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Abstract: Biological data at the omics level are highly complex, requiring powerful computational
approaches to identifying significant intrinsic characteristics to further search for informative markers
involved in the studied phenotype. In this paper, we propose a novel dimension reduction technique,
protein–protein interaction-based gene correlation filtration (PPIGCF), which builds on gene ontology
(GO) and protein–protein interaction (PPI) structures to analyze microarray gene expression data.
PPIGCF first extracts the gene symbols with their expression from the experimental dataset, and then,
classifies them based on GO biological process (BP) and cellular component (CC) annotations. Every
classification group inherits all the information on its CCs, corresponding to the BPs, to establish a
PPI network. Then, the gene correlation filter (regarding gene rank and the proposed correlation
coefficient) is computed on every network and eradicates a few weakly correlated genes connected
with their corresponding networks. PPIGCF finds the information content (IC) of the other genes
related to the PPI network and takes only the genes with the highest IC values. The satisfactory
results of PPIGCF are used to prioritize significant genes. We performed a comparison with current
methods to demonstrate our technique’s efficiency. From the experiment, it can be concluded that
PPIGCF needs fewer genes to reach reasonable accuracy (~99%) for cancer classification. This paper
reduces the computational complexity and enhances the time complexity of biomarker discovery
from datasets.

Keywords: dimension reduction; protein–protein interaction; gene ontology; Pearson’s correlation;
information content

1. Introduction

Many methods and tools exist for analyzing omics data [1–5], including those for
dealing with mRNA gene expression datasets. In these methods, it is common to consider
factors such as the features (e.g., genes or mutations) and the various sample sizes of the
collected samples (e.g., disease versus matched standard samples). So, a classification
model built on these data will take a more experimental time frame and have increased
computational cost. The proposed algorithm intends to provide a novel gene selection
technique to reduce computational cost without sacrificing the classification performance.
In works by Roweis et al. [6,7], machine learning and statistical methods were used to
optimize the number of random variables. Here, the main objective is to recognize the
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random variables in the mRNA expression dataset. In the biological database, the rows
and columns constitute the gene names and samples, respectively. As a large set of genes
is not involved in any disease, gene symbols have been taken as a variable. This work
aims to reject the genes with less information related to diseases. One of the essential tasks
in bioinformatics is to identify novel biomarkers or hub genes for several types of cancer
for further clinical treatments. However, identifying those genes is very time-consuming
based on the high volume of an omics dataset. So, there is a critical gap between the
biomarker discovery field and dimension reduction techniques regarding how to reduce
computational complexity and improve time complexity to obtain better gene signatures.
In this context, the proposed method identifies a small subset of genes from different cancer
data for further experiments to obtain the biological information. A detailed literature
review is presented in Section 1.1 to consolidate this claim.

1.1. Literature Review

Numerous Computational techniques have been developed to survey the dimen-
sionality reduction of data across several domains. However, dimensionality reduction
can be classified into two key sections: factor- or component-based and projection-based
techniques. Using a factor-based approach, Cook et al. [8] proposed a novel framework to
determine the effect of the accommodation grades of students with disabilities on a reading
comprehension assessment based on factor analysis. Later, they modified this method
with cartoon formalism and regularization to reduce the dimension based on numerical
relativity [9]. In 2005, Chao et al. [10] developed a novel dimension reduction technique for
microarray data with locally linear embedding. Teng et al. [11] proposed the same work
with local tangent space alignment in the same year.

Similarly, another component-based technique was proposed by Ian T. Jolliffe et al. [12]
constructed using Principal Component Analysis (PCA), where an evaluation was made
with recent developments. Later, Guo et al. [13] used PCA for L1-regularized feature
selection on microarray data [14], which provided a brief overview about the potential of
this data mining method. On the other hand, Aapo Hyvarinen and Erkki Oja proposed
a component-based technique [15] where Independent Component Analysis (ICA) was
presented with several algorithms and applications. In addition, they produced a survey
report on the ICA in [16] to draft their findings. Later, Kairov et al. [17] extended this
approach to identify the optimal number of components for reproducible transcriptomic
microarray data analysis.

Nevertheless, the factor-based technique cannot entirely use dimensionality reduction.
This is why a novel paper proposed by Joshua B. Tenenbaum et al. [18] on ISOMAP (Isomet-
ric Mapping) gave the authors hands-on experience in a projection-based approach. Later,
Sun et al. [19] extended this work and developed UL-ISOMAP, and used it for nonlinear di-
mensionality reduction. Based on this technique, Canedo et al. [20] proposed a distributed
feature selection method for microarray data classification. Yu et al. proposed a dynamic
module search of gene co-expression networks and applied it to hepatocellular carcinoma.
Laurens van der Maaten and Geoffrey Hinton recently proposed a new approach, namely
t-SNE (Stochastic Neighbor Embedding) [21], to reduce the dimension of gene expression
data. This work was later transformed into kernel t-SNE [22] and dynamic t-SNE [23].
Based on these techniques, Ebrahimpour et al. [24] reduced the dimension of microarray
data with row echelon form to obtain their linear independent features. Later, Leland
McInnes et al. [25] presented a novel method, Uniform Manifold Approximation and Pro-
jection (UMAP), for dimension reduction based on the theoretical framework of Algebraic
topology and Riemannian geometry. In 2019, this method was used for the dimension
reduction of a single-cell dataset [26]. Ghosh et al. [27] proposed a recursive memetic
algorithm for gene selection in microarray data using this concept. In 2020, Saeid et al. [28]
used discrete wavelet transform for data reduction and a genetic algorithm for the feature
selection of microarray data. Later, Bhui et al. [29] modified this work with a deep-learning
approach to perform data reduction in a single step. The paper [30] addressed a filter-based
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feature selection method from microarray data. Nouri-Moghaddam et al. [31] proposed a
unique technique, a novel bio-inspired hybrid multi-filter wrapper gene selection method,
to reduce the dimension of gene expression data.

In recent decades, several metaheuristic feature selection techniques have been de-
veloped that can effectively select the best features while minimizing the loss of informa-
tion [32]. This shows the importance of optimization techniques during the feature selection
process. Regarding this process, Kundu et al. [33] proposed an Altruistic Whale Optimiza-
tion Algorithm for the feature selection of microarray gene expression data. This algorithm
is derived from observations of the whale population and assists in the productive spread of
applicant arrangements that, with canning, reach the global optima. Similarly, Bandyopad-
hyay et al. [34] determined the vital features of COVID-19 Computed Tomography (CT)
scans utilizing Harris Hawks optimization with Simulated Annealing, a two-stage pipeline.
However, their proposed method could be more computationally expensive. Recently, a
transfer function has been proposed that works as a helper function of particle swarm
optimization to determine the shape of a population [35]. Additionally, an improvement
was proposed using Harris hawks optimization in [36] to make a hierarchy of features
to convert a problem into an NP-hard problem and solve it iteratively. Finally, we have
observed that all the metaheuristic approaches use nature-inspired optimization algorithms
to improve their feature mining strategies for effective feature selection. However, they will
always be task-dependent, and no generic methods exist. Depending on the task, there is a
need to select optimization techniques that increase the algorithm search space. Moreover,
all the problems are either NP-hard or NP, so they have exponential time complexity in the
worst cases.

