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Abstract: The dysregulation of cell death is closely associated with the development, progression,
tumor microenvironment (TME), and prognosis of cancer. However, there is no study that compre-
hensively explores the prognostic and immunological role of cell death in human pan-cancer. We
used published human pan-cancer RNA-sequencing and clinical data to explore the prognostic and
immunological roles of programmed cell death, which included apoptosis, autophagy, ferroptosis,
necroptosis, and pyroptosis. A total of 9925 patients were included for bioinformatic analysis, with
6949 and 2976 patients in the training cohort and validation cohort, respectively. Five-hundred
and ninety-nine genes were defined as programmed-cell-death-related genes. In the training co-
hort, 75 genes were identified to define PAGscore by survival analysis. According to the median
value of PAGscore, patients were divided into high- and low-risk groups, and subsequent analyses
demonstrated that the high-risk group had a higher level of genomic mutation frequency, hypoxia
score, immuneScore, expression of immune genes, activity of malignant signaling pathways, and
cancer immunity cycle. Most anti-tumor and pro-tumor components of the TME showed greater
activity in high-risk patients. Scores of malignant cell properties were also higher in high-risk patients.
These findings were confirmed in the validation cohort and external cohort. Our study constructed a
reliable gene signature to distinguish prognosis-favorable and prognosis-unfavorable patients and
demonstrated that cell death was significantly associated with cancer prognosis and the TME.

Keywords: pan-cancer; cell death; prognosis; TME

1. Introduction

Malignancies are the main threat to human health and an important obstacle to the
extension of life expectancy of the population [1]. The occurrence of cancer is increasing
with the aging of the population and pollution of the environment [2,3]. In 2020, an
estimated 19.3 million new cancer diagnoses and about 10 million cancer deaths occurred
worldwide. Moreover, the worldwide cancer burden is expected to rise by 47% by 2040
compared with 2020 [4]. Although multimodal therapies such as surgery, chemotherapy,
and radiotherapy have been taken, most patients show poor prognosis [5]. Exploring
the mechanisms of development and progression of cancers to reduce incidence, identify
precise therapeutic targets, and improve outcomes is still urgent.

Cell death is an important process that maintains human body homeostasis by reg-
ulating cell proliferation and the stress response [6,7]. The dysregulation of cell death
is closely associated with cancers. Several studies have revealed that dysregulated cell
death would promote neoplasia, cause cancer drug resistance, and influence the cancer
prognosis [8–10]. Apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis are the
most extensively investigated cell death types in the cancer field [11–16]. Loss of apoptosis
is generally considered to be a cause of cancers, and apoptosis-inducing agents are widely
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developed and used to treat cancers [8,17]. The roles of the other four types of cell death in
cancer are controversial, with some studies reporting their tumor-promoting effects and
others reporting their anti-tumor effects [10,18,19]. Additionally, many studies have also
demonstrated that those five types of cell death could affect the tumor microenvironment
(TME) in different cancers [20–23]. However, what we should pay attention to is that most
studies report the role of one type of cell death in one certain cancer. There is no study that
comprehensively evaluates the prognostic and immunological role of those five types of
cell death in human pan-cancer.

In the present study, we explored the prognostic and immunological role of five
types of cell death in human pan-cancer by bioinformatic analysis and constructed a cell
death signature, namely prognosis-associated gene score (PAGscore). The PAGscore of
each patient was calculated based on the expression of prognosis-associated genes and
their corresponding coefficients of the multivariate Cox regression analysis as follows:
PAGscore = Coef1 * Exp1 + Coef2 * Exp2 + . . . . . . + Coef75 * Exp75. We demonstrated that
PAGscore significantly correlated with the clinical characteristics and previously reported
gene signatures. Moreover, we also revealed that PAGscore was closely associated with
TME. Our findings indicated the potential connection between cell death, TME, and the
prognosis of pan-cancer.

2. Materials and Methods
2.1. Data Collection and Preprocessing

We downloaded human pan-cancer-normalized and batch-removed RNA-sequencing
data and the corresponding clinical data from the UCSC Xena portal (UCSC Xena
(xenabrowser.net)), and excluded lymphoma and leukemia samples for subsequent analy-
sis. Samples were divided into the training group and validation group according to the
random ratio of 7:3 by using the R package “caret” [24]. A liver cancer cohort from the In-
ternational Cancer Genome Consortium (ICGC) was used as the external cohort to validate
the findings of the present study. The genomic mutation data were obtained and analyzed
by the R package “TCGAbiolinks” [25] and “maftools” [26]. Meanwhile, sequencing data
were also downloaded from the Gene Expression Omnibus (GEO) database by using the
R package “GEOquery” [27] to explore and validate gene signatures of five types of cell
death.

