
Citation: Sekaran, K.; Varghese, R.P.;

Gopikrishnan, M.; Alsamman, A.M.;

El Allali, A.; Zayed, H.; Doss C, G.P.

Unraveling the Dysbiosis of Vaginal

Microbiome to Understand Cervical

Cancer Disease Etiology—An

Explainable AI Approach. Genes 2023,

14, 936. https://doi.org/10.3390/

genes14040936

Academic Editor: Irina Mohorianu

Received: 23 February 2023

Revised: 10 April 2023

Accepted: 12 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Unraveling the Dysbiosis of Vaginal Microbiome to Understand
Cervical Cancer Disease Etiology—An Explainable
AI Approach
Karthik Sekaran 1 , Rinku Polachirakkal Varghese 1 , Mohanraj Gopikrishnan 1 , Alsamman M. Alsamman 2 ,
Achraf El Allali 3,* , Hatem Zayed 4 and George Priya Doss C 1,*

1 School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
2 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic

Engineering Research Institute, Cairo 12619, Egypt
3 African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
4 Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University,

Doha 2713, Qatar
* Correspondence: achraf.elallali@um6p.ma (A.E.A.); georgepriyadoss@vit.ac.in (G.P.D.C.)

Abstract: Microbial Dysbiosis is associated with the etiology and pathogenesis of diseases. The
studies on the vaginal microbiome in cervical cancer are essential to discern the cause and effect of the
condition. The present study characterizes the microbial pathogenesis involved in developing cervical
cancer. Relative species abundance assessment identified Firmicutes, Actinobacteria, and Proteobacteria
dominating the phylum level. A significant increase in Lactobacillus iners and Prevotella timonensis
at the species level revealed its pathogenic influence on cervical cancer progression. The diversity,
richness, and dominance analysis divulges a substantial decline in cervical cancer compared to control
samples. The β diversity index proves the homogeneity in the subgroups’ microbial composition.
The association between enriched Lactobacillus iners at the species level, Lactobacillus, Pseudomonas,
and Enterococcus genera with cervical cancer is identified by Linear discriminant analysis Effect Size
(LEfSe) prediction. The functional enrichment corroborates the microbial disease association with
pathogenic infections such as aerobic vaginitis, bacterial vaginosis, and chlamydia. The dataset
is trained and validated with repeated k-fold cross-validation technique using a random forest
algorithm to determine the discriminative pattern from the samples. SHapley Additive exPlanations
(SHAP), a game theoretic approach, is employed to analyze the results predicted by the model.
Interestingly, SHAP identified that the increase in Ralstonia has a higher probability of predicting
the sample as cervical cancer. New evidential microbiomes identified in the experiment confirm the
presence of pathogenic microbiomes in cervical cancer vaginal samples and their mutuality with
microbial imbalance.

Keywords: cervical cancer; eXplainable AI; vaginal microbiome; SHapley Additive exPlanations

1. Introduction

Cancer is a major contributor to mortality and a significant impediment to extend-
ing life expectancy. Global predictions indicate that the burden of cancer will increase
for at least the next two decades, contributing significantly to the burden of illness [1,2].
Reproductive malignancies constitute a significant cause of female mortality and mor-
bidity worldwide. Cervical cancer is more prevalent in the female reproductive system
malignancies, with 569,847 cases per year, ranking it fourth among the malignancies that
strike women globally [2,3]. Cervical cancer initially develops in the cervix uteri, and the
malignancy transpires slowly overtime.

The key detrimental factor for the preponderance of cervical cancer is exposure to
sexually transmitted human papillomavirus (HPV) [4]. If identified at its initial stages,
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cervical cancer may be one of the most treatable forms of cancer [5]. The problem is that
most patients only seek therapy once the disease has progressed to a late stage. Many
potential reasons exist for patients with cervical cancer to seek treatment at a later stage
and have a poor prognosis. The paucity of knowledge, cultural issues, the absence of
coordinated cancer prevention, as well as inadequate HPV vaccination strategies are a few
reasonable factors [6].

HPV infection is a predominant cause of cervical cancer; environmental factors might
also significantly impact cancer progression. Epidemiological studies have repeatedly
identified smoking as contributing to cervical cancer [7,8]. The microbial communities are
one of the elements yet to be substantially researched. The etiology of cervical cancer is
multifaceted, and there is less scientific evidence to support the involvement of bacterial
groups in cervical carcinogenesis [9,10]. Although microbial diversity is perceived as a sign
of health across different body sites, highly diversified vaginal microbiomes are prominently
viewed as aberrant or dysbiotic and usually linked to a diseased condition [11,12]. The
metagenomic concepts and the transition of high-throughput sequencing analysis have
sparked interest in the connection between microbes and various diseases. According to
a study by Huang et al., 2014, vaginal microbiome plays a significant role in preserving
vaginal homeostasis and limiting the growth of dangerous bacteria [13].