1.2. Objectives and Proposed Outcomes

All the recent dimension reduction techniques discussed in Section 1.1 are concerned
with the physical interpretation of datasets. However, it is not feasible for them to eliminate
genes based on only the physical interpretation of a dataset as they are only concerned with
the data’s structure and their numeric representation. Therefore, both the biological and
physical interpretation of these data are considered to eliminate unwanted genes. However,
some recently advanced methodologies [37,38] have focused on analyzing gene expression
data based on several factors (DNA methylation, DNA transcription, the transfection
of gene vectors, cellular differentiation, and cell–cell interaction) attached to biological
interpretation. Still, researchers have yet to try to use these studies to select the most
informative genes. Ontological gene information and the protein–protein interaction
network have been used for gene classification and protein synthesis in DNA methylation
work, respectively.

To overcome the above drawbacks, we propose protein–protein interaction-based
gene correlation filtration (PPIGCF), which aims to identify the most informative genes
concerned with a specific genomic disease while considering all the constraints. Here,
combined information from physical and biological interpretation studies is utilized in a
single genomic database for predicting the outputs with the help of molecular interactions
and cellular process, which consolidates the novelty of the PPIGCF method. Figure 1
describes the main aim of this work. Here, the proposed method takes gene expression
data as the input and classifies it into several gene ontological groups with the help of a
gene ontological database. Then, the PPIGCF method examines the enriched signals of
the genes in every group based on protein–protein interaction (PPI), the gene correlation
coefficient (GCC), and information content (IC). Finally, a single gene expression dataset
with higher classification accuracy is reproduced from all the reduced gene ontological
groups.

1.3. Organization of Paper

This paper is structured into four sections. Section 2 gives a detailed description of
the methodology and algorithm used to select informative genes. The result analysis and
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the comparative study are described in Section 3. Finally, the conclusion of the proposed
work, with a brief discussion and an outline of the future scope of this topic, is described in
Section 4.

Genes 2023, 14, x FOR PEER REVIEW 4 of 29 
 

 

 
Figure 1. Brief flowchart of the proposed framework PPIGCF. 

1.3. Organization of Paper 
This paper is structured into four sections. Section 2 gives a detailed description of 

the methodology and algorithm used to select informative genes. The result analysis and 
the comparative study are described in Section 3. Finally, the conclusion of the proposed 
work, with a brief discussion and an outline of the future scope of this topic, is described 
in Section 4. 

2. Gene Selection Methodology 
In this section, we describe PPIGCF, a dimension reduction method used to select the 

optimal number of informative genes from microarray data with maximum classification 
accuracy. PPIGCF has three defined layers. After passing all the layers, the experimental 
microarray data are ready to be analyzed for further experiments using the most signifi-
cant genes, and for classification of the samples with reasonable accuracy by some well-
known classifiers. Therefore, PPIGCF increases computational power regarding the ex-
perimental outcome, and computational time. 

  

Figure 1. Brief flowchart of the proposed framework PPIGCF.

2. Gene Selection Methodology

In this section, we describe PPIGCF, a dimension reduction method used to select the
optimal number of informative genes from microarray data with maximum classification
accuracy. PPIGCF has three defined layers. After passing all the layers, the experimental
microarray data are ready to be analyzed for further experiments using the most significant
genes, and for classification of the samples with reasonable accuracy by some well-known
classifiers. Therefore, PPIGCF increases computational power regarding the experimental
outcome, and computational time.

2.1. Dataset Preparation

This section describes the preparation of the dataset from the raw data to enable
selection of the most informative genes from the microarray data [39]. The experimental
dataset is an (n×m) matrix, where rows consist of the names of the genes (g1, g2, . . . , gn)
and columns consist of the names of the samples (s 1, s2, . . . , sm). The names of the genes
are extracted in this step to create a character vector consisting of all gene names. The gene
ontology data are essential, corresponding to every gene expression before proceeding to
the next step of the defined algorithm. Here, a map is drawn between the gene expression
dataset and GO annotations for humans, and the corresponding GO annotation data are
acquired. The mapping is performed using Equation (1).
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f (x, y) = y ∪ x : ∀x ∈ G, ∀y ∈ GO, x → y, x ∩ y 6= ∅ (1)

where f (x, y) is the mapping function, x represents the genes belonging to gene expression
data (G), and y represents the GO annotation terms, including the biological processes
(BPs) related to their cellular component (CC) domains in the GO database [40]. It performs
one-to-one mapping between the experimental dataset and human GO annotations. This
simple mathematical function works remarkably well, and as the method is constrained
with time complexity, the proposed equations show linear time complexity. In contrast, the
other mapping function is generally performed with quadratic time complexity.

Then, the process is ready to move to the next step, whereby the genes are grouped
using the obtained GO dataset. In the obtained data, the vector contains the names of the
genes, and the genes are classified based on the BPs corresponding to their CCs. Here, BPs
and CCs are considered in the proposed PPIGCF method, where the CC information is
used to classify the genes into several ontological classes, and BP information is used to
track the mutation of genes. PPIGCF identifies each biological process corresponding to
its cellular components and uses it as a classification parameter. Since we are considering
biological processes related to cellular components, it is a viable gene ontological method
to perform classification with high accuracy based on this parameter. After this, character
vectors are obtained that are related to every CC. Here, the main advantage is that a gene
cannot be part of more than one vector. So, the chance of gene duplicity is removed for the
rest of the process. The following algorithm (Algorithm 1) defines the procedure for the
classification of genes based on the BPs corresponding to their CCs.

Algorithm 1. Gene Ontology (GO) Classification

Input: GO annotations with gene symbols (g1, g2, . . . , gn).
Output: Characteristic vector of gene symbols corresponding to every cellular process.
Begin:

1. Initialize GO index library.
2. Find the GO index corresponding to the genes.

a. Gene:= Extract the GO terms. // GO groups
b. Find their corresponding GO information content using Equation (1).