2.2. Establishment of PAGscore

We obtained signaling pathways of apoptosis, autophagy, ferroptosis, necroptosis,
and pyroptosis from the KEGG database [28], Reactome pathway knowledgebase [29],
and WikiPathways database [30]. All genes of these signaling pathways were extracted
and defined as cell-death-related genes. The univariate and multivariate Cox regression
analyses and LASSO analyses were applied to explore the prognosis-prediction role of
cell-death-related genes in the training cohort. We calculated the PAGscore of each patient
based on the expression of genes and their corresponding coefficients of multivariate Cox
regression analysis as follows: PAGscore = Coef1 * Exp1 + Coef2 * Exp2 + . . . . . . + Coef75
* Exp75. All inclusion samples were eventually divided into high- and low-risk groups
based on the median value of PAGscore.

2.3. Construction of Cell Death Gene Signatures

To construct unique gene signatures for apoptosis, autophagy, ferroptosis, necroptosis,
and pyroptosis, we first extracted genes from corresponding cell-death-signaling pathways
and then curated positive-regulated genes of each kind of cell death according to the
literature. Each cell death signature was constituted by the corresponding positive regulated
genes. In addition, we obtained datasets that compare the RNA-sequencing data of control
cells with death-induced cells in the GEO database (Home—GEO—NCBI (nih.gov)) to test
the performance of our cell death signatures.

xenabrowser.net
nih.gov
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2.4. Evaluation of the Clinical and Molecular Characteristics of High- and Low-Risk Groups

To further investigate the underlying mechanisms of survival difference between
high- and low-risk patients, we compared the age, gender, tumor mutation burden (TMB),
neoantigen load, and mutation spectrum of fifty of the most commonly mutated genes in
cancer between two groups. Fifty of the most commonly mutated genes of cancer were
obtained from the literature [31]. We also evaluated published tumor-prognosis-associated
signatures such as hypoxia score [32] and cytolytic score [33] in two groups. We used the R
package “progeny” to explore the activity of 14 kinds of cancer-related pathways in two
groups. Meanwhile, gene sets of fifty kinds of cancer hallmarks were downloaded from
the MSigDB database (GSEA|MsigDB (gsea-msigdb.org, Accessed on 1 September 2021)
and single-sample gene enrichment analysis (ssGSEA) was conducted to calculate scores of
hallmarks of each patient to characterize high- and low-risk patients.

2.5. Comparison of TME between High-Risk and Low-Risk Patients

We obtained immunomodulators and immune checkpoint genes from the literature,
and the compared method was used to calculate the “ImmuneScore”, “StromaScore”, and
“TumorPurity” of the two groups of patients [34–36]. We obtained gene sets of 29 compo-
nents of the TME [37] and 12 gene sets of the cancer immunity cycle [38] from the literature
and used the R package “GSVA” [39] to calculate the score of those gene sets for each
patient to comprehensively compare the difference in TME between the two groups of
patients.

2.6. Statistical Analysis

All statistical analyses were implemented in R 4.05 software (https://www.r-project.
org/, accessed on 1 September 2021). The Wilcoxon–Mann–Whitney test and Kruskal–
Wallis test were used to compare non-normal-distribution continuous variables between
two groups and more than two groups, respectively. The chi-square test was applied
to compare categorical variables. Pearson correlation analysis was used to explore the
correlation between variables. Significant correlations were defined as Pearson coefficients
greater than 0.2 in absolute terms and p < 0.05. The Kaplan–Meier method was used to
plot survival curves for patients, and the log-rank test was used to determine statistically
significant differences. For univariate Cox regression analysis, we used p value ≤ 0.001 as
the cutoff value to select significantly survival-associated genes. Except for the univariate
Cox regression analysis, p value < 0.05 was considered statistically significant.

3. Results
3.1. Construction of Gene Signatures for Programmed Cell Death

The present study included 9925 cancer patients with obtainable transcriptome data
and clinical data. According to a ratio of 7 vs. 3, all patients were grouped into the training
group of 6949 cases and the validation group of 2976 cases.

Signaling pathways of apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis
were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
Reactome pathway knowledgebase, and WikiPathways database. The numbers of signaling
pathways of apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis were 3, 3, 2,
3, and 1, respectively (Table 1). A total of 599 genes were extracted from these signaling
pathways and defined as cell-death-related genes. Through univariate Cox regression anal-
ysis, 324 genes were shown to be significantly associated with overall survival (OS) in the
training cohort (Supplementary Table S1). Then, 107 survival-related genes were identified
by the LASSO Cox regression analysis (Supplementary Figure S1A,B). Finally, multivariate
Cox regression analysis identified 75 independent prognostic-related genes that could be
used to construct the optimal prognostic model (Figure 1A). We also used the R function
“enrichKEGG” to explore the enriched cell death pathway and found that the pathways
of necroptosis, apoptosis, and autophagy-animal were significantly enriched (Figure 1B).
The individual PAGscore was calculated for each patient based on the expression levels

