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Abstract: Animal genotyping by means of genome-wide association studies is important for connect-
ing phenotypes of interest with their underlying genetics in livestock. However, the use of whole
genome sequencing to investigate chest circumference (CC) in donkeys has rarely been reported. We
aimed to use the genome-wide association study approach to detect significant single nucleotide
polymorphisms (SNPs) and key genes associated with chest circumference traits in Xinjiang donkeys.
We assessed 112 Xinjiang donkeys in this study. The chest circumference of each was measured
2 h before milking. We re-sequenced blood samples from the Xinjiang donkeys, and genome-wide
association study analyses were performed using a mixed model with the PLINK, GEMMA, and
REGENIE programs. We tested 38 donkeys for candidate SNPs for genome-wide association study
using three software programs. Additionally, 18 SNP markers reached genome-wide significance
(p < 1.61 × 10−9). On the basis of these, 41 genes were identified. Previously proposed candidate
genes for CC traits were supported by this study, including NFATC2 (Nuclear Factor of Activated
T Cells 2), PROP1 (PROP Paired-Like Homeobox 1), UBB (Ubiquitin B), and HAND2 (Heart and
Neural Crest Derivatives Expressed 2). These promising candidates provide a valuable resource
for validating potential meat production genes and will facilitate the development of high-yielding
Xinjiang donkey breeds through marker-assisted selection or gene editing.

Keywords: chest circumference; Xinjiang donkey; GWAS; PLINK; key genes

1. Introduction

The donkey (Equus asinus), a descendant of the African wild ass, is a common domestic
animal [1]. Donkey domestication has been essential to human culture and development,
and has played an important role in economic and social life throughout human history [2].
Donkeys provide meat and milk, especially donkey-hide gelatin, which mainly consists
of collagen, and is a traditional medicinal material [3]. Donkey meat is widely believed to
be palatable because of its high linoleic acid content [4]. Donkeys are principally used as
pack animals or for draught work in transport and agriculture. However, the population
of donkeys is drastically declining, owing to the mechanization of agriculture and the
development of different means of transportation [5–7]. The donkey has been used as
a working animal for at least 5000 years. There are approximately 50.5 million donkeys
globally [8]. The latest China Statistical Yearbook showed that the total stock of donkeys in
China was 1.967 million in 2022, about 13.6% of which were distributed in Xinjiang province
(data.stats.gov.cn). The Xinjiang donkey is an indigenous breed. Its body is short, with a
slightly larger head, erect ears, broad forehead, short nose, and hair in the ear shell; its coat
color is mostly gray or black, and there are slight differences in the external characteristics
of Xinjiang donkeys in different regions. However, they all have a mild temperament,
strong disease resistance, and strong environmental adaptability [9].
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Previous studies (from the last two years) have focused on milk from the Halari
donkey [10], donkey semen cryopreservation [11], the characterization of donkey-meat
flavor profiles [12], the number of thoracolumbar vertebrae and carcass traits in the Dezhou
donkey [13], disease [14], the hoof morphometry of donkeys in Pakistan [15], circadian
rhythm [16], tendon healing [17], and skin thickness in Dezhou donkeys [18]. However,
there have been few studies on the body size traits of donkeys. Body size traits are very im-
portant characteristics in animals, and influence sports performance. The main differences
in breeding goals can be observed with respect to the functional posterior triangle, as well
as regarding size and shape. Breeding plans of different species implement morphological
measures as selection goals because of their correlation with production traits. Growth
traits, including chest circumference, are important quantitative traits, and have a vital
impact on profitability. Hence, improving the growth traits of donkeys, including chest
circumference, has become a focus of research in the field of animal husbandry.