3. For each Gene, do the following:

a. Beach:= gene list corresponding to every GOIC (GO Information Content).
b. Set GO_ID as a cellular component.

i. For each cc(j) ∈ Cellular Component do: // g(i): genes ∈ GO Group

1. If (g(i) ∩ Beach)) then: //If the gene present in the GOIC
cc(j) ∪ = g(i); //then merge them as a participating

2. End if. //genes of that cellular component

ii. End for.

c. End for.

4. End for.
5. Set Ontology:= GO.
6. Set IC = GOIC.// Setting the gene ontology reference.
7. For each Ontology(i) do:

a. For each IC (j) do:

i. Simij := Ontology(i) ∗ IC(j);//Element-wise multiplication.

b. End for.

8. End for.
9. Return Simij;
End.
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Now, the experimental dataset is divided into nine ontological gene groups corre-
sponding to six biological processes (ABP (Androgen-Binding Protein), AMF (Agro Marker
Finder), ACC (Amino Cyclopropane Carboxylate), MBP (Myelin Basic Protein), MMF (Mycophe-
nolate Mofetil), and MCC (Maternal Cell Contamination)). This GO is a candidate colorectal
tumor suppressor gene that is thought to negatively regulate cell cycle progression. The
orthologous gene in mice expresses a phosphoprotein associated with the plasma mem-
brane and membrane organelles, and overexpression of the mouse protein inhibits entry
into the S phase. Multiple transcript variants encoding different isoforms have been found
for this gene.

Additionally, a similarity matrix (Simij) is obtained, which will help find the PPIs in
every gene ontological group in the next step. However, several GO classes in the GO
library concerning several BPs correspond to their CCs. According to Zhang et al. [41],
there are five billion biological processes related to the human cancer genome; however, the
gene expression dataset used for experiments is mainly affected by the six BPs mentioned
above corresponding to their nine CCs. Algorithm 1 is a fully automated process with no
human intervention or knowledge employed for this classification. Additionally, if the
experimental dataset changes, it can automatically detect the affected BPs related to their
CCs (https://github.com/ayanbabusona/jNMF/blob/master/genesim.R; accessed on 26
June 2019).

2.2. Protein–Protein Interactions

The genes are classified according to their active participation in cellular processes
at this stage. However, molecular-level information is also needed to know the genes’
involvement in the disease. This method determines the protein–protein interactions to
describe molecular-level information. We propose PPIGCF as a novel algorithm to obtain
this PPI of every cellular component. In this method, no prior Human Protein Interaction
Database [42] is needed to obtain the PPI data corresponding to every GO class, because
the knowledge of graph theory is utilized in Algorithm 2, which shows the novelty of
the proposed method. It is observed that the pattern-matching algorithm using the PPI
database is quite expensive in terms of resources. The proposed method obtains all possible
combinations of BPs corresponding to the CCs in which the genes have participated in
finding an alternative pathway. Then, based on those interactions, a weighted adjacency
matrix is obtained. Let two genes, ga and gb, participate in a BP corresponding to a CC.
Compute their correlation; if they have a high correlation, they are likely to participate
in PPI interactions. So, the adjacency matrix obtains a value of 1. This is a proposed
probabilistic approach to reducing the complexity of obtaining a PPI network. Essentially,
PPI data represent an adjacency matrix where a 1/0 entry represents the presence/absence
of interactions. If a gene does not participate in a protein–protein interaction, then this
gene can be eliminated from the informative gene list. Algorithm 2 describes the process of
finding the PPI interaction of every cellular component.

Here, AdjListi is an adjacency list that keeps track of protein–protein interactions
initialized with zero. We add the corresponding gene expression value to the list whenever
a gene interaction occurs. The data frame RD1i,i=1,2,...,9 contains the genes participating in
the PPI interactions. Algorithm 2 is run for all nine groups and obtains the RD1i,i=1,2,...,9
corresponding to each group. This RD1i,i=1,2,...,9 is the input data frame for the next step.

https://github.com/ayanbabusona/jNMF/blob/master/genesim.R
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Algorithm 2. PPI interactions

Input: Data containing gene names related to their cellular process and expression value.
Output: PPI networks.
Begin:
/* To find weight matrix w.r.t.Simij*/
/* n = gene number, m = sample number */
/*dij= input data matrix */

1. for each i:=1 to n do:

a. for each j:=1 to m do:

i. Wij := dij × Simij;

b. End for.

2. End for.
/* To find the interactions of genes from Wij and store in the corresponding list*/
3. for each i:=1 to n do:

a. for each j:=i + 1 to m do:

i. AdjListi := Wij−1;
ii. If ( Wij−1 →Wij ) then: //If the edge present between Wij−1 and Wij

1. AdjListi := AdjListi ∪Wij;

iii. End if.

b. End for.

4. End for.
5. Remove the occurrence of duplicate genes from AdjList.
6. Draw a graph (G) from the AdjList that shows the participant gene’s interaction.
7. If (G(vi, vi+1 ) == 1) then:

a. Collect the respective genes and add them toRD1.

8. Else

a. Eliminate both genes.

9. End if.
End.

2.3. Gene Correlation Filter

After finding the PPI of every cellular component, this method eliminates insignificant
genes whose interactions are absent in the network. Here, genes that are strongly correlated
with each other are obtained from protein–protein interaction networks. However, the genes
that survive after the PPI-based elimination are not the only essential genes that may cause
the disease. There are still some noisy genes that may affect performance at a later stage.
During the mutation process, there is a possibility that part of the genome may be affected
during transformation and transcription when the mutation affects critical gene regulation
or essential function, and these types of genes are rejected. Otherwise, the computational
cost of analyzing noisy genomes is increased. Therefore, gene correlation filtration aims to
select weakly correlated genomes and eliminate them from the network. The methodology
is elongated using the Normalized Square Correlation Coefficient (NSCC) [43] to obtain
strongly correlated genomes. Firstly, we identify an n × n pairwise Pearson’s Correlation
Coefficient (PCC) matrix using Equation (2).

PCCx,y =
∑n

i=1 (x i − µx)×
(
yi − µy

)(
n× σx × σy

) (2)

Here, µ and σ are the mean and standard deviation, respectively. Suppose that any
gene entry in the matrix gives a negative PCC value. In this case, it would be removed, as
negative correlation values demonstrate inverse relationships [44], affecting the classifi-
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cation performance of our algorithm. Additionally, the negative correlation coefficient is
directly proportional to the degree of correlation between respective genes, which shows
the strongly inverse topological properties of the genes that should be eliminated. Thus,
those genes are removed from the data as they are considered insignificant genes. Thus,
based on the correlation coefficient values, some genes can be eliminated, and then, the
gene rank is computed using Equation (3) for the rest of the genes.