Recent research has evaluated the potential link between cervical cancer and vaginal
microbiome [14–19]. Cervical microbiome varies from person to person [20]. It is being
investigated as a target for developing novel treatment methods due to mounting evidence
that it plays a significant role in the uterine cervix’s carcinogenesis process [21,22]. The cer-
vical microbiome is crucial as it possesses the metabolic and enzymatic machinery needed
to digest vital vitamins, eliminate harmful substances, fight off infections, support the fe-
male genital tract epithelium, and activate and control the immune system [23]. According
to earlier research, changes occurred in the cervical microbiota, enhancing the likelihood
of carcinogenic development in the cervix. Similar studies demonstrated that altering the
cervical microbiome increases the risk of carcinogenic progression [24–26]. Despite the
intriguing antecedent results published up to this point, little is still understood about
the intricate relationship between cervical dysbiosis and cancer pathogenesis. There is a
critical need to compare differences in women with different grades of cervical cancer and
their microbial composition to fully understand the microbiome actively involved during
cervical cancer pathogenesis. The present study analyzes the vaginal microbial samples of
cervical cancer and control groups. Abundance assessment at different taxonomic levels is
performed. The α and β diversity are calculated with richness, dominance, and similar-
ity indices of microbial communities between groups. LEfSe analysis detected enriched
microbiomes at an LDA score threshold of 3.0. Further, the functional enrichment pre-
dicted highly correlated disease association based on the differential microbiomes. SHAP
algorithm interpreted the random forest predictions to understand specific microbiomes
influencing the results.

2. Materials and Methods
2.1. Data Acquisition

This study intends to compare and analyze the dysbiosis in the vaginal microbiome of
cervical cancer patients and healthy individuals. “Cervical cancer” and “Vaginal micro-
biome” keywords were used to search the NCBI BioProject by applying the filters “Human”
as the organism type and “metagenome” as the study type. The vaginal swab samples
collected from cervical cancer patients and healthy individuals were sequenced using
the 16S rRNA technology to create the final dataset (BioProject ID: PRJNA725946). The
vaginal samples were extracted from the genomic DNA using QIAamp DNA Mini Kit and
processed with Illumina HiSeq platform at Dalian Medical University, Dalian, China. The
samples were labeled according to the patients and the controls. The dataset comprises 65
cervical cancer samples and 54 healthy samples collected using a vaginal swab.
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2.2. Bioinformatic Processing and Statistical Analysis

The raw FASTQ files for the vaginal samples (BioProject ID: PRJNA725946) were
retrieved from the European Nucleotide Archive (ENA). The single-end reads fetched from
the 16S rRNA sequencing method were perused using Quantitative Insights into Microbial
Ecology version 2 (QIIME2 v. 2022.8) (https://qiime2.org/ (accessed on 4 December
2022)) [27]. The single-end reads were imported into the QIIME2 and demultiplexed
to check the quality of reads. The low-quality reads (Q < 30) were eliminated from the
pipeline using trimming and truncation methods. For the single-end reads, the trimming
was performed at a beginning position of 0 and abridged at a base length of 240 bp.
The DADA2 algorithm was further used to locate and eliminate the chimeric sequences.
Following the conventional DADA2 workflow with modifications to accommodate our
single-end read data, the 16S sequences were denoised [28].

The sequence’s lowest bound of the sampling depth (24,217) was identified to keep all
the samples. The sequences with more than 99% similarities were considered Amplicon Se-
quencing Variants (ASVs). The ASVs considered less than 0.001% of the overall abundance
were eliminated to ensure the correctness of the subsequent analysis [29]. The species-level
designations were based on precise matching between ASVs and the sequenced reference
strain; the taxonomy was determined using the Naïve Bayesian classifier approach using
the 16S Silva database (silva-138-99-nb-classifier v. 13_8) [30]. After the aforementioned
preprocessing steps, sequences from the phyla of mitochondria and chloroplast were disre-
garded, as well as those from the kingdoms of Archaea and Eukaryota [31]. The resultant
QIIME data, such as the feature and taxonomy tables, were subjected to statistical analysis.