https://www.r-project.org/
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of 75 genes and the coefficients of multivariate Cox regression analysis. ROC analysis
showed that the AUCs of PAGscore in predicting 12-, 24- and 36-month survival were 0.78,
0.812, and 0.811, respectively, which suggested that PAGscore was a reliable prognosis
predictor (Figure 1C). Based on the median PAGscore, patients were divided into high-
(higher PAGscore) and low-risk groups (lower PAGscore). Survival analysis revealed a
poorer prognosis for the high-risk group than the low-risk group (Figure 1D). PAGscore also
performed well in predicting the survival of patients in the validation cohort. The AUCs
of PAGscore in predicting survival at 12, 24, and 36 months were 0.76, 0.779, and 0.771,
respectively (Supplementary Figure S1C). Survival analysis showed that low-risk patients
had a better prognosis (Supplementary Figure S1D). Furthermore, PAGscore also effectively
predicted the survival of patients of a certain type of cancer, such as lung adenocarcinoma
(LUAD), head and neck squamous cancer (HNSC), sarcoma (SARC), and bladder urothelial
carcinoma (BLCA) (Figure 1E, Supplementary Figures S2 and S3).

Table 1. The gene sets of five types of programmed cell death signatures and corresponding GEO
datasets for validation.

Variables Apoptosis Necroptosis Autophagy Ferroptosis Pyroptosis

Number of pathways 3 3 3 2 1
Reactome pathway knowledgebase (genes) 181 159 151 0 27

KEGG database (genes) 136 62 32 41 0
WikiPathways database (genes) 87 9 30 40 0

Total genes 307 163 160 41 27
Promoting cell death genes 25 11 15 14 11

Number of GEO datasets for validation 13 3 14 6 2
Number of GEO datasets with statistical significance 7 1 8 4 0

Number of GEO datasets with differential trends 6 2 6 2 2

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; GEO, Gene Expression Omnibus.

For each type of cell death, we merged the genes of the corresponding signaling path-
ways and extracted the positively regulated genes of cell-death as the cell death signature.
Eventually, signatures of apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis in-
cluded twenty-five, eleven, twenty-eight, fourteen, and eleven genes, respectively (Table 1).
The “ssGSEA” method was used to calculate the scores of five types of cell death for each
patient based on the above signatures’ gene sets. The numbers of GEO datasets used to
verify the performance of cell death signatures of apoptosis, necroptosis, autophagy, ferrop-
tosis, and pyroptosis were thirteen, three, fourteen, six, and two, respectively (Table 1). Our
results demonstrated that five types of cell death signatures could all greatly distinguish
control cells and death-induced cells (Supplementary Figures S4 and S5).

3.2. The Characteristics of Five Types of Cell Death Gene Signatures in Cancers

To determine the prognostic significance of five types of cell death gene signatures,
survival analysis was proceeded in the two cohorts and the results showed that autophagy
score was a prognosis-favorable factor; however, ferroptosis score and pyroptosis score
were prognosis-unfavorable factors (Figure 2A, Supplementary Figure S6A). Apoptosis
score was negatively associated with prognosis in the training cohort, but not correlated to
prognosis in the validation cohort. Necroptosis score was significantly positively associated
with prognosis in the training cohort, but only showed a non-significant positive trend
in the validation group. Comparing the five types of cell death signature scores between
two different risk-group patients revealed that high-risk patients had a lower autophagy
score and a higher apoptosis score, ferroptosis score, and pyroptosis score in both cohorts
(Figure 2B, Supplementary Figure S6B).
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Figure 1. Constructing and validating overall-survival-associated programmed-cell-death signa-
ture—PAGscore. (A) Multivariate Cox regression analysis identified 75 programmed-cell-death-re-
lated genes constructing the best-predicting model for overall survival in the training cohort; (B) 
Enriched analysis of KEGG pathways of 75 programmed-cell-death-related genes. (C) The ROC 
analysis showed that PAGscore could effectively predict the 12-, 24-, and 36-month overall survival 
rate for patients in the training cohort; (D) The survival analysis showed that the overall survival of 
high-risk patients with higher PAGscore was worse than that of low-risk patients with a lower PAG-
score in the training cohort; (E) The results of ROC and survival analyses showed that PAGscore 
performed well in predicting the overall survival in several types of cancer patients. Abbreviations: 
HR, hazard ratio; CI, confidential interval; BLCA, bladder urothelial carcinoma; HNSC, head and 
neck squamous cell carcinoma; LUAD, lung adenocarcinoma; SARC, sarcoma. 

