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Abstract: Chlorophyll is an essential component that captures light energy to drive photosynthesis.
Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate
genes of chlorophyll content will help increase maize production. Here, we performed a genome-
wide association study (GWAS) on chlorophyll content and its dynamic changes in 378 maize inbred
lines with extensive natural variation. Our phenotypic assessment showed that chlorophyll content
and its dynamic changes were natural variations with a moderate genetic level of 0.66/0.67. A total
of 19 single-nucleotide polymorphisms (SNPs) were found associated with 76 candidate genes, of
which one SNP, 2376873-7-G, co-localized in chlorophyll content and area under the chlorophyll
content curve (AUCCC). Zm00001d026568 and Zm00001d026569 were highly associated with SNP
2376873-7-G and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-
acyl carrier protein thioesterase, respectively. As expected, higher expression levels of these two
genes are associated with higher chlorophyll contents. These results provide a certain experimental
basis for discovering the candidate genes of chlorophyll content and finally provide new insights for
cultivating high-yield and excellent maize suitable for planting environment.

Keywords: GWAS; chlorophyll content; area under the chlorophyll content curve; single-nucleotide
polymorphisms; candidate gene prediction; maize (Zea mays); ear leaf

1. Introduction

Maize (Zea mays L.) is an important source used for animal feed and bioenergy and has
become the top crop produced in China, with production estimated up to 272.6 million tons
(MT) in 2021 (http://www.stats.gov.cn, accessed on 20 April 2022). High yield based on
photosynthesis has always been the focus topic in crop breeding [1]. Chlorophyll is essential
for photosynthesis and promotes light energy absorption and assembly with photosynthetic
protein complexes [2]. Chlorophyll content is one of the most important physiological traits,
which is closely related to leaf photosynthesis and crop yield potential [3]. In a certain
range, chlorophyll content is positively correlated with photosynthetic rate, which directly
determines the yield of crops [4]. Therefore, maintaining high chlorophyll content in
leaves can improve photosynthetic activity and increase yield [5,6]. At present, chlorophyll
content has been used to evaluate the photosynthetic capacity and yield potential of leaves
in rice [7]. Therefore, a better mining of the genes of chlorophyll content in maize leaves is
of great value to speed up maize high-yield breeding.

Chlorophyll content is controlled by nuclear genes [8], and chlorophyll metabolism
can be divided into four major steps [9]. The first step is the synthesis of chlorophyll-a
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via the branched tetrapyrrole biosynthesis pathway [10,11]. The second step is catalyzing
the mutual conversion of chlorophyll-a and chlorophyll-b [12]. The third step involves
the degradation of chlorophyll-a via the pheophorbide a oxygenase (PAO)/phyllobilin
pathway [13]. The final step is the chlorophyll cycle pathway [14]. Although significant
progress has been made in research on chlorophyll metabolism, the molecular mechanism of
chlorophyll metabolism is quite complex, and chlorophyll content is a quantitative trait [15]
that can be used for quantitative trait locus analysis and identification. Therefore, it is
crucial to deeply study the expression and regulation of genes involved in the regulation of
chlorophyll metabolism.

In recent years, researchers have identified some quantitative trait loci (QTLs) of
chlorophyll content in leaves of different populations of various crops from different angles
and have made considerable progress [7,16–19], which has laid the foundation for further
clarifying the molecular genetic mechanism determining chlorophyll content. However,
the method of QTL mapping can only analyze the gene effects of differences between
the parent materials of the isolated population and cannot widely excavate the genes
regulating chlorophyll content in the whole genome [20,21]. Genome-wide association
study (GWAS) is an efficient method developed in recent years to study complex traits.
It has the advantages of high resolution and throughput, which can associate multiple
complex traits and detect multiple alleles at the same time. It was previously reported
that GWAS was used to mine candidate genes related to chlorophyll content and tolerance
of soybean cyst nematode, and 15 candidate genes related to tolerance of soybean cyst
nematode and chlorophyll content were identified [22]. Dhanapal et al. [23] conducted
GWAS of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts
and found 15 SNPs loci related to total chlorophyll content. Herritt et al. [24] identified
21 chlorophyll fluorescence phenotypes by GWAS and found relevant genes involved
in photosynthesis and electron transport. Therefore, it is important to identify genes
associated with chlorophyll content. The chlorophyll content of the first maize leaf was
analyzed by GWAS at the seedling stage, and two genes potentially controlling chlorophyll
content in maize were identified, a homolog of the Arabidopsis Tic22 and a homolog of rice
SAG12 relating to aging [25]. However, no studies have been conducted on chlorophyll
content and AUCCC of maize ear leaves within multi-year, multi-location trials.

