with diabetes, it would be interesting
to understand if there are any changes in the hemoglobin A1c values of the subjects as a
function of smoking cessation in longer-term studies.

Although they are remarkably significant from a statistical point of view, these findings
should only be regarded as an initial foray into the epigenetics of effective CHD therapy.
Effective treatment of CHD requires targeting the unique lifestyle or physiological factors
driving the pathology. For some patients, this means targeting weight; for others, diabetes;
for others still, cholesterol levels. However, since successfully addressing these causative
factors also often entails broad changes in other clinical drivers of CHD, investigators
should be encouraged to use broad measures to fully capture the impact of changes that
occur in patients’ lives as a function of successful CHD therapy. Crucially, this was only
a 90-day study. Since patients often relapse into unhealthy habits, it is essential to gather
longer-term information so that clinicians and public health policy experts can balance the
cost of interventions with their long-term impact on CHD outcomes.

Critical to any success to the extension of these findings will be the ability to accurately
quantitate changes in the CHD factor being studied. To a large extent, one reason for the
success of this study is secondary to the availability of the cg05575921 MSdPCR assay
that can precisely measure changes in smoking intensity. Therefore, given the ease of
availability of hemoglobin A1c, a precise marker of diabetes status, it would be relatively
easy to design a study to test for the reversion of CHD-related signals as a function of
changes in hemoglobin A1c values. However, for studies of clinical factors for which
less precise steady-state measures are available, such as serum lipid levels, clinicians may
need to use innovative strategies or large sample sizes to detect significant changes in
methylation. In contrast, the use of self-report variables, such as history of smoking or
FTND, which is based solely on self-report and requires a mild degree of introspection,
should be used only as necessary because they can be much less reliable.

Avenues through which these findings can be improved upon include the obvious
extensions, such as enlarging the sample size and diversity, and more nuanced extensions,
such as understanding the role in co-morbid clinical and genetic factors, in moderating
reversion. Increases in the size and diversity of the sample are absolutely necessary if
this approach is to find clinical application. It is essential to understand how variables
such as age, sex, and ethnicity affect reversion before using this to guide clinical care.
Furthermore, the subjects in this study were relatively healthy. Understanding the effect of
co-morbid illnesses such as obesity or diabetes on clinical response is similarly essential.
These examinations should be performed in conjunction with genetic analyses, such as
those afforded by polygenic risk scores, which can help parse the acquired effects of any
co-morbidity with the inherited genetic factors that contribute to those illnesses.

It may well be that quantifying and understanding these potentially confounding
effects is difficult. In this regard, this may be an excellent opportunity for artificial intelli-
gence (AI) to further its role in the derivation and implementation of this testing technology.
AI technologies for aggregating and analyzing methylation and genetic data are increas-
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ingly commonplace [43,44]. These tools will need to be integrated with tools for parsing
clinical laboratory or text data from the electronic medical records in order to create a more
complete understanding of the performance and implications of these technologies in the
real world [45].

If these trials are adequately powered and treatment compliance is carefully monitored,
we believe that additional studies of the methylomics for other types of CHD therapy have
a good chance of succeeding. As evidence of that, we note that in a naturalistic longitudinal
study of statin therapy, Qin et al. used a mixed linear effects modeling in a sample of
535 Danish subjects to show changes in DNA methylation at three previously identified
CpG sites (cg10177197, cg17901584, and cg27243685) as a function of treatment with a
variety of statins. Furthermore, using a cross-sectional epigenome-wide approach and
data from two large cohorts of subjects, Schrader et al. showed that statin therapy was
associated with DNA methylation at one of the sites interrogated by the PrecisionCHD test
(cg17901584), as well as two other novel sites (cg27243685 and cg05119988) [46]. Unfortu-
nately, in each of these studies, treatment compliance was not assessed, and both the time
and type of statin used varied. However, as evidence of proof of principle, these studies
more than demonstrate the potential for precision epigenetic approaches for guiding the
treatment of CHD.

In summary, we show significant changes in DNA methylation at five of the six loci
measured in the recently described PrecisionCHD test for the assessment of current CHD.
We suggest that further studies to understand the methylomic response to CHD treatment
may lead to improved methods for guiding the treatment of CHD.
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