Figure 1. Constructing and validating overall-survival-associated programmed-cell-death signature—
PAGscore. (A) Multivariate Cox regression analysis identified 75 programmed-cell-death-related
genes constructing the best-predicting model for overall survival in the training cohort; (B) Enriched
analysis of KEGG pathways of 75 programmed-cell-death-related genes. (C) The ROC analysis
showed that PAGscore could effectively predict the 12-, 24-, and 36-month overall survival rate for
patients in the training cohort; (D) The survival analysis showed that the overall survival of high-risk
patients with higher PAGscore was worse than that of low-risk patients with a lower PAGscore in the
training cohort; (E) The results of ROC and survival analyses showed that PAGscore performed well
in predicting the overall survival in several types of cancer patients. Abbreviations: HR, hazard ratio;
CI, confidential interval; BLCA, bladder urothelial carcinoma; HNSC, head and neck squamous cell
carcinoma; LUAD, lung adenocarcinoma; SARC, sarcoma.
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analysis showed that apoptosis score, ferroptosis score, and pyroptosis were unfavorable survival 

Figure 2. Identifying and characterizing five types of cell death gene signatures. (A) The survival
analysis showed that apoptosis score, ferroptosis score, and pyroptosis were unfavorable survival pre-
dictors, but autophagy score and necroptosis score were favorable survival predictors in the training
cohort; (B) The box plots showed that high-risk patients had higher scores of apoptosis, ferroptosis,
and pyroptosis, and a lower score of autophagy than low-risk patients; (C) The Venn diagram showed
that the genes of five types of cell death signatures had a few overlaps; (D) Correlation analysis of
five types of cell death signatures scores in pan-cancer patients. ***: p < 0.001.

To further explore the association between five types of cell death signatures, we first
analyzed the overlap between those signatures’ genes. The Venn diagram showed that
the number of overlapping genes among different signatures was small (Figure 2C). Next,
Pearson correlation analysis was performed to evaluate the correlation between each score
of the two signatures in human pan-cancer. The results demonstrated that apoptosis score
was negatively associated with autophagy score (Pearson coefficient = −0.55, p < 0.001)
and ferroptosis score (Pearson coefficient = −0.3, p < 0.001), and positively associated with
pyroptosis score (Pearson coefficient = 0.44, p < 0.001); autophagy score was negatively
related to ferroptosis score (Pearson coefficient = −0.26, p < 0.001), necroptosis score
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(Pearson coefficient = −0.3, p < 0.001), and pyroptosis score (Pearson coefficient = −0.79,
p < 0.001) (Figure 2D).

We also evaluated the association between the scores of the five signatures in a certain
type of cancer, such as breast cancer, glioblastoma, and esophageal carcinoma. Consistent
with the results of pan-cancer, apoptosis score was negatively related to autophagy score
and ferroptosis score and positively associated with pyroptosis score; autophagy score was
negatively related to ferroptosis score, necroptosis score, and pyroptosis score in several
kinds of cancers (Supplementary Figure S7).

3.3. Associations between PAGscore Groupings and Clinical and Molecular Features of Cancers

To characterize high- and low-risk groups, we comprehensively compared the clinical
and molecular characteristics of two groups of patients. First, we compared the age
distribution of two groups. The results showed that high-risk patients were older (p < 0.001)
(Figure 3A, Supplementary Figure S8A).

Next, we chose the fifty most frequently mutated genes in human cancers and explored
the mutation profiles of the 50 genes between the two risk groups. In the training cohort,
the mutation frequencies of the high- and low-risk group were 93.88% (3008/3204) and
78.03% (2511/3218) (p < 0.001), respectively. The high-risk group had higher mutation
frequencies, and twenty-seven genes had statistical significance in both the training and
validation group. Of 27 genes, TP53 (52%), LRP1B (17%), and KMT2D (13%) were the three
most mutated genes in the high-risk group, while TP53 (21%), BRAF (10%), and LRP1B (8%)
were the top three mutation genes in the low-risk group (Figure 3B). The mutation profiles
of high- and low-risk groups in the validation cohort were consistent with the training
cohort: the mutation frequency of the high-risk group was higher than the frequency in
the low-risk group (92.39% vs. 78.21%, p < 0.001). TP53 (48%), LRP1B (15%), and KMT2D
(13%) were the top 3 mutation genes in the high-risk group, while TP53 (22%), BRAF (10%),
and LRP1B (7%) were the top three mutation genes in the low-risk group (Supplementary
Figure S8B). Meanwhile, we also compared the TMB, neoantigen load, and microsatellite
instability (MSI) between the high- and low-risk patients. Both training and validation
cohorts were consistent in that high-risk patients had a higher TMB, neoantigen load, and
MSI than low-risk patients (p < 0.001) (Figure 3C–E, Supplementary Figure S8C–E).