As a research tool, GWAS have become a common way to study natural variation and
inheritance of important agronomic traits in various plants [26]. Maize has rich genetic
diversity and rapid linkage disequilibrium decay, which make maize an excellent variety
for GWAS. To date, many researchers have contributed to our understanding of maize
through GWAS. Wang et al. [27] carried out a study on drought tolerance in maize seedlings
that found ZmVPP1, and transgenic maize with enhanced ZmVPP1 expression exhibited
improved drought tolerance. Sun et al. [28] identified candidate genes that affect bracing
root angle and diameter. Li et al. [29] used GWAS to reveal the candidate gene of maize
seed germination traits and found 58 genetic variation sites and 36 candidate genes, which
provided important implications for the molecular breeding of maize seed germination.
These studies indicate that GWAS is a reliable tool to study the chlorophyll content of maize
and to find candidate genes.

In this study, 378 maize inbred lines and 96,726 SNPs were used for the GWAS of the
chlorophyll content in two environments. The purpose of this study is to identify candidate
genes of chlorophyll content. Our findings provide new insights for mining candidate
genes of leaf chlorophyll content.

2. Materials and Methods
2.1. Plant Materials

An association panel comprising 378 diverse maize inbred lines from the northeast
of China, temperate region in the United States and the International Maize and Wheat
Improvement Center (CIMMYT), Mexico, were used for GWAS. All materials were kept in
the College of Bioscience and Biotechnology, Shenyang Agricultural University.
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2.2. Field Experiments

The 378 inbred lines were grown in Fushun City, Liaoning Province, China (121◦74′ E,
42◦14′ N) in May 2017 (17FS) and Ledong city, Hainan Province, China (108◦39′ E, 18◦24′

N) in November 2017 (17LD). The field experiment was designed as random blocks with
2 replicates. Fifteen plants were planted in a 2.5 m long row with 0.6 m row distance, and
the planting density was approximately 45,000 plants/ha. The inbred lines were labeled
before pollination for standard field management. Chlorophyll content was measured
using a portable chlorophyll meter (SPAD-502, plus Konica Minolta, Tokyo, Japan), which
was non-destructive, fast and cheap. SPAD-502 readings were taken from five plants per
plot on five dates at a 5 d interval starting 0 d after silking. There were three measurements
in the middle of the ear leaf for each plant, and the average value was used for the statistical
analysis. AUCCC was calculated based on SPAD-502 readings on all measure dates. Larger
AUCCC values represent higher chlorophyll content, and lower AUCCC values represent
lower chlorophyll content. The formula used to calculate AUCCC was modified from the
AUCCC formula [30]:

AUCCC = [(γi + γi+1)/2] (ti+1 − ti)

in which n is the number of assessment times, γ is the meter reading, i is the ith rating date,
and t is time (in days).

2.3. Statistical Analysis of Phenotypes

The “PROC MIXED” program in SAS software was used to analyze the variance
heritability of the phenotypic values at the two places. The mixed linear model (MLM)
was used for the analysis, and the model yijk = µ+el + rk(l) + fi + (fe)il + εlik, where yijk was
the phenotypic value of the attenuation rate ijk in this test, µ denoted the average value of
attenuation rate, el was the influence of two environments, rk(l) was the repeated effect in
the environment, fl was the genetic effect of the ith family, (fe)il was the interaction between
genetic and environmental effects, and εlik was a random error.

The generalized heritability formula is: h2 = σg2/(σg2 + σge2/e + σε2/re) [31], where h2

represents the generalized heritability of the trait, σg2 is the genetic variance of the trait,
σge2 represents the variance of the interaction between genetic and environmental effects,
σε2 denotes the residual error, and e and r denote the number of environments and the
number of repetitions of the trait in each environment. The total phenotype of the two trials
was predicted and expressed by the best linear unbiased prediction (BLUP) value so as to
minimize the environmental impact.