Some studies on chest circumference traits have focused mainly on humans, pigs, birds,
and horses, but few have addressed donkeys. Wang et al. found that the NCAPG-LCORL
on chromosome 3 may be a candidate region for the small body size trait in Liangzhou
donkeys [19]. Wang et al. used sequencing technology, and found that the LCORL gene was
associated with chest circumference in Dezhou donkeys [20]. Some studies have found high
correlations between infant CC traits and body weight [21–23]. Akaboshi et al. [24] found
that CC was associated with obesity in young children. Therefore, CC may be a useful
marker for rapid growth and help clinicians identify children with obesity. Xu et al. [25]
conducted a GWAS using a multi-trait meta-analysis and a linear mixed model based on
whole-genome sequencing, and characterized the PLAG1 gene as being relevant to CC traits.
Marelli et al. [26] investigated the variability within turkey CC traits in two Italian heritage
breeds. Inoue et al. [27] found that CC traits were significantly correlated with age in Noma
horses. The association analysis of donkey CC traits (p = 0.013) with TBX3 polymorphisms
showed significant differences between the AA and GG genotypes in the g.3624A > G
single nucleotide polymorphism (SNP) locus [28]. Lai et al. [29] found that IGF1-1 loci
were significantly associated with the CC of male Dezhou donkeys. Additionally, Wang
et al. [30] used polyacrylamide gel electrophoresis to genotype 380 Dezhou donkeys. They
identified CDKL5 as a candidate gene for CC. Recently, it has been shown that improving
important economic traits in livestock may benefit from a better understanding of the
genetic architecture underlying phenotypes of interest. From this perspective, animal
genotyping using GWAS has been recognized as a powerful approach for reconnecting the
phenotype of interest with the underlying genetics in livestock species [31].

In the last decade, various GWAS studies have been undertaken on livestock, including
socially affected traits and body mass index in Yorkshire pigs [32,33], coat color traits in
Arab camels and cattle [34,35], meat quality in camels [36], foot and leg conformation
traits in Chinese Holstein cattle [37], milk fatty acid traits in Comisana sheep [38], litter
size in sheep [39], body weight traits in yaks [40], growth traits in Braunvieh cattle [41],
and growth traits in broilers [42]. Whole-genome sequencing has been used to detect
population structures and to identify polymorphisms that might affect the economic traits
of livestock animals [43]. However, owing to the lack of a complete chromosome-level
reference genome, most recent studies on donkeys are based on mitochondrial levels. The
entire genome variation of donkeys has been largely unexplored [44]. Renaud et al. [45]
used Chicago HiRise assembly technology to produce a high-quality genome assembly
for donkeys. The application of genome-wide association analysis of CC in donkeys has
rarely been reported. A single genome-wide association study has been reported, which
was performed to identify the genomic variations associated with body size in Yangyuan
donkeys [46].

Therefore, this study aimed to detect significant SNPs associated with CC traits in
Xinjiang donkeys using the GWAS approach. Using the SNP positions, we also aimed to
identify candidate genes and pathways that may influence this trait. Our study provides
molecular markers for the selective breeding of CC traits in Xinjiang donkeys.
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2. Materials and Methods
2.1. Experimental Animals and DNA Resequencing Data

In this study, 112 Xinjiang donkeys were collected from Yuepuhu County, Kashgar Re-
gion, China. The characteristics of the Xinjiang donkey are shown in Figure 1. Whole blood
samples (5 mL) were collected from each Xinjiang donkey using an EDTA anticoagulated
blood collection tube and stored at −80 ◦C. The donkeys in this study were all females, and
were 5–7 years old. The pedigree information of all donkeys was unknown. The donkeys
were from the same farm, and were kept under standard conditions, with the same diet
and management conditions. DNA was extracted using an Animal Blood/Cell/Tissue
Genomic DNA Extraction Kit (Tiangen Biochemical Technology Company, Beijing, China).
The fragments of sheared DNA were end-repaired, A-tailed, adaptor-ligated, and amplified
using Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Paired-end
sequencing was performed using the NovaSeq 6000 system (Illumina Inc., San Diego, CA,
USA). For accurate quantification of DNA concentration, three methods were used to detect
DNA: (1) agarose gel electrophoresis for DNA purity and integrity; (2) nanodrop detection
of DNA purity (OD 260/280 ratio); and (3) Qubit 2.0.
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Figure 1. Xinjiang donkey.