Finally, we analyzed the distribution of previously reported cancer-associated molecu-
lar characteristics in high-risk and low-risk groups. The results showed that the high-risk
group had a higher cytolytic score (p < 0.001) and hypoxia score than the low-risk group
(p < 0.001) in both training and validation cohorts (Figure 3F,G, Supplementary Figure
S8F,G). In addition, malignant signaling pathway activities were assessed by using the
“progeny” R package in two groups. We found that the activity of the p53 signaling path-
way was higher in the low-risk group, while the activity of other pathways was higher
in the high-risk group, such as EGFR, hypoxia, JAK-STAT, MAPK, NF-κB, PI3K, TGFβ,
TNFα, VEGF, and WNT pathways (Figure 3H, Supplementary Figure S8H). The analysis of
ssGSEA scores for fifty cancer hallmarks showed that multiple hallmarks had a higher activ-
ity in the high-risk group, for example, angiogenesis, DNA-repair, epithelial–mesenchymal
transition (EMT), and hypoxia (Figure 3I, Supplementary Figure S8I).
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low-risk patients; (B) Analysis of the mutation profiles of the fifty most commonly mutated genes
in human cancers showing that 27 genes had a significantly different mutation frequency between
low-risk and high-risk patients; (C) The box plot showed that high-risk patients have a higher TMB
than low-risk patients; (D) The box plot showed that high-risk patients have a higher neoantigen
load than low-risk patients; (E) The box plot showed that high-risk patients have a higher MSI than
low-risk patients; (F) The box plot showed that high-risk patients have a higher cytolytic score than
low-risk patients; (G) The box plot showed that high-risk patients have a higher hypoxia score than
low-risk patients; (H) The relative signaling pathway activity in high- and low- risk patients was
evaluated by the R package “progeny”; (I) The violin plot showed the ssGSEA score of fifty pathways
of cancer hallmarks in high- and low-risk patients. Abbreviations: TMB, tumor mutation burden;
MSI, microsatellite instability. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

3.4. Differences in TME between High- and Low-Risk Patients

To identify the immunological characteristics of the TME in high- and low-risk patients,
we analyzed the ESTIMATE score, the expression of immunomodulators and immune
checkpoint genes, the activity of the cancer immunity cycle, and the ssGSEA scores of
29 components of the TME.

Compared to the patients in the low-risk group, high-risk patients had a higher “Im-
muneScore” and “StromaScore” and lower “TumorPurity” (Figure 4A, Supplementary
Figure S9A). Expression analysis of immune-related genes showed that the majority of
MHC-I and MHC-II components such as HLA-A, HLA-B, HLA-C, HLA-DMB, HLA-DQA1,
and HLA-DRA were up-regulated in the high-risk group, indicating that the ability of anti-
gen presentation and processing was enhanced in patients of this group. Meanwhile, some
key chemokines and corresponding receptors, including CCL5, CXCL9, CXCL13, CCR5,
and CXCR3, were also significantly up-regulated in high-risk patients (Supplementary
Figure S10A,B). Much solid evidence supported the role of these chemokines in promoting
the recruitment of immune cells such as CD8+T cells and antigen-presenting cells. Immune
checkpoint genes were also a signature of an inflamed TME and our results revealed that all
immune checkpoint genes, covering CD274, CD80, CD86, CTLA4, HAVCR2, IDO1, LAG3,
PDCD1, PDCD1LG2, TIGIT, and TNFRSF9, were significantly down-regulated in low-risk
patients (Figure 4C, Supplementary Figure S9B).

Analysis of the activity of the cancer immunity cycle demonstrated that high-risk
patients possessed a higher activity in all steps of the cancer immunity cycle, which includes
seven steps. The first step was the release of cancer cell antigens and the second was the
presentation of cancer antigens. The third step was the priming and activation of cancer
antigens. The fourth step was the trafficking of immune cells into tumors. Then, the
immune cells would infiltrate into the tumors (Step 5) and the T cells would recognize the
cancer cells (Step 6). Finally, the immune cells would kill the cancer cells (Step 7) (Figure 4D,
Supplementary Figure S9C).

Comprehensively evaluating the TME profile of high- and low-risk patients by cal-
culating the ssGSEA score of 29 components of the TME suggested that components of
either the anti-tumor microenvironment or pro-tumor microenvironment were generally
up-regulated in high-risk patients. Malignant cell properties including proliferation rate
signature and EMT signature were also up-regulated in high-risk patients. Moreover, con-
sistent with other scores, the score of angiogenesis and fibrosis signatures in the high-risk
group was higher than that of the low-risk group (Figure 4E, Supplementary Figure S9D).

In summary, these findings demonstrated that the tumor immune environment had
significant differences among the high-risk patients and low-risk patients. The complex
interaction between TME components ultimately determined the prognosis of cancer
patients.



Genes 2023, 14, 1178 10 of 15

Genes 2023, 14, x FOR PEER REVIEW 10 of 16 
 

 

CTLA4, HAVCR2, IDO1, LAG3, PDCD1, PDCD1LG2, TIGIT, and TNFRSF9, were signifi-
cantly down-regulated in low-risk patients (Figure 4C, Supplementary Figure S9B). 