2.4. Genome-Wide Association Mapping

The 96,726 SNPs (MAF ≥ 0.05) were used to conduct GWAS by combining the data
from two genotyping platforms (RNA-seq and SNP array). The mixed linear model (MLM)
calculation method was used to analyze the association of chlorophyll content in R 4.0.3,
where population structure and kinship were fitted to control false positives [32,33]. We
used the standard Bonferroni correction threshold α = 1 as the significance node. The p value
was calculated as 1/n (n = 96,726), and we obtained p < 1.03 × 10−5 as significant nodes.

2.5. Prediction of Candidate Genes

The most significant SNP was selected to represent the locus associated with chloro-
phyll content in the same LD block (r2 < 0.2). The physical locations of significant
SNPs were determined using the B73 RefGen v4 database. The annotated genes were
searched within the 100 kb region around (50 kb upstream and 50 kb downstream) the
detected significant SNP and were identified based on functional domains. The function
of annotation genes referred to the MaizeGDB (https://maizegdb.org/), NCBI (https:
//www.ncbi.nlm.nih.gov/gene) and the homologous genes of Arabidopsis.

https://maizegdb.org/
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene
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2.6. Heat Map of Candidate Genes Expression

The expression amount of candidate genes in leaves of different days after maize
silking was obtained from the Sequence Read Archive database of NCBI, and the mapping
method was as described in [34].

2.7. RNA Extraction and RT-qPCR

The SNP allele effect was analyzed using R 4.0.3, and leaves of 6 varieties (Liao7980,
A801, 29MIBZ2, PHVA9, LX9311 and Dan330) were selected during maize V4 stage. A leaf
segment of 2 cm in length was excised from the middle of the fourth leaf and stored at
−80 ◦C. The RNAprep Pure Plant Kit was used to extract the RNA (TIANGEN). cDNA
was synthesized from 2 µg of total RNA using the FastKing RT Kit (TIANGEN). RT-qPCR
reactions were performed using a Bio-Rad (Hercules, CA, USA) real-time PCR system using
the SuperReal PreMix Plue (SYBR Green) (TIANGEN). Transcript levels were analyzed
using the comparative CT (2−4CT) method [29]. ZmTubulin1 (Zm00001d033850) was used
as an internal control for data normalization. All data were measured in three independent
biological replicates. The primers are listed in Table S6.

3. Results
3.1. Chlorophyll Content Diversity and Heritability at Silking

Chlorophyll content was investigated at silking stage in 17FS and 17LD, and the BLUP
values were calculated according to the phenotypic values of two places. The chlorophyll
content of 17FS, 17LD and BLUP showed a normal distribution (Figure 1) and a wide
range of values, ranging from 36.23 to 68.85 (mean 54.81 ± 4.57), 27.23 to 62.66 (mean
49.63 ± 7.89) and 44.78 to 58.61 (mean 51.96 ± 3.68), respectively (Table S1), indicating that
the chlorophyll content conforms to the quantitative trait.

The heritability of chlorophyll content is 0.67, which is medium (Table 1). There were
significant and positive correlations between 17FS:17LD, 17FS:BLUP, 17LD:BLUP (p < 0.01;
Figure 1). The Genotype × Environment interaction effects were not significant for the
chlorophyll content, suggesting that the Genotype × Environment interaction effects were
small and had good stability and adaptability of varieties (Table 1). These results suggested
that the population’s phenotypic variations of chlorophyll content are largely affected by
genetic factors, and therefore, the association panel can be used for further association
mapping.

Table 1. Variance composition and broad-sense heritability of chlorophyll content and AUCCC in the
maize association population in two environments (17FS and 17LD).

Source of Variation a Mean Square Significance b H2 c

chlorophyll content
Environment (E) 10058.20165 <0.01 ** 0.67

Genotype (G) 190.14580 <0.01 **
G × E 155.13709 0.4034

AUCCC
Environment (E) 149.3227937 <0.01 ** 0.66

Genotype (G) 1.1585265 <0.01 **
G × E 0.405332 0.0987

a G × E indicates the interaction between G and E. b ** indicates statistical significance with p ≤ 0.01. c Family
mean-based broad-sense heritability.
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Figure 1. Scatterplots, frequency distribution histogram and correlation of 17FS, 17LD and BLUP.
The histograms on the diagonal represent the phenotypic distribution frequency, the values above
the diagonal represent the Pearson’s correlation coefficient between adjacent environments, and
the scatterplots below the diagonal represent the degree of data fit. The values in the outer circle
represent the range of phenotype values in the corresponding environment. ** indicates statistical
significance with p < 0.01 significant.