The heterogeneity and uniformity of the microbiota among cervical cancer-affected
cases and healthy women were evaluated using α and β diversity analysis [32]. Sequences
from each sample were rarefied to a depth of 24,217 to perform the diversity analysis [33].
The samples’ α diversity analysis was evaluated using Chao1, Shannon, and Simpson
measures based on Wilcoxon rank-sum test [34]. The species differences between the
samples were computed using β diversity analysis (PCoA) with Bray Curtis distance
metric [35]. The visualization plots for the abovementioned analysis were generated
using the micro eco R package [36]. The coalition network was constructed with the
igraph R package [37]. Using methods from the igraph package, topographical network
characteristics such as centrality and edge weights were also examined.

The differentially represented microbial species between groups at different levels in
the taxonomic scale were determined using the LEfSe (http://huttenhower.sph.harvard.
edu/galaxy/ (accessed on 5 December 2022)). LDA employs the Kruskal–Wallis approach
to determine the traits that show differential abundance among various classes. Using the
LEfSe method, variations in microbial abundance between diseased and healthy control
groups were determined with a logarithmic LDA score of 4.0. A cladogram and bar graph
drawn to show the taxonomic traits are the outputs of the LEfSe model [38]. The functional
disease enrichment was performed using the R package MicrobiomeProfiler to study the
association between vaginal microbiome and cervical cancer. The microbe–disease enrich-
ment analysis module from the package was utilized to perform the enrichment analysis.

2.3. SHAP Interpretation of Vaginal Microbiome Associated with Cervical Cancer

The collapsed taxonomic table at the species level containing ASVs and taxa infor-
mation of all the samples was processed with the “DALEX” library in Python [39]. This
analysis was intended to show the species identified to have a strong association with
cervical cancer alongside complete taxonomic information. SHAP (Shapley Additive Expla-
nations) and DALEX (Descriptive Machine Learning Explanations) are two popular Python
libraries used for explainable artificial intelligence (XAI) [40,41]. These libraries provide
tools for understanding the behavior of complex machine learning models, such as deep
neural networks, decision trees, random forests, and gradient-boosting machines. In this
experimental work, the interpretability of the random forest algorithm was evaluated on
the vaginal microbial data.

https://qiime2.org/
http://huttenhower.sph.harvard.edu/galaxy/
http://huttenhower.sph.harvard.edu/galaxy/
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SHAP is a game theoretic approach to explain the output of any machine learning
model. It aims to explain the contribution of each input feature to the final model prediction.
SHAP computes the Shapley values, which is a measure of the marginal contribution
of a feature towards the prediction. Shapley values provide a unified framework for
explaining any machine learning model, regardless of its complexity. SHAP also provides
visualizations that help understand each feature’s importance in the model output. DALEX
explains the behavior of machine learning models with the help of visualizations. It
provides tools for model-agnostic explanations, feature importance, and model diagnostics.

3. Results

To compare the vaginal microbiome differences between the cervical cancer patients
and healthy controls using the ASVs, 119 metagenome sequenced samples were retrieved
from the cervical cancer study, including 65 cervical cancer patients (54.6%) and 54 healthy
controls (45.3%).

3.1. Characterization of Vaginal Microbiome

After the quality filtering process, there were 5,253,668 reads with a mean value
of 44,148 reads per sample. In total, 1973 ASVs were detected after clustering for the
sequences at a 99% similarity with the SILVA database. The mean taxon abundance was
assessed at different taxonomic levels, such as species, genus, family, class, and phylum,
for both cervical cancer and control groups. The top five bacteria belonged to Firmicutes,
Actinobacteriota, Proteobacteria, Bacteroidota, and Fusobacteria, with Firmicutes being the most
predominant phyla in both groups (Figure 1). The higher taxonomic abundancies at the class
level were observed in Bacilli, Actinobacteria, Gammaproteobacteria, Clostridia, and Bacteroidia,
of which Bacilli showed greater prevalence (Figure 2). In terms of abundance, Lactobacillus
was shown to be the most prevalent, followed by Gardnerella, Streptococcus, and Pseudomonas
at the genus level (Figure 3). No cardinal variations were observed in abundance between
cervical cancer and healthy control groups at the genus level. Lactobacillus iners, Gardnerella
vaginalis, Streptococcus agalactiae, Streptococcus anginosus, and Prevotella timonensis, among
which Lactobacillus iners showed higher preponderance in the cervical cancer group at the
species level (Figure 4).
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Figure 3. An illustration of a bar plot showing the relative abundance of diseased and control groups
at the genus level (cervical cancer—left; healthy control—right).