 
Figure 4. Comparing the differences in TME between high- and low-risk patients in training cohort. 
(A) The box plots showed that high-risk patients had a higher “ImmuneScore” and “StromaScore” 
and lower “TumorPurity” than low-risk patients; (B) The violin plot showed the expression of im-
mune checkpoint genes in high- and low-risk patients; (C) The relative activity of seven steps of the 
cancer immunity cycle in high- and low-risk patients; (D) The violin plot showed the ssGSEA score 
of 29 components of TME in high- and low-risk patients. Abbreviations: TME, tumor microenviron-
ment; CAF, cancer-associated fibroblasts; TAM, tumor-associated macrophages; MC, myeloid cells. 
*: p < 0.05, **: p < 0.01, ***: p < 0.001. 

Analysis of the activity of the cancer immunity cycle demonstrated that high-risk pa-
tients possessed a higher activity in all steps of the cancer immunity cycle, which includes 
seven steps. The first step was the release of cancer cell antigens and the second was the 
presentation of cancer antigens. The third step was the priming and activation of cancer 
antigens. The fourth step was the trafficking of immune cells into tumors. Then, the im-
mune cells would infiltrate into the tumors (Step 5) and the T cells would recognize the 
cancer cells (Step 6). Finally, the immune cells would kill the cancer cells (Step 7) (Figure 
4D, Supplementary Figure S9C). 

Comprehensively evaluating the TME profile of high- and low-risk patients by cal-
culating the ssGSEA score of 29 components of the TME suggested that components of 
either the anti-tumor microenvironment or pro-tumor microenvironment were generally 
up-regulated in high-risk patients. Malignant cell properties including proliferation rate 
signature and EMT signature were also up-regulated in high-risk patients. Moreover, con-
sistent with other scores, the score of angiogenesis and fibrosis signatures in the high-risk 
group was higher than that of the low-risk group (Figure 4E, Supplementary Figure S9D). 

In summary, these findings demonstrated that the tumor immune environment had 
significant differences among the high-risk patients and low-risk patients. The complex 

Figure 4. Comparing the differences in TME between high- and low-risk patients in training cohort.
(A) The box plots showed that high-risk patients had a higher “ImmuneScore” and “StromaScore”
and lower “TumorPurity” than low-risk patients; (B) The violin plot showed the expression of im-
mune checkpoint genes in high- and low-risk patients; (C) The relative activity of seven steps of the
cancer immunity cycle in high- and low-risk patients; (D) The violin plot showed the ssGSEA score
of 29 components of TME in high- and low-risk patients. Abbreviations: TME, tumor microenviron-
ment; CAF, cancer-associated fibroblasts; TAM, tumor-associated macrophages; MC, myeloid cells.
*: p < 0.05, **: p < 0.01, ***: p < 0.001.

3.5. ICGC Liver Cancer Cohort Validated Study Findings

An ICGC liver cancer cohort with 232 patients was used as the external cohort to
further validate our findings. Consistent with the training and validation cohort, PAGscore
was an unfavorable prognosis factor. According to the median value of PAGscore, patients
were divided into high- and low-risk groups, and subsequent analyses demonstrated
that the high-risk group had a higher immuneScore and activity of malignant signaling
pathways. Most anti-tumor and pro-tumor components of the TME showed greater activity
in high-risk patients. Scores of malignant cell properties were also higher in high-risk
patients (Figure 5).
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Figure 5. The ICGC liver cancer cohort validated the study findings. (A) Survival analysis showed
that the overall survival of high-risk patients with a higher PAGscore was worse than that of low-risk
patients with a lower PAGscore in the ICGC cohort; (B) The results of ROC and survival analyses
showed that PAGscore performed well in predicting the overall survival in liver cancer patients;
(C) The relative signaling pathway activity in high- and low- risk patients was evaluated by the R
package “progeny”; (D) The box plots showed that high-risk patients had a higher “ImmuneScore”
and “StromaScore” and lower “TumorPurity” than low-risk patients; (E) The violin plot showed the
ssGSEA score of 29 components of TME in high- and low-risk patients. Abbreviations: TME, tumor
microenvironment; CAF, cancer-associated fibroblasts; TAM, tumor-associated macrophages; MC,
myeloid cells. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

4. Discussion

To our knowledge, this is the first time a study has comprehensively explored the
prognostic and immunological role of five types of cell death (apoptosis, autophagy, ferrop-
tosis, necroptosis, and pyroptosis) in human pan-cancer. Here, we defined a reliable score
named PAGscore based on the prognosis-associated cell-death-related genes that could
effectively distinguish prognosis-favorable and prognosis-unfavorable cancer patients. Fur-
ther analyses characterizing the patients with different prognoses included the differences
in clinical and molecular characteristics, the malignant potential of cancer cells, and the
complexity of interaction between TME components.