3.2. AUCCC and Heritability after Silking

The chlorophyll content was measured at 0, 5, 10, 15, and 20 days after silking in 17FS,
and at 0, 5, and 10 days after silking in 17LD (Figure 2). We found that the chlorophyll
content was the highest at silking (day 0) and gradually decreased and showed the lowest
at 20 days after silking during measurement in 17FS and 10 days after silking in 17LD
(Figure 2). In general, the chlorophyll content showed a downward trend. After silking,
the plant enters the reproductive phase of growth. Nitrogen, phosphorus, potassium, and
other nutrients are rapidly transferred to the kernel [35], and this nutrient redistribution
phenomenon is most obvious from the filling stage to the mature stage of maize, which
leads to the aging of maize and the decrease in chlorophyll content [36].

The AUCCC showed a normal distribution (Figure 3), and the heritability of AUCCC
was 0.66, which is medium (Table 1). These results show that the AUCCC is controlled by
genetics and is suitable for further GWAS.
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3.3. Correlations of Chlorophyll Content with Other Plant Developmental Processes

The correlation coefficients (Pearson’s) were calculated between chlorophyll content
of ear leaf and 10 agronomic traits, including hundred kernel weight (HKW), flowering
time (FT), ear rows number (ERN), kernel number per row (KNR), ear length (EL), ear
perimeter (EP), kernel length (KL), kernel width (KW), kernel thickness (KT) and kernel
area (KA). As shown in Figure 4, chlorophyll content is positively correlated with HKW
at the 0.05 level. Previous studies also showed that chlorophyll content was positively
correlated with kernel weight in rye and barley, whereas the correlation was significant at
the level of 0.01 [37,38].
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Figure 4. Correlation coefficients of maize chlorophyll content with 10 agronomic traits based on
BLUP values. * indicates statistical significance with p ≤ 0.05.

3.4. Genome-Wide Association Analysis

To ascertain the candidate genes of chlorophyll content, we conducted a GWAS in
two environments of 378 lines using each environment and BLUP values at silking as the
phenotype (Figure 5). The GWAS was carried out using the MLM method with a threshold
of p < 1.03 × 10−5 (Figures 5A–C and S1), and a total of 15 SNPs were identified. Among
them, three significant SNPs were located on chromosome 1, 7 and 10, respectively, in
17FS (Figure 5A and Table 2). Ten significant SNPs were found in 17LD, of which three
were located on chromosome 1, one was mapped on chromosome 5, and chromosome
2, 4, 10 harbored 2 SNPs respectively (Figure 5B and Table 2). In BLUP, two significant
SNPs were located on chromosome 2 and 5 (Figure 5C and Table 2). These results indicate
that chlorophyll content in maize was controlled by multiple genetic loci in this cross-
combination.

Manhattan plots of GWAS were conducted on AUCCC after silking (Figures 6 and S2).
There were four SNPs identified, among which two were for 17FS (Figure 6A) and two were
for 17LD (Figure 6B), and there were no significant SNPs in the BLUP (Figure 6C). Notably,
we identified the same SNP 2376873-7-G on chromosome 10 by GWAS for chlorophyll
content at silking and AUCCC.
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Table 2. Single-nucleotide polymorphism (SNP) chromosomal positions and candidate genes significantly associated with chlorophyll content and AUCCC identified
by genome-wide association study.