3.2. Dysbiosis of Vaginal Microbiome Associated with Cervical Cancer

Simpson, Shannon, and Chao1 indices were used to understand the complexity of
species heterogeneity between the two groups. The species richness within the samples
can be reflected using Chao1, whereas Shannon and Simpson indices depict the species
diversity within a community (species richness and diversity). The Chao1 measure is
considerably higher for healthy control than for the cervical cancer group. As per the
findings, species richness is substantially higher in healthy controls. The Shannon and
Simpson measures show higher indices for the healthy control group than the cervical
cancer group (Figure 5).
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Figure 5. α diversity indexes are plotted as boxplots. α diversity indices are composite indices that
capture consistency and abundance. The Shannon and Simpson indices reflect ASV diversity in
samples, and the Chao1 measure reflects the ASV abundance in samples.

The vaginal microbiota diversity among the two groups was compared using the
Bray–Curtis distance measure. The microbial makeup of each group can be represented
using a Principal coordinate analysis (PCoA) plot (Figure 6). In PCOA plots, the sam-
ples closer to each other resemble similar microbial communities. In the PCoA plot, the
two coordinates (PCo1 and PCo2) account for 34.7% of the variation.

The coalition network can be used to depict the associativity between microorganisms
present within a group or a community. The PCoA plot indicates a significant distinction
among the vaginal microbial communities of cervical cancer and healthy control groups
(p-value: 0.001, R2: 0.027, F-value: 3.269). The igraph bipartite approach was used to iden-
tify the connections among different microbes at the class level. Alphaproteobacteria were
identified as the key taxon within the network that formed pairwise co-occurrence networks
with the other microbes, particularly with Gammaproteobacteria, Bacteroidia, Actinobacteria,
and Bacilli (Figure 7).



Genes 2023, 14, 936 7 of 15

Genes 2023, 14, x FOR PEER REVIEW 7 of 16 
 

 

measures show higher indices for the healthy control group than the cervical cancer group 
(Figure 5). 

 
Figure 5. α diversity indexes are plotted as boxplots. α diversity indices are composite indices that 
capture consistency and abundance. The Shannon and Simpson indices reflect ASV diversity in 
samples, and the Chao1 measure reflects the ASV abundance in samples. 

The vaginal microbiota diversity among the two groups was compared using the 
Bray–Curtis distance measure. The microbial makeup of each group can be represented 
using a Principal coordinate analysis (PCoA) plot (Figure 6). In PCOA plots, the samples 
closer to each other resemble similar microbial communities. In the PCoA plot, the two 
coordinates (PCo1 and PCo2) account for 34.7% of the variation. 

 
Figure 6. PCOA plots of β diversity of vaginal microbiota based on Bray−Curtis distance measure. 
The ellipses represent the two groups. The cervical cancer is shown in green color, whereas the 
healthy control group is shown in orange color. 

The coalition network can be used to depict the associativity between microorgan-
isms present within a group or a community. The PCoA plot indicates a significant dis-
tinction among the vaginal microbial communities of cervical cancer and healthy control 

Figure 6. PCOA plots of β diversity of vaginal microbiota based on Bray−Curtis distance measure.
The ellipses represent the two groups. The cervical cancer is shown in green color, whereas the
healthy control group is shown in orange color.

Genes 2023, 14, x FOR PEER REVIEW 8 of 16 
 

 

groups (p-value: 0.001, R2: 0.027, F-value: 3.269). The igraph bipartite approach was used 
to identify the connections among different microbes at the class level. Alphaproteobac-
teria were identified as the key taxon within the network that formed pairwise co-occur-
rence networks with the other microbes, particularly with Gammaproteobacteria, Bacteroidia, 
Actinobacteria, and Bacilli (Figure 7). 

 
Figure 7. The chord diagram displays the network of 10 candidates that co-occur in a pairwise se-
quence. Each sector of the circle represents a node (i.e., taxon) in the network, and its width reflects 
the sum of the co-occurrences between each taxon. 

LEfSe assessment identifies the microbial abundance of cervical cancer patients and 
healthy control group from the vaginal microbiome. The LEfSe profiling shows variations 
between cervical cancer and healthy control groups at various taxon levels with a thresh-
old LDA core of 4.0 (Figure 8). In cervical cancer patients, the cladogram shows a signifi-
cant abundance of Lactobacillus iners, Pseudomonadaceae, Enterococacceae, and Entomoplas-
matales, whereas Proteobacteria, Actinobacteria, and Bacteroidota are displayed in the healthy 
control (Figure 8). 