We constructed PAGscore by analyzing five types of cell-death-related genes, and
based on the median PAGscore, patients were split into high-risk and low-risk groups with
significantly different prognoses. To clarify the impact of each type of cell death on the
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prognosis of patients, we also constructed the unique signature of apoptosis, autophagy,
ferroptosis, necroptosis, and pyroptosis. Survival analyses showed that autophagy score
was the favorable prognosis factor, while ferroptosis score and pyroptosis score were the un-
favorable prognosis factors, in both training and validation cohorts. The survival effects of
apoptosis score and necroptosis score were inconsistent between the training and validation
cohort. We speculated that the reason for this phenomenon might be the difference in the
number of patients between the two cohorts. Further comparing the distribution of scores
of five cell death signatures in high- and low-risk groups, the results revealed that high-risk
patients had a higher unfavorable prognosis-associated score (apoptosis score, ferroptosis
score, and pyroptosis score) and lower favorable prognosis-associated score (autophagy
score). It is well known that cell death plays an important role in cancer processes. As the
tumor is a mixture of cancer cells and non-cancer cells, simply exploring the role of cell
death by analyzing bulk tissues’ RNA-sequencing data is not accurate enough. We used the
ESTIMATE method to assess the proportion of cancer cells and non-cancer cells in the TME.
The results showed that high-risk patients had a higher proportion of immune cells and
stromal cells, and lower tumor purity. Our cell death signature score reflected the overall
cell death profile of the tumor microenvironment, which could not differentiate cancer
cells and non-cancer cells. It was reported that the apoptosis, ferroptosis, and pyroptosis
of immune cells could cause cancer immune evasion [40–43]. Excessive autophagy could
cause cancer cell death (autophagy-dependent cell death, ADCD) [44]. In addition, there is
evidence that autophagy could regulate the survival and memory formation of cytotoxic T
cells [45–47]. Combined with our results, we speculated that the poor prognostic effects of
the apoptosis score, ferroptosis score, and pyroptosis score were due to a higher proportion
of immunes cells with death in the high-risk patients, while the favorable prognostic role of
autophagy score was due to a higher proportion of cancer cells with ADCD in the low-risk
patients.

Several studies have suggested that age and gender are important risk factors of the
incidence and mortality of cancer [48,49]. We compared the age and gender distribution
between high- and low-risk patients and found that the high-risk group possessed a higher
proportion of older and male patients. Mutations also played a fundamental factor in the
tumor development and prognosis of cancer [31]. Our results suggested that high-risk
patients had higher mutation frequencies than low-risk patients. Consistent with previous
reports, TP53 was the most frequently mutated gene in both high-risk (48–52%) and low-
risk patients (21%–22%) in this study, and the frequency of the TP53 mutation was also
significantly positively correlated with the risk. We also observed that the activity of the
p53 pathway was higher in low-risk patients than in high-risk patients by using the R
package “progeny”. TP53 is a well-known tumor-suppressor, while the p53 inactivation
caused by TP53 mutations can escape tumor cell death and rapid tumor progression [50].
Accordingly, we concluded that the difference in prognosis between the two groups of
patients was significantly associated with TP53 mutation. In addition to a difference in
tumor suppressor pathway, many pathways related to carcinogenesis and progression
showed higher activity in high-risk patients, such as the EGFR pathway, MAPK pathway,
and PI3K pathway. All of our findings could support the poor prognostic performance in
the high-risk group.

The TME is constituted by tumor cells and non-tumor cells. The complex interaction
between components of the TME determines the cancer prognosis. Our results showed
that high-risk patients had an inflammatory TME relative to low-risk patients. The pro-
and anti-tumor components were significantly upregulated in high-risk patients. Although
the tumor purity was lower in the high-risk group than the low-risk group, the scores of
protumor cytokines and tumor proliferation rate were significantly higher than those of the
low-risk group. Previous studies have reported that tumor cells have the ability to dominate
the microenvironment, which gives rise to the hypothesis that tumor cells recruit large
numbers of surrounding cells and make them form a protective barrier [51]. Accordingly,
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we speculated that highly malignant cancer cells in the high-risk group promoted the
formation of a unique TME and led to a poor prognosis.

The main advantage of our study was the use of a large pan-cancer cohort and the
comprehensive analysis of the prognosis and immunological role of five types of cell death.
Due to the limitation of bulk RNA-sequencing, we could not effectively evaluate the role
of five types of cell death of different cells on the TME and prognosis of cancers. We look
forward to large pan-cancer single-cell sequencing to explore the effects of different types
of cell death on the TME and prognosis.

Taken together, our study found that cell-death-related genes were significantly as-
sociated with prognosis. The potential mechanisms of different prognoses between high-
and low-risk patients included differences in clinical and molecular characteristics, the
malignant potential of tumor cells, and the complex interplay between TME components.
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Figure S5. Validating the performance of five types of cell death gene signatures in differentiating
death-inducing and non-death-inducing cells; Figure S6. Identifying and characterizing five types of
cell death gene signatures in cancers; Figure S7. Correlation analysis of score of five types of cell death
signatures in different types of cancers; Figure S8. Comparing the clinical and molecular features
between high- and low-risk patients in validation cohort; Figure S9. Comparing the differences
in tumor microenvironment between high- and low-risk patients in validation cohort; Figure S10.
The expression of immune-related genes in high- and low-risk patients; Table S1: Univariate Cox
regression analysis for overall survival in training cohort.