R2
ij =

∑n
i=1 r2

ij

∑n
k=1 r2

ik
(3)

where R and r are the NSCC matrix and the PCC matrix, respectively. If two genes have
positive connectivity in the PCC and their NSCC tends to zero, then the genes (such as gi
and gj) are strongly correlated with each other.

In addition, PPIGCF performs biological interpretation of this algorithm to obtain
the gene correlation filter. Moreover, it checks for functional and semantic similarity, as
described in [45]. Then, the functional similarity of the likelihood score is calculated using
Equation (4).

LLscorei
(

gi, gj
)
=

Rij − Rijmin

Rijmax − Rijmin

(4)

The LLscorei represents the functional similarity of the ith gene, Rij is the rank of the ith
gene compared to the jth gene in the NSCC matrix, and Rijmin and Rijmax are the minimum
and maximum gene ranks in the NSCC matrix, respectively. Moreover, Equation (5) is used
to obtain the semantic similarity.

Semsim
(

gi, gj
)
=

(g i × gj
)

µ2
g

(5)

where µ2
g represents the mean value of the gene expressions. Algorithm 3 describes the

gene correlation filter method.

Algorithm 3. Gene correlation filter (GCF)

Input: RD1
Output: Strongly correlated genes in the PPI network.
Begin:

Compute Pearson’s correlation matrix (rij) using Equation (2).
for each i = 1 to n do:

for each j = 1 to n do:
if rij > 0 then:

Compute R2
ij using Equation (3).

if Rij → 0 then:

if LLscorei

(
gi, gj

)
→ 1&&Semsim

(
gi, gj

)
→ 1 then:

RD2 ∪ Rij;
End if.

End if.
else:

Eliminate (gi, gj);
End if.

End for.
End for.
return RD2;

End.
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RD2i,i=1,2,..,9 is the reduced dataset after performing Algorithm 3. The correlated
genes are eliminated after this step, which affects protein–protein interactions. This step is
repeated for the RD1i,i=1,2,..,9 of all nine groups created using Algorithm 2.

2.4. Significance of Information Content

In this step, the most significant genes in a cancer dataset are obtained. After running
the gene correlation filter algorithm (Algorithm 3), the method obtains a strongly correlated
gene set at the molecular level, i.e., the genes form a strong PPI network. The primary
objective of the proposed method is to reduce the number of insignificant genes in the
experimental data to achieve maximum classification accuracy. For this reason, the signifi-
cant information content (IC) values are computed, and a GO analysis table is required,
which describes the six gene ontology analysis (GOA) [46] methods used to obtain the
IC threshold value [47]. Then, the IC value is computed for every identified gene in the
previous step. This value is compared with the mean IC threshold value (δ) of the six
techniques. If the computed IC value is greater than δ, then the respective gene is taken as
the most significant gene. This procedure is performed repeatedly for all identified strongly
correlated genes in the PPI network, which form the reduced dataset. Here, the Codon
Efficiency Term (CET) (defined in Equation (6)) of each gene is required to find the IC.

CET(g) = Speci f icity(g)× Coverage(g) (6)

where
Speci f icity(g) = 1− log(g) +

1
∑n

i=1 log(g)
(7)

and

Coverage(g) = 1− ∑n
i=1 g2

n(n2 − 1)
(8)

where Speci f icity(g) denotes the depth of the gene g in its corresponding GO hierarchy,
and the maximum depth of the gene g is taken as its depth, as depicted in Equation (7).
Similarly, Coverage(g) measures the dependency fraction of the gene g to its descendants
in GO. The terms at lower levels are more specific to a larger IC, while the terms with a
smaller IC have more descendants and are more general.

Algorithm 4 computes the IC value for each gene of all RD2, and this computation
is needed for the functional definition of associative terms (Acute Similarity (AS) and IC
threshold value).

Let B be the bipartite component of RD2, B∗ be the closure of set B, f(B) denote
the highest frequency occurrence of a gene g in RD2, and XB(g) represent the relative
frequencies of the involved bi-partitions; then, the terms XB(g) and XB∗(g) are defined in
Equations (9) and (10).

XB(g) =
f (B(g))

f (B(g)) + f (B∗(g))
(9)

and

XB∗(g) =
f (B∗(g))

f (B(g)) + f (B∗(g))
(10)

Here, XB(g) and XB∗(g) are complementary to each other, and f() is the function used
to compute the relative frequencies of the gene g among all the bipartite graphs obtained
from the PPI network in which the gene g participates. Using this information, the IC value
of the gene g is computed using Equation (11).

IC(g) =
1
λ
(XB(g)× log2 XB(g)+XB∗(g)× log2 XB∗(g)) (11)

where λ is the normalization hyperparameter obtained through the hyperparameter grid
search. The conflicting set C(g) (defined in Equation (12)) of a gene is computed by
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partially differentiating the cross-product of the two complementary matrices (i.e., XB(g)
and XB∗(g)). Basically, C(g) is a type of Jacobian matrix.

C(g) =
∂

∂g
(XB(g)× XB∗(g)) (12)

C(g) is required to compute the Acute Similarity (AS) of the respective gene g in
RD2 [48]. The AS of a gene g is defined in Equation (13). The AS is for the associate gene set
of the matrix and helps to determine the topological property (one of the most important
biomarkers of gene selection) of the corresponding gene g.

AS(g) = 1 + ∑
g∈RD2

log2

(
XC(g) × log2 XC(g)

)
(13)

In this step, the GO analysis (GOA) [47] with the metrics ECC, RES, SEQ, and Pfam
is required to obtain the IC threshold (defined in Equation (14)). Here, all six GOAs are
considered as every GOA sets a different threshold based on its experimental parameters.
As all the genes participate only in these six GOAs, this method considers their weighted
means to determine the IC threshold.

ICthreshold =
1
x
×

x

∑
i=1

GOAi (14)

where x is the number of metrics in the GOA. The IC term of each gene is computed using
Algorithm 4.

Algorithm 4. Find IC values

Input: Strongly correlated genes in the PPI network (RD2).
Output: The genes with IC values.
Begin:

Find the CET of g using Equation (6).
for each gi ∈ CET(gi) do:

for each gj ∈ CET
(

gj

)
do:

IC
(

gi → gj

)
= IC(gi)− IC

(
gj

)
;

End for.
IC(AS(gi)→ gi) = IC(gi)− IC(AS(gi));

End for.
return IC(gi);

End.