Trait SNP Chr Position (bp) p Value Gene Gene Interval (bp) Annotation Pathway

17BLUP chlorophyll content Marker.247949 2 2.20 × 108 9.10 × 10−6

Zm00001d007009 Chr2:220125041-220148355 DNAJ heat shock N-terminal
domain-containing protein

Chloroplast targeting, photosystem II
repair

Zm00001d007011 Chr2:220152033-220155206 ATP synthase Energy metabolism

Zm00001d007012 Chr2:220170458-220175539 CHLOROPLAST RNA-BINDING
PROTEIN Chloroplast morphogenesis

Zm00001d007016 Chr2:220204271-220219191 disease resistance protein RGA2 Disease-resistant

Zm00001d007017 Chr2:220217348-220221222 thioredoxin-like protein AAED1
chloroplastic Electronic circulation and daylighting

17FS chlorophyll content 2376873-7-G 10 1.48 × 108 7.08 × 10−6

Zm00001d026563 Chr10:148153479-148157015 AP2/EREBP transcription factor 40 Plant growth and development

Zm00001d026569 Chr10:148185247-148190302 chloroplastic palmitoyl-acyl carrier
protein thioesterase De novo synthesis of fatty acids

Zm00001d026568 Chr10:148184610-148195615 pentatricopeptide repeat-containing
protein Chloroplast development

Zm00001d026573 Chr10:148201459-148207853 5-methylthioribose kinase Methylthioadenosine (MTA) cycle
Zm00001d026574 Chr10:148208912-148217798 UDP-D-galacturonate Homogalacturonan biosynthesis

17LD chlorophyll content

Marker.190636 2 43,281,907 6.97 × 10−6

Zm00001d003403 Chr2:43279990-43285413 aaap10—amino acid/auxin permease10 Amino acid transportation
Zm00001d003404 Chr2:43284025.43288746 transmembrane protein Transmembrane

Zm00001d003405 Chr2:43285551-43289511 protease inhibitor/seed storage/LTP
family protein Signal transduction

Zm00001d003406 Chr2:43298285-43304459 actin binding protein Plant growth and development

Marker.346487 4 8,724,268 8.32 × 10−6
Zm00001d027598 Chr1:8676135-8681000 cct101—CO CO-LIKE TIMING OF

CAB1 protein domain101) Transcription factors, floral completion

Zm00001d027599 Chr1:8699800-8704356 alkane hydroxylase MAH1 Cuticular wax biosynthesis
Zm00001d027601 Chr1:8772748-8777355 behenate ω-hydroxylase Suberin monomers biosynthesis

2504165-22-G 5 2,775,822 9.93 × 10−6 Zm00001d012982 Chr5:2770681-2776100 NAD(P)-binding domain containing
protein Energy metabolism

17LD AUCCC Marker.571424 6 1.73 × 108 7.40 × 10−6 Zm00001d039222 Chr6:173160699-173165510 cct40—CO CO-LIKE TIMING OF CAB1
protein domain40) Transcription factors, floral completion

Zm00001d039221 Chr6:173158717-173163744 nucleoside diphosphate kinase 4 Signal transduction

17FS AUCCC 2376873-7-G 10 1.48 × 108 5.82 × 10−6

Zm00001d026563 Chr10:148153479-148157015 ereb40—AP2-EREBP-transcription
factor 40 Plant growth and development

Zm00001d026568 Chr10:148184610-148195615 pentatricopeptide repeat-containing
protein, mitochondrial-like Chloroplast development

Zm00001d026569 Chr10:148185247-148190302 palmitoyl-acyl carrier protein
thioesterase, chloroplastic De novo synthesis of fatty acids

Zm00001d026573 Chr10:148201459-148207853 5-methylthioribose kinase Methylthioadenosine (MTA) cycle
Zm00001d026574 Chr10:148208912-148217798 UDP-D-galacturonate Homogalacturonan biosynthesis
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Manha an plots of GWAS were conducted on AUCCC after silking (Figures 6 and 
S2). There were four SNPs identified, among which two were for 17FS (Figure 6A) and 
two were for 17LD (Figure 6B), and there were no significant SNPs in the BLUP (Figure 
6C). Notably, we identified the same SNP 2376873-7-G on chromosome 10 by GWAS for 
chlorophyll content at silking and AUCCC. 
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3.5. Candidate Genes