Author Contributions: Y.Z. and Z.L. performed the study concept and design. Y.H. and Y.Y. analyzed
the data and drafted the manuscript. Y.Z., Z.L. (Zexian Liu), Y.H., Y.Y. and Z.L. (Zekun Liu) reviewed
and edited the manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The corresponding author or first author will provide data supporting
this research study upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of

premature death worldwide. Cancer 2021, 127, 3029–3030. [CrossRef] [PubMed]
2. Omran, A.R. The epidemiologic transition: A theory of the Epidemiology of population change. Milbank Mem. Fund Q. 1971, 49,

509–538. [CrossRef] [PubMed]
3. Colao, A.; Muscogiuri, G.; Piscitelli, P. Environment and Health: Not Only Cancer. Int. J. Environ. Res. Public. Health 2016, 13, 724.

[CrossRef] [PubMed]
4. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

5. Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-Treating Fields: A Fourth Modality in Cancer
Treatment. Clin. Cancer Res. 2018, 24, 266–275. [CrossRef] [PubMed]

6. Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; et al. Pyroptosis: A new frontier in cancer.
Biomed. Pharmacother. 2020, 121, 109595. [CrossRef]

7. Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147, 742–758. [CrossRef]

https://www.mdpi.com/article/10.3390/genes14061178/s1
https://doi.org/10.1002/cncr.33587
https://www.ncbi.nlm.nih.gov/pubmed/34086348
https://doi.org/10.2307/3349375
https://www.ncbi.nlm.nih.gov/pubmed/5155251
https://doi.org/10.3390/ijerph13070724
https://www.ncbi.nlm.nih.gov/pubmed/27447654
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1158/1078-0432.CCR-17-1117
https://www.ncbi.nlm.nih.gov/pubmed/28765323
https://doi.org/10.1016/j.biopha.2019.109595
https://doi.org/10.1016/j.cell.2011.10.033


Genes 2023, 14, 1178 14 of 15

8. Cerella, C.; Teiten, M.H.; Radogna, F.; Dicato, M.; Diederich, M. From nature to bedside: Pro-survival and cell death mechanisms
as therapeutic targets in cancer treatment. Biotechnol. Adv. 2014, 32, 1111–1122. [CrossRef]

9. Gao, Y.; Liu, P.; Shi, R. Anlotinib as a molecular targeted therapy for tumors. Oncol. Lett. 2020, 20, 1001–1014. [CrossRef]
10. Liu, J.; Hong, M.; Li, Y.; Chen, D.; Wu, Y.; Hu, Y. Programmed Cell Death Tunes Tumor Immunity. Front. Immunol. 2022, 13,

847345. [CrossRef]
11. Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell. Biol. 2008, 9,

231–241. [CrossRef]
12. Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020, 19, 12. [CrossRef]
13. Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. The role of necroptosis in cancer

biology and therapy. Mol. Cancer 2019, 18, 100. [CrossRef]
14. Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 2015, 14, 48.

[CrossRef]
15. Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in

cancer. J. Hematol. Oncol. 2019, 12, 34. [CrossRef]
16. Hou, J.; Hsu, J.M.; Hung, M.C. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity.

Mol. Cell. 2021, 81, 4579–4590. [CrossRef]
17. Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [CrossRef]
18. Qin, X.; Ma, D.; Tan, Y.X.; Wang, H.Y.; Cai, Z. The role of necroptosis in cancer: A double-edged sword? Biochim. Biophys. Acta Rev.

Cancer 2019, 1871, 259–266. [CrossRef]
19. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Targeting ferroptosis in pancreatic cancer: A double-edged sword. Trends Cancer 2021, 7,

891–901. [CrossRef]
20. Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q.; Yu, X.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer

immunity. J. Hematol. Oncol. 2020, 13, 110. [CrossRef]
21. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]
22. Yatim, N.; Jusforgues-Saklani, H.; Orozco, S.; Schulz, O.; Da Silva, R.B.; E Sousa, C.R.; Green, D.R.; Oberst, A.; Albert, M.L. RIPK1

and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015, 350, 328–334. [CrossRef] [PubMed]
23. Young, T.M.; Reyes, C.; Pasnikowski, E.; Castanaro, C.; Wong, C.; Decker, C.E.; Chiu, J.; Song, H.; Wei, Y.; Bai, Y.; et al. Autophagy

protects tumors from T cell-mediated cytotoxicity via inhibition of TNFα-induced apoptosis. Sci. Immunol. 2020, 5, abb9561.
[CrossRef] [PubMed]

24. Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.;
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