After obtaining the IC value of each gene (IC(gi)), the most significant genes are
obtained and compared to the IC threshold (ICthreshold). If the IC value of any gene is
greater than the IC threshold, this gene is selected as the most significant gene. Otherwise,
the respective gene is removed from the reduced dataset.

This method obtains the optimal number of genes from every gene ontological group
(GO group). Then, the nine GO groups are merged based on the identified genes to form
the final reduced gene subset containing all of the most significant genes identified in the
workflow.

2.5. Overall Proposed PPIGCF

The PPIGCF method obtains a summarized version of the dataset, which contains the
most significant genes, after completing all the steps of the proposed method (Figure 2).
The following section provides a detailed description of the performance evaluation of the
PPIGCF method to check whether the reduced data are replicas of the original experimental
data based on high classification accuracy.
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3. Results

Our experiments were conducted on several publicly available benchmark microarray
data with a high volume of insignificant genes, and linearly inseparable samples were
taken from the Kent Ridge Biomedical Dataset Repository [49]. Descriptions of all the used
gene expression datasets are listed in Table 1.

Table 1. Summary of microarray datasets.

Dataset No. of Genes Class Name
(Class1/Class2)

No. of Samples
(Class1/Class2)

Leukemia 7129 AML/ALL 25/47

Colon 2000 Positive/Negative 22/40

DLBCL 7129 FL/DLBCL 19/58

Lung 12,533 Mesothelioma/ADCA 31/150

Prostate 12,600 Normal/Tumor 59/77

3.1. Experimental Setup

The proposed methodology was implemented using RStudio IDE with dedicated
R programming. It can run on desktop (Linux, Windows, and Mac) or in a browser
linked to RStudio Server Pro/RStudio Server (Ubuntu, Red Hat, and SUSE Linux). The
proposed methodology and all the comparative approaches were analyzed in an Ubuntu-
based OS with 4 GB RAM and an Intel i3 processor. All the performance analyses were
performed using edge with the Bioconductor package. The code is available at https:
//github.com/ayanban011/HandsonML/tree/main/bioinformatics; accessed on 18 June
2021.

https://github.com/ayanban011/HandsonML/tree/main/bioinformatics
https://github.com/ayanban011/HandsonML/tree/main/bioinformatics
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3.2. Performance Evaluation of PPIGCF

PPIGCF is a stepwise progression process used to reduce the dimension of microarray
data. All the stepwise experiments and evaluations were performed as described in the
following subsections.

3.2.1. Grouping of Genes Based on Ontological Similarity

Firstly, the gene names were extracted from biological data sources. These data were
classified based on the BPs related to their CCs. The GO behavior of the genes played
an essential role in their classification. Here, PPIGCF obtained nine GO classes with
their GO IDs, cellular components, and the number of genes in every category for each
cancer datapoint. Only nine groups (with GO IDs: GO:0003674, GO:0005764, GO:0005783,
GO:0005794, GO:0005886, GO:0008150, GO:0016021, GO:0005737, and GO:0015630) were
considered because these are the most-affected classes when a normal cell transforms into a
tumor cell. The details of these nine groups are listed in Supplementary Materials Table S1.

From Supplementary Materials Table S1, it can be concluded that prostate cancer
exhibited a symmetric probability distribution, whereas leukemia, colon cancer, DLBCL,
and lung cancer exhibited an asymmetric probability distribution over the nine groups.

3.2.2. Elimination of Genes through PPI

In this step, the protein–protein interactions of each gene ontological group are ob-
tained, and the genes that did not participate in the PPI interactions are identified. These
genes are referred to as isolated interaction genes (IIG) and were treated as insignificant
genes in further experiments. Therefore, these genes were eliminated from the data. The
result of this step for all data are listed in Supplementary Materials Table S2.

Figure 3a gives a brief idea of the number of genes reduced after this step of elimination,
and the classification performance (note: only the classification performance of the SVM is
reported here and in the following figure) on the reduced set of genes is given in Figure 3b.
The protein–protein interactions of the GO:0003674 group of all five datasets (leukemia,
colon cancer, DLBCL, lung cancer, and prostate cancer) are shown in Supplementary
Materials Figure S1a–e, respectively. The remaining eight ontological groups also formed
these networks based on Algorithm 2.
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Figure 3. (a) A comparative study with the number of genes before and after the elimination.
(b) Classification performance of the original data.

In Supplementary Materials Figure S1a–e, some genes remain isolated in protein–
protein interactions. These genes can be treated as dead genes, as they lose their transcrip-
tomic property and would not be further mutated to convert a normal cell to a tumor cell.
These genes should be eliminated to reduce the duration of the genomic therapy treatment.

Here, the colors represent the similarity of the genes. Genes of the same color hold
similar GO properties. Additionally, the colors of the edges represent the strength of the
connectivity. If the edges are green, this suggests a strong correlation between the two genes.
In contrast, if two genes are connected by red edges, they have a very weak correlation and
may be isolated in the later reduction stages.

From Supplementary Materials Figure S1f, the overall classification performance in-
creases for all the experimental datasets, as the expression level, related function, and
topological properties of these remaining genes are very similar after each step of elimi-
nation. This was the ultimate motivation for conducting this experiment, and this result
shows the importance of gene selection from microarray data while considering biological
interpretation.

3.2.3. Elimination of Genes through Correlation Filter

PCC was calculated for the remaining genes. If any gene entry gave a negative PCC
value, this gene was removed from the data as an insignificant gene because these genes
provide less correlation. After this, the NSCC was calculated for every gene, and if the
NSCC value tended toward 1, then the respective gene was insignificant and removed for
the rest of the step. The detailed results of this step are listed in Supplementary Materials
Table S3, where a significant number of the genes are removed from the previous step.

Additionally, Figure 4a shows the volume of the genes before and after applying this
step of elimination, and the classification performance of this step is reported in Figure 4b.

3.2.4. Elimination of Genes through Information Content

In this step of eliminating PPIGCF, the IC values were computed for all genes of the
reduced data. Here, six gene ontology analysis (GOA) methodologies (namely, ABP, AMF,
ACC, MBP, MMF, and MCC) were performed based on four Correlational Estimations of
Semantic Similarity Measurement (CESSM) [50] metrics (namely, ECC, RES, Seq, and Pfam).
Moreover, the IC values were obtained for every metric (shown in Table 2).
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Table 2. Obtained IC thresholds with GOA.