We performed a per-base-sequence quality check using Fastp (version 0.19.7) software.
The paired-end sequence reads were mapped against the reference donkey genome [Equus
asinus (ass)] using BWA (version 0.7.17) [47]. Using the “REMOVE_DUPLICATES =true”
option in the “mark duplicates” command-line tool of Picard (http://broadinstitu-te.
github.io/picard, accessed on 10 February 2022), the potential PCR duplicates were filtered.
Samtools (version 1.9) was used for mapping [48]. SNP variant loci were detected using
GATK (version 3.8) [49]. Data processing involved discarding of paired reads if: (1) either
read contained adapter contamination; (2) more than 10% of bases were uncertain in either
read; (3) the proportion of low-quality (Phred quality < 5) bases was greater than 50% in
either read.

2.2. Phenotype Data Collection

The CC data of 112 Xinjiang donkeys were used for subsequent association analyses.
Measurements were taken by the same person using a tape measure and measuring stick,
always on the right side of the animal, with the donkey standing with its front and hind
legs perpendicular to the ground. Chest circumference measurements were performed
after milking.

2.3. Variant Site Filtering

SNP filtering was conducted using PLINK software [50] with the following criteria:
(1) SNP call rate > 80%; (2) Hardy–Weinberg equilibrium p-value < 0.01; and (3) minor
allele frequency (MAF) > 0.05.

http://broadinstitu-te.github.io/picard
http://broadinstitu-te.github.io/picard
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2.4. Genome-Wide Association Study

Single-SNP association analysis was performed using a mixed-model approach in
three software packages: PLINK, REGENIE [51], and GEMMA [52]. The year was fitted as
a covariate. The following statistical model was used.

y = Wα+ Xsβs + g + e

where y is an n × 1 vector of phenotype values for all individuals (CC); W is an n × c
matrix of covariates (fixed effects containing the birth year, parity, and mean); α is a c × 1
vector of the corresponding coefficients, including the intercept; Xs is an n × 1 vector of
genotypes of a marker at the locus tested; βs is the effect size of the marker; g is an n × 1
vector of random polygenic effects with a covariance structure as g~N(0, σ2

A ϕ); and e is an
n × 1 vector of residual errors with e~N (0, σ2

e I), where I is an n × n identity matrix and σ2
e I

is the residual variance. The thresholds of the Bonferroni-corrected p-values for suggestive
genome-wide significant associations were set at 0.05/6,205,008 (i.e., 8.06 × 10−9), and a
genome-wide Bonferroni correction threshold of 0.01/6,205,008 (i.e., 1.61 × 10−9) was used
to assess the significance level for each SNP.

2.5. Gene Function Annotation

The variants were annotated using snpEff (version 4.0e) [53] according to the anno-
tation of the National Center for Biotechnology Information (NCBI). The NR database
was used to annotate the genes. Genecards (https://www.genecards.org, accessed on 10
February 2022) was used to find the gene function. We selected 200 kb before and after the
locus as the final association interval and used the database for functional gene mining of
the association interval.

3. Results
3.1. Descriptive Statistics

The descriptive statistics of the CC trait are reported in Table 1.

Table 1. Statistics for the chest circumference trait of Xinjiang donkeys.

Parameter Chest Circumference Trait

N (animals) 112
Mean (±SD) 151.50 (±12.80)

Minimum value (cm) 130.00
Maximum value (cm) 180.00

skewness 0.17
kurtosis −0.70

Coefficient of variation (%) 8.44

It can be seen from Table 1 that the average chest circumference of the 112 Xinjiang
donkeys was 151.5 cm, with a maximum value of 180 cm and a minimum value of 130 cm.
The chest circumference of Dezhou donkeys is 143–145 cm [20], and that of Hetian green
donkeys is 135 cm. The average chest circumference of Yangyuan donkeys is 138.62 cm [46].
The coefficient of variation is an index showing the density rate in relation to the average.
Meanwhile, the coefficient of variation of the chest circumference trait is an index for
determining the minimum sample size. In our study, the coefficient of variation obtained
for chest circumference demonstrated low variability, at 8.44.

We examined the normality of the chest circumference values in Xinjiang donkeys
(Figure 2) and found that it conformed to a normal distribution, making it possible to
perform further genome-wide association analysis.

https://www.genecards.org
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3.2. Resequencing of Xinjiang Donkeys

We generated the genomic sequences of 112 Xinjiang donkeys, which yielded 2986.2 Gb
of clean data with an average depth of 9.3× for subsequent analysis (Table S1). An aver-
age of 96.26% (95.05–96.85%) of the proper reads were mapped to the reference genome
(Table S2).