A total of 76 candidate genes were identified from 19 SNPs within the 50 kb flanking re-
gions (Tables 2 and S2) , of which 41 genes had functional annotations. The annotations for
the candidate genes consisted of transmembrane protein, kinase, phosphatase, signal trans-
duction protein, and transcription factors that may be involved in photosynthesis, redox,
chloroplast development, and plant growth. The co-located SNP, 2376873-7-G, harbored
Zm00001d026563, Zm00001d026569 and Zm00001d026574 encoding APETALA2/ethylene-
responsive element binding protein (AP2/EREBP), chloroplastic palmitoyl-acyl carrier
protein thioesterase and UDP-D-galacturonate, respectively (Table 2). We discovered that
the genomic region containing SNP, Marker.247949, includes the gene Zm00001d007012,
which encodes chloroplast RNA binding protein and directly participates in chloroplast
morphogenesis (Table 2). In addition, ATP synthase encoded by Zm00001d007011 can di-
rectly affect photosynthesis. Together, these results further demonstrate that the candidate
genes were reliable.

3.6. Expression Pattern of Candidate Gene

To determine the candidate genes’ expression pattern, an in silico profiling was
compiled using the published RNA-Seq datasets (Figure 7). The results showed that
the expression patterns of different candidate genes varied in seven different tissues
(Figure 7A and Table S3). The color scale bar at the top of the heat map represents log10-
transformed FPKM value, which represents low and high expression. Zm00001d023314,
Zm00001d034534, Zm00001d003404, Zm00001d012982 and Zm00001d014126 had a rela-
tively high level of expression with tissue specificity in the leaf relative to other tissues.
Contrarily, Zm00001d039221 had a relatively low level of expression in leaf (Figure 7A).
Zm00001d007011 and Zm00001d034528 showed high expression tendencies in all tissues
compared to the other candidate genes (Figure 7A). Other genes showed moderate or low
expression levels in leaf, such as Zm00001d026563 and Zm00001d007479, which encoded
AP2/EREBP transcription factors and BSD-transcription factor, respectively (Figure 7A,
Tables 2 and S2).

To confirm the expression pattern of the candidate genes in leaves, we performed a
heat map of the candidate gene expression at 0,6,12,18,24,30 d after pollination (Figure 7B
and Table S4). Zm00001d021162 had a low expression level at day 0, moderate on days 6
and 12, and high on days 18 and 24. Zm00001d026563 showed high expression only on
day 6. Zm00001d003403 was lowly expressed on days 0 and 6 and moderate on days 12–30.
Zm00001d003405 was moderate on day, and low on days 6–30. Zm00001d027601 was lowly
expressed on day 0, moderate on day 6, and high on days 12–30. For Zm00001d039221, the
expression increased gradually after pollination during measurement.

Expression of Zm00001d003403, encoding AMINO ACID PERMEASE (AAP), gradu-
ally increased after pollinating. AAP belongs to the amino acid/auxin permease family,
which is involved in transportation of the principal nitrogen assimilates amino acid [39,40].
When the AAP2 gene was mutated in Arabidopsis thaliana, the mutant leaf had more chloro-
phyll content than the wild-type plant [41]. The leaf chlorophyll decreased (Figure 2)
with an increase in Zm00001d003403 expression in maize. These results are in line with
previous reports.

The allele variations of SNP 2376873-7-G were identified, and A allele genotypes
showed higher chlorophyll content at the population level (Figure 8A and Table S5).
Zm00001d026568 and Zm00001d026569 genes were associated with the same SNP 2376873-
7-G. The relative expressions of Zm00001d026568 and Zm00001d026569 were higher in the
genotypes carrying the SNP A allele (Figure 8B,C). In contrast, the relative expressions
of Zm00001d026568 and Zm00001d026569 were lower in lines carrying the G genotype
(Figure 8B,C). As expected, higher chlorophyll content in the A genotypes was associ-
ated with higher expression of these two candidate genes in the selected lines shown in
this study.
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Figure 7. Heat map of the expression pa erns of candidate genes determined by genome-wide as-
sociation study. The value used in the figure is the log10 conversion ratio of the counts of standard-
ized PRKM counts of chlorophyll content in (A) seven tissues and (B) in leaves on days 0, 6, 12, 18, 
24 and 30 of maize silking stage. Columns and rows are sorted according to similarity. Compared 
with different periods of a specific gene, red, black and green represent higher, moderate and lower 
expression, respectively. 