GOA ECC RES Seq Pfam

ABP 0.5949 0.9762 0.5765 0.6726

AMF 0.7293 0.9076 0.4679 0.4648

ACC 0.6549 0.9371 0.4960 0.3741

MBP 0.6443 0.9605 0.5703 0.6502

MMF 0.6754 0.8966 0.4171 0.4311

MCC 0.6875 0.9110 0.4725 0.3512
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Figure 5 visually compares the IC values computed by the six GOA methods under
four different parameters.
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Figure 5. IC threshold values from Gene Ontological Analysis.

After this, the IC−threshold(δ) was computed using Equation (13) for PPIGCF. Here,
δ = 0.6637. The δ = 0.6637 point is shown in Figure 5, where all the curves are supposed to
intercept. Genes whose computed IC values were lower than δ were eliminated, and the
remaining genes were selected as the most informative genes for specific data. Therefore,
the numbers of the most informative genes for each experimental dataset after passing all
the steps of the PPIGCF method are listed in Supplementary Materials Table S4.

A visual representation of the outcome of the proposed PPIGCF for all experimental
datasets is shown in Figure 6, along with the classification performance.
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3.2.5. Classification Performance

The most informative genes were collected after completing all the filtration steps of
PPIGCF and forming a replica (reduced data) of the original dataset. Here, four commonly
used classifiers (namely, Nearest Neighbor (KNN) [51], Random Forest (RF) [52], Support
Vector Machine (SVM) [53], and Naïve Bayes Classifier [54]) were utilized to measure the
classification performance of the reduced dataset and original data, listed in Table 3. The
hyperparameter descriptions of each of the classifiers are as follows:

1. K-Nearest Neighbor (KNN). K: the nearest neighbors (here, k = 20). Distance metric:
Mahalanabis distance metric is used to calculate distance.

2. Random Forest (RF). n_estimators: the number of decision trees to build in the forest
(here, 20). max_features: the maximum number of features to consider when splitting
a node in a decision tree (here, 100). max_depth: the maximum depth of a decision
tree (here, 15). criterion: the function used to measure the quality of a split (Gini
impurity).

3. Support Vector Machine (SVM). Kernel: the function used to transform the data
into a higher-dimensional space (here, radial basis function (RBF)). C: the penalty
parameter for misclassifications (here, 0.01). Gamma: a kernel coefficient for the RBF
kernel (here, 0.1).

4. Naïve Bayes Classifier (NBC). Smoothing parameter: the parameter used to smooth
the probabilities (here, Lidstone smoothing). Distribution: the probability distribution
used to model the data (here, multinomial distribution).

All the hyperparameters were fixed through the hyperparameter grid search. Here,
the k-fold cross-validation method was used to calculate the accuracy, and the average
accuracy values are listed in Table 3 with suitable k values (k = 10) for different classifiers.

We used this technique and bootstrapping to estimate the model’s performance on
experimental data. These techniques involved randomly splitting the data into training
and validation sets and repeating this process 50 times to obtain a more robust estimate of
the model’s performance.

Table 3 shows that the FRD formed by PPIGCF is a replica of the original data based
on high classification accuracy. Moreover, it is proven that if any microarray dataset is
passed through all steps of the PPIGCF method, the reduced data are formed with the most
informative genes related to a specific disease.
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Table 3. Classification results of PPIGCF.

Dataset Leukemia Colon
Cancer DLBCL Lung

Cancer
Prostate
Cancer

No. of genes (original) 7129 2000 7129 12533 12600

No. of genes (PPIGCF) 1849 1230 1898 2926 2737

Accuracy (%) KNN (original) 82.78 82.15 81.41 89.31 85.36

Accuracy (%) KNN (PPIGCF) 96.56 97.3 96.05 96.88 97.47

Accuracy (%) RF (original) 87.05 84.9 82.75 86.62 84.68

Accuracy (%) RF (PPIGCF) 98.14 98.99 98.84 98.5 98.67

Accuracy (%) SVM (original) 84.61 84.14 83.66 87.54 85.6

Accuracy (%) SVM (PPIGCF) 99.84 99.59 99.34 99.11 99.22

Accuracy (%) Naïve Bayes (original) 84.82 83.71 82.6 87.83 85.21

Accuracy (%) Naïve Bayes (PPIGCF) 95.18 93.62 94.07 93.49 94.78

In order to establish the fact that PPIGCF performed a stepwise gene elimination
process that only selected informative genes as a final dataset, and that the classification
performance also increased in each step, a data distribution map of the leukemia dataset is
shown in Figure 7.
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It can be observed from Figure 7 that the data distribution gradually increases for both
classes from the original to the final reduced dataset. In Figure 7a, the genes are distributed
irregularly, whereas in Figure 7d, the genes are clustered in two groups. This figure also
provides evidence, as shown in Table 3, that the classification performance of each classifier
is similar for the original dataset; however, a regular pattern (with SVM achieving the
highest classification performance) is observed after PPIGCF for each of the classifiers,
which establishes the novelty of the proposed method.

3.2.6. Identification of Biological Significance

The most informative gene subset (reduced data) was collected from the experimental
dataset after applying the proposed PPIGCF. KEGG pathway analysis was performed on
the reduced data to show the biological significance of the outcome of the PPIGCF method.
This representation focuses on the network of gene products with functional RNAs. The
obtained genes that were well connected in the FRD were put through KEGG pathway
analysis using shinyGo.

Table 4 describes the KEGG pathways that were mapped to leukemia genes obtained
from the FRD. The Significance column explains why these two pathways explain are
biologically crucial to identifying leukemia from the microarray dataset. Arachidonic acid
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metabolism and pancreatic secretion were selected from the BRITE hierarchy. The BRITE
hierarchy is a modern classification system for KEGG pathways, with objects identified
using a KEGG identifier.

Table 4. KEGG pathways mapped to leukemia genes obtained from FRD.

KEGG Pathway Name Fold Enrichment
Score Significance

Arachidonic Acid
Metabolism 65.9

Arachidonic acid and its derivatives are directly
linked to the immune system and inflammation.

Due to their nature, the arachidonic acid
metabolism function can be held responsible for

the prognosis of frequently occurring diseases [55].

Pancreatic Secretion 26.6 Abnormality in secretory processes may occur due
to the malignant nature of the cells [56].

Table 5 shows the significance of KEGG pathways found via KEGG mapping using
shinyGO on colon cancer genes obtained from the FRD using PPIGCF. Both pathways were
derived from the BRITE hierarchy.

Table 5. KEGG pathways mapped to colon cancer genes obtained from FRD.

KEGG Pathway Name Fold Enrichment
Score Significance

Small-Cell Lung
Cancer 29.15

SCLC has a high proliferation rate. It has a strong
predilection and early metastasis. Its mapping,

therefore, is significant for the general diagnosis of
cancer [57].