After SNP calling and quality control, 12,039,909 high-quality SNPs were obtained
for all 112 individuals. Following SnpEff annotation, we found that the number of SNPs
located in the intergenic region was the greatest (5,201,198, 43.20%), followed by those in
the intron (4,738,320, 39.36%), upstream gene regions (898,713, 7.46%), and downstream
gene regions (730,993, 6.07%) (Table S3).

3.3. Statistics of Sequencing Coverage Depth

After localizing the reads to the reference genome, it was found that the coverage
reached an average of 98.49% for 1×, 88.09% for 5× and 47.50% for 10× (Table S4). In
addition, we found that the sequencing data were evenly distributed throughout the
genome, indicating good sequencing randomness (Figure 3).
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3.4. QQ Plot Analysis

The QQ plot of GWAS p-values for PLINK, REGENIE, and GEMMA clearly showed
the REGENIE correction for the population structure within this population (Figure 4).
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3.5. Association Analysis

In the PLINK model, 33 significant SNP associations (p < 8.06 × 10−9) were found
for the CC trait, of which 16 SNPs were highly significantly correlated with body size
(p < 1.61 × 10−9). In GEMMA, 36 significant SNPs associations (p < 8.06 × 10−9) were
found for the CC trait, of which 17 SNPs were significantly correlated with body size
(p < 1.61 × 10−9). In REGENIE, nine significant SNPs associations (p < 8.06 × 10−9) were
found for the CC trait, of which four SNPs were highly significantly correlated with body
size (p < 1.61 × 10−9) (Figure 5, Table 2). In total, seven SNPs on chromosomes 4, 5, 15, 16,
and 29 that were significantly (p < 8.06 × 10−9) associated with the CC trait appeared in the
results of all three different analyses (Figure 6A). Additionally, four SNPs on ECA 4, 15, and
29 that were highly significantly (p < 1.61 × 10−9) associated with CC traits appeared in the
results of all three different analyses (Figure 6B). Among the significant results, 38 SNPs
were associated with the CC trait point in 41 interesting candidate genes (Figure 6C).
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Table 2. Single nucleotide polymorphism associations with the chest circumference trait (p < 1.61 × 10−9).

Chromosome Model Position (bp) p-Value Genes

4
PLINK

41,200,387 8.75 × 10−10
LOC123285233
LOC106834745

GEMMA LOC106834724
DCAF17

4
PLINK

GEMMA
REGENIE

71,906,099 3.73 × 10−11 /

7 PLINK
GEMMA 115,561,781 5.88 × 10−10 /

7 PLINK
GEMMA 115,566,944 6.73 × 10−10 /

7 PLINK
GEMMA 115,604,466 6.44 × 10−11

10 PLINK
GEMMA 68,266,479 1.02 × 10−9

10 PLINK 68,267,701 1.58 × 10−9

15 PLINK
GEMMA 39,516,646 5.58 × 10−10 LOC123277442

15 PLINK
GEMMA 39,549,650 6.83 × 10−10 NFATC2

15
PLINK

GEMMA
REGENIE

39,553,358 2.08 × 10−13 NFATC2

15 PLINK
GEMMA 39,564,922 4.03 × 10−10 NFATC2

19 PLINK
GEMMA 6,580,233 1.28 × 10−9

LOC106844757
LOC123278496
LOC123278509

19 GEMMA 6,569,378 1.91 × 10−9
LOC106844757
LOC123278496
LOC123278509

19 GEMMA 6,575,744 1.91 × 10−9
LOC106844757
LOC123278496
LOC123278509

23 PLINK
GEMMA 15,037,791 2.41 × 10−10

LOC106824713
LOC106824686
LOC106824712
LOC123280196

24 PLINK
GEMMA 18,270,706 1.32 × 10−9 /

29
PLINK

GEMMA
REGENIE

27,390,749 1.26 × 10−10 LOC123282041

29
PLINK

GEMMA
REGENIE

27,420,790 7.10 × 10−10 LOC123282041
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4. Discussion

Chinese donkeys are rich in genetic resources and can be divided into three types
according to their body size: large, medium, and small [28]. The Xinjiang donkey is
a small, dual-purpose local breed. It has important value in terms of meat, dairy, and
skin production. However, the selection and breeding of Xinjiang donkeys are relatively
slow, and marker-assisted breeding can greatly speed up the breeding process of the
Xinjiang donkey. In total, 41 genes were found by means of GWAS using three different
software packages.