Figure 7. Heat map of the expression patterns of candidate genes determined by genome-wide asso-
ciation study. The value used in the figure is the log10 conversion ratio of the counts of standardized
PRKM counts of chlorophyll content in (A) seven tissues and (B) in leaves on days 0, 6, 12, 18, 24
and 30 of maize silking stage. Columns and rows are sorted according to similarity. Compared
with different periods of a specific gene, red, black and green represent higher, moderate and lower
expression, respectively.
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Figure 8. Allele variations of SNP and expression patterns of Zm00001d026568 and Zm00001d026569.
(A) Allele effects of SNP 2376873-7-G, 307 and 63, represent the number of G and A genotypes in
the population, respectively. The relative expression of Zm00001d026568 (B) and Zm00001d026569
(C) by qRT-PCR in 6 lines, including Liao7980, A801 and 29MIBZ2, containing A allele; PHVA9,
LX9311 and Dan330, containing G allele. Vertical bars indicate standard deviation. ** indicates
statistical significance with p < 0.01. Bars with different letter superscripts are significantly different
at p < 0.05.
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4. Discussion

Improvements in maize yield are very important to ensure world food security. En-
hancing crop yield potential by enhancing photosynthesis is a major focus of modern crop
breeding [42,43]. Chlorophyll content is an indicator of photosynthesis activity, which
can directly affect photosynthetic efficiency [44–46]. A large number of functional genes
related to chlorophyll have been identified by analysis of many mutants in maize, rice, and
other species [47–49]. However, chlorophyll content is a quantitative trait controlled by
multiple genes, which requires further study on its function. In particular, these genes have
more functional variation, and many genomic regions remain largely elusive [50,51]. There-
fore, analyzing the candidate genes of chlorophyll content and identifying its important
variation sites will contribute to the improvement of maize breeding.

Compared with the traditional linkage analysis, GWAS can directly use the existing
natural population as the material that has the advantage of saving time and effort [52].
However, it also has shortcomings in specific research, such as population structure that is
prone to lead to false positives, linkage disequilibrium level that is affected by a variety of
genetic or non-genetic factors [53,54], and the accuracy of candidate gene determination
that is not enough. In order to obtain more accurate research results, we can reduce false
positives as much as possible by increasing the population size. We use a mixed linear
model (MLM) to take the individual kinship (K) and group structure (Q) as covariates
(Q + K) at the same time, which can also effectively reduce the false positive rate [55].
Currently, GWAS approaches based on MLM are widely employed in both plant and
animal systems [56]. GWAS is more and more widely used in crop research, for example,
the genetic basis of several kernel-related traits and charcoal rot resistance has been reported
in maize, and some candidate genes have been predicted by the GWAS [57,58].

The 378 maize inbred lines were used to construct an association population, and the
candidate genes of chlorophyll content at silking and AUCCC after silking were mined by
using high-density markers and phenotypic data. In this study, the heritability of the two
methods was medium, and both of them conformed to normal distribution, indicating that
chlorophyll content was contributed to by various types of genetic variation effects. Thee
area under the curve to study dynamic processes has been widely used in the medical field;
for example, the area under the curve was used to represent the dynamic distribution of
the age composition of patients [59]. The AUCCC is a simple tool for breeders to evaluate
the chlorophyll content. Although the heritability of AUCCC was similar to chlorophyll
content in this study, Yang et al. [30] found that the heritability of the area under the curve
could be effectively improved, indicating that the results of this method were reliable. As
an indicator, AUCCC not only provides sufficient chlorophyll content information but can
also accurately compare genotypes [60]. Furthermore, this simple manipulation method
can be used to integrate applied and basic maize research, providing a good foundation for
follow-up gene function studies [61].

The chlorophyll content of ear leaves was measured in two different sites, which have
significant environmental differences between them; therefore, it could result in that the
same SNP was not identified in 17FS and 17LD. Teng et al. [25] revealed the genetic basis of
chlorophyll content of the first leaves at the seedling stage by GWAS, which identified nine
SNPs. However, no same SNP was found in our study. In addition, positive correlation
was detected for chlorophyll content and HKW. This is because the abundance and stability
of chlorophyll in leaves significantly affect grain filling, and increasing the chlorophyll
content of crop leaves can improve biomass yield and grain yield [62–65]. In general, a
breeding strategy is mainly dependent on phenotypic selection of the best genotype by
environmental interactions and the heritability level [66,67]. A total of 19 significant SNPs
were associated with chlorophyll content at silking and the AUCCC after silking. To realize
good prospects in the improvement of maize, a number of SNPs needs to be selected in
order to reduce the overall time and cost.