Neuroactive
Ligand–Receptor

Interaction
11.50

Ligand–receptor interactions are significant
protein–protein interactions that play a major role

in influencing biological processes, such as
metabolism, neurotransmission, and cellular signal

transduction pathways. Thus, this pathway
network can play a huge role in cancer prognosis

and detection [58].

Table 6 describes the role of KEGG pathways that are mapped to lung cancer genes
obtained from the FRD. In the complement and coagulation cascade pathway, we mapped
two significant genes that are most affected in the pathway. The three pathways were
selected from the KEGG BRITE hierarchy. Their fold change score gives a significant idea
of their participation in the development of lung cancer.

Table 6. KEGG pathways mapped to lung cancer genes obtained from FRD.

KEGG Pathway Name Fold Enrichment
Score Significance

Complement and
Coagulation Cascade 31.93

The complement system serves as the main
component of the immunity system, whereas the

coagulation system is the pillar supporting
hemostasis. Interaction between these two

cascades is often proposed but has not yet been
established via clinical trials [59].

Carbon Metabolism 23.32

Altered carbon metabolism plays a critical role in
rapid and unregulated proliferation. One-carbon

metabolism plays a significant role in DNA
synthesis. Therefore, its role in cancer prognosis is

essential [60].

Fluid Shear Stress and
Atherosclerosis 19.43

Shear stress caused by liquid flow plays a
significant role in cancer development. It affects
tumor progression by actively participating in

tumor cell proliferation, apoptosis, invasion, and
metastasis [61].
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Table 7 describes the significance of KEGG pathways that are mapped to DLBCL
genes obtained from the FRD. The four pathways were obtained from the BRITE hierarchy.
Among the pathways, aldosterone-regulated sodium reabsorption is an excretory system,
while the P53-Signaling pathway is essential to blocking tumor progression and the growth
of cancer cells.

Table 7. KEGG pathways mapped to DLBCL cancer genes obtained from FRD.

KEGG Pathway
Name

Fold Enrichment
Score Significance

Pentose and
Glucuronate

Interconversions
67.05

This pathway forms the basis of other critical
pathways, such as the carbohydrate metabolic

pathway. It is involved in the interconversion of
monosaccharide pentose and glucuronate, the salts
or esters of glucuronic acid. This pathway includes

28 different members, according to the KEGG
database. The pentose and glucuronate

interconversion pathways play a significant role in
many biosynthetic processes. It can be said that

aberrant pentose and glucuronate interconversions
can lead to various diseases, such as familial

tumoral calcinosis [62].

Aldosterone-regulated
Sodium Reabsorption 61.61 The epithelial sodium channelplays a significant

role in cancer cell proliferation [63].

N-Glycan Biosynthesis 45.59

Glycosylation induces significant functional
changes in various glycoproteins, including cell

surface receptors, adhesion molecules, etc. These
changes confer unique characteristics and

phenotypes associated with cancer cells [64].

P-53 Signaling
Pathway 31.23

Activated by various stresses, genotoxic damage,
etc., the P-53 signaling pathway can arrest the

growth of cancer cells. Therefore, it is suitable for
cancer detection and feature extraction analysis

from biological datasets [65].

Table 8 explains the role of two pathways, namely biosynthesis cofactor and tryp-
tophan metabolism, and their roles in cancer progression. Both pathways belong to the
KEGG BRITE hierarchy. Tryptophan metabolism has a higher fold change score, which
indicates that it may be more dominating than the biosynthesis of cofactors in the case of
prostate cancer.

Table 8. KEGG pathways mapped to prostate cancer genes obtained from FRD.

KEGG Pathway
Name

Fold Enrichment
Score Significance

Biosynthesis of
Cofactors 24.50

The Biosynthesis of cofactors can disrupt natural
cell proliferation by rewriting cellular signaling

and reprogramming the metabolic pathways [66].

Tryptophan
Metabolism 60.30

This pathway is responsible for the aging process.
It produces metabolites responsible for controlling
inflammation, regulating energy homeostasis, and

modulating behavior [67]. The tryptophan
pathway promotes the intrinsic malignant

properties of tumor cells, and at the same time,
also restricts anti-tumor immunity. Thus, it has

been targeted for drug design to produce efficient
defense against tumor cell replication [68].
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3.3. Comparative Study and Performance Analysis

It is concluded that PPIGCF does not change the physical (expression values) and
biological interpretation of data, such as ontological behavior, PPI network connection,
DNA methylation, DNA transcription, and data translation; only the dataset size is reduced.
This meets the desired goal of the proposed method. Nevertheless, several dimension
reduction methods have been proposed in the last five years. Our proposed method used
several parameters to compare the performance of PPIGCF with recent papers [28–30].

3.3.1. Comparison based on the Number of Genes

Table 9 shows the performance analysis comparing the number of genes and classifica-
tion performance (CP), based on the accuracy (%), between papers [28–30]. These methods
were chosen for the comparative study as these are the most recent papers published on
the dimension reduction of microarray data. They were used to form a rationale and show
gene ontology’s importance while considering the genes’ physical properties, in order to
eliminate them.

Table 9. Performance analysis of PPIGCF based on the number of genes and classification perfor-
mance (CP).

Dataset

Saeid et al. [28] Bhui et al. [29] Raj et al. [30] PPIGCF

No. of
Genes CP (%) No. of

Genes CP (%) No. of
Genes CP (%) No. of

Genes CP (%)

Leukemia 2132 88.06 2134 89.66 2341 94.82 1849 99.84

Colon 1812 83.92 1632 86.62 1530 93.71 1230 99.59

DLBCL 4312 84.77 4565 88.19 4762 92.60 1898 99.34

Lung 7856 89.52 7650 90.12 8922 97.83 2926 99.11

Prostate 7769 82.98 7856 86.79 7650 95.21 2737 99.22

In Table 9, it is shown that PPIGCF selects a smaller number of genes and has higher
classification accuracy compared to the methods used in other papers [28–30]. It is shown
that PPIGCF specifies fewer genes, reducing experimental time (marked in Table 5) and the
cost of the diagnosis of diseases. Additionally, the methods proposed in [28–30] already
outperformed other classic feature selection methods for microarray data mentioned in [69],
so it can be concluded that PPIGCF is the most advanced feature selection method.

The application of PPIGCF in gene therapy and biomedicine is based on the idea that
targeting a group of functionally related genes, rather than individual genes, may be more
effective when treating complex diseases. By targeting correlated genes that work together,
it may be possible to achieve a more significant therapeutic effect.