We performed GWAS for the body size phenotype (CC) in the Xinjiang donkey popu-
lation. The associations between SNPs and CC traits were analyzed using three previously
reported methods: PLINK, GEMMA, and REGENIE [54–56]. A typical WGAS, currently
including hundreds of thousands of SNPs, genotyped for thousands of individuals, rep-
resents a dataset that is several orders of magnitude larger than the datasets reported in
previous linkage and association studies. As such, WGASs present new computational and
statistical challenges. Perhaps the most apparent challenge is related to the increased bur-
den of multiple testing: the concern that, from a set of hundreds of thousands of tests, many
highly significant results are expected by chance alone, making it hard to distinguish signal
from noise. Purcell et al. [50] developed a user-friendly software tool, PLINK, to facilitate
the analysis of whole-genome data in several ways: by addressing the mundane but impor-
tant need for easy ways to manage such data, by making routine analyses computationally
efficient, and by offering new analyses that take advantage of whole-genome coverage.
When considering a relatively small WGAS dataset of 100,000 SNPs genotyped for 350 indi-
viduals, for example, PLINK takes ~10 s to load, filter, and perform association analysis
for all SNPs. PLINK fulfills two analytical needs: aiding the process of performing quality
control (QC) on large datasets; and providing basic statistical tools to analyze variants in
genetic models [57]. Linear mixed models have attracted considerable attention recently as
a powerful and effective tool for accounting for population stratification and relatedness in
genetic association tests. However, existing methods for the exact computation of standard
test statistics are computationally impractical for even moderate-sized genome-wide associ-
ation studies. To address this issue, Zhou et al. [52] presented an efficient and exact method,
which they refer to as genome-wide efficient mixed-model association (GEMMA), which
makes approximations unnecessary in many contexts. Mbatchou et al. [51] presented a
novel machine-learning method called REGENIE for fitting a whole-genome regression
model for quantitative and binary phenotypes that is substantially faster than the alter-
natives for performing multi-trait analyses, while maintaining statistical efficiency. This
program was based primarily on saddle point approximation (SPA), The SPA method
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approximates the score test statistic by using the entire cumulant-generating function,
rather than the first two moments (mean and variance) used with the normal approxima-
tion. REGENIE uses the polygenic effect estimates to control for population and family
structure. This is why only nine SNPs were found to be significant using the REGENIE
program, while 33 and 36 SNPs were found to be significant when using the PLINK and
GEMMA programs, respectively. REGENIE produces rather conservative results. Recently,
Gurinovich et al. [58] proposed the use of REGENIE to perform genome-wide association
studies of binary traits in correlated data. In their paper, REGENIE appeared to produce
slightly more conservative p-values in New England Centenarian Study-imputed genotype
data, and substantially more conservative p-values in Long Life Family Study WGS data.