A total of 76 candidate genes were identified for the chlorophyll content and the dy-
namic changes of chlorophyll content according to the position of significantly associated
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SNPs. In addition, Li et al. [6] previously identified gene overlap with these candidate
genes, such as cytochrome c reductase. They compared transcriptome related to the physio-
logical changes of yellow-green leaf mutant of maize and found that cytochrome c reductase
participates in the tricarboxylic acid cycle. The chlorophyll content of yellow green leaves is
different, which results in the difference of cytochrome c reductase. The role of cytochrome
c reductase is to catalyze the transfer of electrons from coenzyme Q to cytochrome c [68],
which is an important electron transporter in biological oxidation and is related to pro-
grammed cell death [69,70]. Programmed cell death leads to leaf senescence, which in
turn leads to a decrease in chlorophyll content [71,72]. In addition, the co-located SNPs in-
clude Zm00001d026563, Zm00001d026569, Zm00001d026568, etc., which encode AP2/EREBP
transcription factor 40, chloroplastic palmitoyl-acyl carrier protein thioesterase and pen-
tatricopeptide repeat-containing protein, respectively. The AP2/EREBP superfamily is
one of the largest and specific transcription factor (TF) families in plants that is involved
in biotic/abiotic stress, compound storage and plant growth and development [73–76].
Chlorophyll content is an important physiological index used to measure plant growth
and development [77,78]. Palmitoyl acyl carrier protein thioesterase is a key gene for de
novo fatty acid synthesis [79]. Fatty acids are one of the main components of the cell
membrane, and insufficient fatty acid synthesis triggers programmed cell death [80,81].
Leaf senescence is an organ-level programmed death process during plant growth and
development, resulting in a decrease in chlorophyll content. In the inferior allele G, the
expression of palmitoyl acyl carrier protein thioesterase is low, and fatty acid metabolism is
accelerated, thus leading to a reduction in chlorophyll content. Pentatricopeptide repeat-
containing protein is one of the largest protein families in plants that affects chloroplast
development [82,83]. Therefore, in the dominant allele A, the chlorophyll content is high,
and the expression of pentatricopeptide repeat-containing protein is high.

To explore the potential roles of candidate genes in regulating chlorophyll content,
we performed expression profiling analysis on RNA-seq data from different tissues at 0,
6, 12, 18, 24, and 30 days after pollination. The expressions of AP2/EREBP transcription
factor 40 and chloroplast palmitoyl carrier protein thioesterase in leaves were low, and
the expressions were moderately high on the 6th day after pollination. These results
indicate that they have direct or indirect effects on chlorophyll content. Thus, selection
of Zm00001d026563, Zm00001d026569, Zm00001d026568 or this SNP may help to regulate
chlorophyll content in maize breeding. Taken together, the discovery of candidate genes
provides help for further analyzing the molecular regulatory network of chlorophyll content
on maize ear leaves. The identification of SNP will promote marker-assisted selection in
maize molecular breeding.

5. Conclusions

In this study, we discovered candidate genes of natural variation in maize ear chloro-
phyll content by GWAS. Chlorophyll content appeared to be of moderate heritability and
showed extensive variation in the association panel, indicating that chlorophyll content is a
quantitative trait suitable for GWAS. GWAS showed that the natural changes regulating
chlorophyll content had manymicro effect loci. We found 19 SNPs containing 76 candidate
genes that may participate in leaf senescence, photosynthesis, and plant developmental
processes. One of the SNPs was co-localized in AUCCC and chlorophyll content that was
associated with five genes. Zm00001d026568 and Zm00001d026569 contained significant
SNP and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-
acyl carrier protein thioesterase, respectively. They were found to be highly expressed in
lines with the A allele as determined by RT-qPCR. These candidate genes provide valuable
resources for further study of the molecular network regulating chlorophyll content in
maize. In addition, the prediction of SNPs with chlorophyll content may help devise
effective breeding plans and selection strategies to improve maize yield.
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