While it is true that the reduced set obtained by PPIGCF still contains more than 1000
genes, this is still a significant reduction from the thousands of genes in the human genome.
Moreover, the genes within the correlation identified by PPIGCF are functionally related,
which may facilitate the identification of potential therapeutic targets. In summary, the
application of PPIGCF in gene therapy and biomedicine is based on the idea that targeting
functionally related genes may be more effective than targeting individual genes. While
the reduced set obtained by PPIGCF still contains more than 1000 genes, the functional
relatedness of these genes may facilitate the identification of potential therapeutic targets.

3.3.2. Comparison based on Experimental Time

Table 10 shows the performance analysis comparing the experimental time of PPIGCF
with the methods used recent papers [28–30]. Table 5 shows that PPIGCF takes less
experimental time than the other compared methods [28–30], with all computational times
taken based on the experimental setup (described in Section 3.1). Furthermore, the PPIGCF
algorithm takes O

(
n2) in worst-case time complexity. The methods mentioned in [28–30]



Genes 2023, 14, 1063 21 of 28

are the only ones that run on a CPU; a GPU is required as a processing unit for the other
techniques. So, these are the most straightforward and efficient methods selected for the
comparative study.

Table 10. Computing performance of PPIGCF analysis.

Dataset PCA (s) ICA (s) L1-Regularized
Filter (s)

Saeid et al. [28]
(s)

Bhui et al. [29]
(s)

Raj et al. [30]
(s) PPIGCF (s)

Leukemia 433 531 140 182 333 233 152

Colon 361 264 107 179 161 152 99

DLBCL 441 242 132 189 341 229 145

Lung 756 566 234 287 556 453 279

Prostate 648 439 227 238 448 341 212

Table 10 shows that the L1-regularized filter takes significantly less time (marked
in bold text); however, the feature selected by the L1-regularized filter needs to reach
state-of-the-art performance. However, PPIGCF takes comparatively less time (marked in
bold text) than the other methods and performs better than the state-of-the-art performance
level.

3.3.3. Comparison based on Statistical Parameters

The performance analysis was conducted based on some statistical parameters, such
as the True Positive Rate (TPR), False Positive Rate (FPR), Testing Accuracy (ACC), and
f1-score (f1), and was computed using Equations (15)–(18).

TPR =
True Positive

True Positve + False Negative
(15)

FPR =
False Postive

True Negative + False Positive
(16)

accuracy =
True Positive + False Negative

True Positive + True Negative + False Positve + False Negative
(17)

F1 score =
2 ∗ (Sensitivity ∗ Speci f icity)

Sensitivity + Speci f icity
(18)

where True Positive is the class1 sample classified as class1, False Positive is the class1
sample classified as class2, True Negative is the class2 sample classified as class2, and False
Negative is the class2 sample classified as class1. In the experimental microarray datasets,
the samples are fully distinguished as class 1 and class 2 (referred to in Table 1). Therefore,
the statistical metrics were efficiently computed using Equations (15)–(18).

Figure 8 shows the performances of PPIGCF and the compared methods [28–30] based
on the used statistical parameters.

Figure 8 shows that PPIGCF performs better than the other compared methods based
on the used statistical parameters. In Figure 8f, a synthetic dataset was prepared by
combining the five experimental datasets. Each dataset has two classes (cancerous and non-
cancerous) to check the effectiveness of the proposed PPIGCF on large datasets. PPIGCF
also outperforms the state-of-the-art approaches. The reason for PPIGCF’s better perfor-
mance is its feature selection of the biological interpretation of microarray data, which is
an essential parameter, as it contains information related to the disease. According to the
knowledge base, PPIGCF uses this biological interpretation to eliminate combining their
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physical properties for the first time. Because PPIGCF considers both biological as well as
physical factors, it can be applied to any microarray dataset and gene sequencing data.

In general, PPIGCF selected the most informative genes from the microarray cancer
data, which satisfies the predefined objectives, such as dimension reduction based on
biological interpretation, high classification accuracy, and less computational time than the
existing recent state-of-the-art approaches [28–30]; this indicates the effectiveness of the
proposed PPIGCF.
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Figure 8. Comparative study of the experimental dataset: (a) leukemia, (b) colon cancer, (c) lung
cancer, (d) DLBCL, (e) prostate cancer, and (f) synthetic datasets. [28–30].

Overall, PPIGCF is effective as it has generalization power. It ultimately depends on
the biological interpretation of the genes present in the microarray data and solves the
problem in quadratic time complexity (i.e., O(n2)). It helps eliminate the vast algorithm
search space to select the best optimization strategy and reduce the exponential-to-quadratic
complexity. Nevertheless, other state-of-the-art dimension reduction strategies depend
on physical interpretation of the data (i.e., microarray value, probability density function,
distribution, etc.), which may be effective for text or image feature mining, but not for
genes. As shown above, PPIGCF can outperform state-of-the-art approaches by an adequate
margin and sets a new gene feature selection strategy benchmark.

4. Conclusions and Future Work

This paper proposed a novel structure for selecting the most informative genes from
publicly available microarray data. Cancer is a progressive disease in the human body
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that occurs due to abnormal cell growth. If the cells reach a malignant stage, they are
transformed into cancer. Abnormal cell growth occurs due to the unnatural behavior of
genes. Nevertheless, all genes are not responsible for eccentric cell behavior. Therefore, it
is imperative to identify these genes that behave unnaturally, and treat them using gene
therapy to cure the respective disease.

The proposed PPIGCF is a three-layer gene filtration technique that can be used to
fulfill the above objectives. The genes that do not participate in protein–protein interaction
are eliminated in the first step. Furthermore, these genes do not create any proteins and do
not participate in cellular division. In the second step, PCC is computed for every gene,
and if a negative value is found, the genes are eliminated from the data. Additionally, the
NSCC for every gene is calculated. If it is higher than Pearson’s correlation coefficient or
tends toward one, this gene is treated as a bad gene and eliminated. In the final step, the
IC value of each selected gene and the IC threshold value from gene ontology analysis
are computed. If the IC threshold value is more significant than the IC value of a gene,
this gene is eliminated. The satisfactory performance of PPIGCF compared to the methods
used in other recent papers shows that the identified genes are most significant for the
experimental microarray data.

Nevertheless, some areas require further progress. By using this technique, mutant
genes can be identified. However, this technique cannot conclude the step-by-step mu-
tation of a gene due to tumor progression [70–73]. Each step of the progression must
be preserved, the gene expression data should be collected, and an analysis should be
performed. However, this would take quite a long time, and the cost of this method is also
higher. Nevertheless, if it is possible to optimize this method, then there is a chance to stop
mutation before the malignant stage, and the chances of cancer occurring can be reduced.
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