Five regions and eight SNPs were identified as having significant effects on the three
methods in the GWAS (Figure 5). The Equus asinus (ass) autosome 7 (EAA 7) (115,561,781–
115,604,466 bp) region, EAA10 (68,227,724–68,267,701), EAA15 (39,516,646–39,564,922),
EAA19 (6,536,246–6,580,233), and EAA29 (27,390,749–27,421,411) were found to be signifi-
cant with respect to CC traits, and are reported for the first time in this study. One SNP at
39,553,358 bp in nuclear factor of activated T cells 2 (NFATC2) on EAA 15 was identified
to have a highly significant effect on CC using the three methods. According to Huang
et al. [59], this gene is a direct regulatory transcription factor for osteoclast development
that regulates osteoclast genesis and the expression of osteolysis-associated molecules, in-
cluding matrix metalloproteinase (MMP)-9 and cathepsin K. Additionally, skeletal muscle
formation and growth require the fusion of myoblasts to form multi-nucleated myofibers
or myotubes [60]. Horsley et al. [61] demonstrated that nuclear addition and an increase
in myotube size were controlled by a molecular pathway regulated by NFATC2. Calcium
is a necessary factor for bone cell proliferation and differentiation. It has been shown
that PGF2alpha receptor increase intracellular calcium levels, and the involvement of the
calcium-regulated transcription factor nuclear factor of activated T cells (NFAT) in mediat-
ing PGF2alpha-enhanced cell growth was further investigated. The results showed that
NFAT was activated by PGF2alpha and that NFATC2 is required for PGF2alpha-induced
muscle cell growth and nuclear accretion [62]. NFATC2 is essential for regulating my-
onuclear cell addition and subsequent muscle growth. Valerie determined that NFATC2
regulates the expression of IL-4, a novel molecular signal that controls myoblast fusion with
myotubes, during muscle growth. IL-4 is expressed by a subset of muscle cells in fusing
muscle cultures and acts through the IL-4 receptor on myoblasts to promote myoblast
fusion and muscle growth [63]. The NFATC2 gene is mainly involved in the WNT signaling
pathway. Wnt signaling occurs through evolutionarily conserved pathways that affect
cellular proliferation and fate decisions during development and tissue maintenance [64].
This fact may also be the underlying reason for the correlation between CC and body
weight.

One SNP at 26419804 bp in PROP paired-like homeobox 1 (PROP1) on EAA 9 was an
important SNP. The PROP1 gene encodes a protein that regulates growth and development
in mammals, and the PROP1 gene is a novel important candidate gene for detecting genetic
variation and growth, reproduction, metabolism traits selection and breeding [65]. Genetic
variation in ovine PROP1 was studied in 670 New Zealand Romney sheep; three single
nucleotide polymorphisms (SNPs) were detected, and association analysis revealed that
the variants were significantly associated with weaning weights [66]. Previous reports have
demonstrated an association between PROP1, fertility, and growth traits in cattle [67]. In
horses, this gene was inferred to be a signal of selection that could result in distinguishable
phenotypes in Jeju horses and thoroughbred populations [68]. It is well known that a
product of the PROP1 gene regulates the expression of PRL and POU1F1 genes. Previous
studies have proved that POU1F1 gene polymorphisms are significantly associated with
the chest circumference of Nanyang cattle [69]. Similarly, POU1F1 gene polymorphisms
are associated with chest circumference in goats [70]. Therefore, this gene may be related to
the CC of donkeys.
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The association with CC on EAA 13 implicated a candidate gene, Ubiquitin B (UBB).
It has been reported in a previous study that the loss of UBB can lead to a progressive
degenerative disorder affecting neurons within the arcuate nucleus of the hypothalamus.
This neurodegenerative cytopathology is accompanied by impaired hypothalamic control
of energy balance and obesity [71].

One SNP (13871622) was located near the heart and the neural crest derivative 2
(HAND2) gene, which is a critical transcription factor for post-mitotic maintenance of
the sympathetic nervous system [72]. Rodrigues et al. [73] found that selective expres-
sion of HAND2 regulates skeletal muscle sympathetic and motor innervation, improving
acetylcholine receptor (AChR) stability and nerve-activated muscle force generation. We
found the HAND2 gene to be enriched upon transcriptional regulation by the Runt-related
transcription factor 2 (RUNX2) pathway. Previous studies have demonstrated a significant
association between a 12 bp insertion within the RUNX2 gene and chest circumference
(p = 0.005) in Shaanbei white cashmere goats [74]. Here, we hypothesize that HAND2 regu-
lates chest circumference by directly promoting the transcription factor RUNX2. However,
little is known about how LOC123277442, LOC123282041, LOC106844757, LOC123278496,
and LOC123278509 regulate the CC traits. The functions of these genes are unknown.

5. Conclusions

The GWAS performed in this study revealed the presence of genomic regions and
putative causal genes associated with CC traits in the Xinjiang donkey. A total of 38 SNPs
related to the CC of Xinjiang donkeys were identified. In addition, 41 candidate genes
were identified, and several genes, including NFATC2, PROP1, UBB, and HAND2, may
be the main candidate genes affecting the chest circumference of Xinjiang donkeys. More
research is needed to verify the extent of the associations detected in this study and to
determine the potential of using these genes to improve meat production performance in
Xinjiang donkeys.
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