  

Figure 7. The chord diagram displays the network of 10 candidates that co-occur in a pairwise
sequence. Each sector of the circle represents a node (i.e., taxon) in the network, and its width reflects
the sum of the co-occurrences between each taxon.

LEfSe assessment identifies the microbial abundance of cervical cancer patients and
healthy control group from the vaginal microbiome. The LEfSe profiling shows variations
between cervical cancer and healthy control groups at various taxon levels with a threshold
LDA core of 4.0 (Figure 8). In cervical cancer patients, the cladogram shows a significant
abundance of Lactobacillus iners, Pseudomonadaceae, Enterococacceae, and Entomoplasmatales,
whereas Proteobacteria, Actinobacteria, and Bacteroidota are displayed in the healthy
control (Figure 8).
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Figure 8. Linear discriminant analysis (LDA) effect size (LEfSe) analysis for vaginal microbiota
abundance in cervical cancer and healthy control groups. (A) The Bar plot from LEfSe analysis
indicates the enriched bacteria that are associated with cervical cancer (red) and healthy control
(green) groups. (B) A phylogenetic cladogram plot from LEfSE analysis representing the differentially
abundant taxa at various taxonomic levels (LDA score > 3.0).

The differential expressed taxa were detected using MicrobiomeProfiler to identify
the bacterial strains enriched in the vaginal microbiota of cervical cancer patients. The
disbiome database was selected for microbiome disease enrichment analysis, for which
the taxon IDs of identified bacterial strains (135) were provided as input (Table S1). The
microbial strains were determined to be associated with eight diseases, of which the
microbial enrichment were highly associated with Aerobic vaginitis, Bacterial vaginosis,
and Chlamydia, respectively. The functional enrichment outcome between cervical cancer
and healthy vaginal microbiome samples is represented in Figure 9.
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Figure 9. Comparative disease–microbiome enrichment analysis of vaginal microbiota depicted
as line plot and bar plot. A total of 77 significantly different bacterial taxa were reported in the
enrichment analysis.

3.3. Explaining the Model Predictions through SHAP

Interpreting “black-box” mathematical models is pivotal to understanding complex
biological outcomes. Traditional machine learning algorithms generate results based on
intuitive, logical assessments derived through mathematical models. However, the reason
for every model prediction is unknown due to the higher level of abstraction and deeper
computing process. It is also arduous to analyze each step of interminable calculation
performed by the algorithms. Explainable Artificial Intelligence (XAI), a sophisticated
algorithmic approach, was developed by the Defense of Advanced Projects Research
Agency (DARPA). It is intended to develop self-explainable human understandable models
while maintaining higher-level performance. Shapley Additive Explanations (SHAP), a
game theoric approach-based framework, conduct interpretable predictions from the results
of any trained machine learning model. This method assigns importance to a particular
sample prediction variable based on the Shapley values. The average marginal contribution
of every feature score over all other possible coalitions calculates it. DALEX provides tools
for creating various model-agnostic explanations, such as feature importance plots, partial
dependence plots, and accumulated local effects plots. The SHAP value plot, breakdown,
and ROC curve results are visualized using DALEX.

The microbiome dataset contains a taxonomic hierarchy from Kingdom to Species-
level of each column as a feature vector with 594 taxons in total, and 119 rows represent
individual samples. Random forest, an ensemble-based bagging model, is trained with
the data to numerically understand the discriminative pattern between microbiomes of
cervical cancer and control samples. The model performance is evaluated through k-fold
cross-validation (K = 10) and repeated k-fold cross-validation with five repeats. The k-fold
and repeated k-fold CV scores are 0.926 and 0.971, respectively, and share no big difference
between the results (Supplementary file). The resultant model of repeated k-fold CV is
inputted into the SHAP model to understand the predictions. Two samples from the
dataset of each study group are randomly drawn for interpretation. The SHAP results of
cervical cancer and control samples are depicted in Figures 10 and 11, respectively. The
X-axis represents the taxonomic label, and the contribution of each feature is provided
as a probability score in the Y-axis. The top bar plot of Figures 10 and 11 visualizes
the importance of each feature contributing to predicting a particular class in terms of
SHAP values.
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Figure 11. The SHAP explanations for the healthy control group, where the bar plots represent
feature significance using SHAP values and feature breakdowns, respectively. The green patterns
illustrate the substantial increase in average response for each feature.

Similarly, the bottom bar plot provides each feature breakdown contributing to the
correct prediction of the corresponding sample class. Each feature’s negative and positive
impact on the predictions is represented in red and green. The green bar indicates the
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increase in the average response of each feature, whereas the red bar denotes the decreasing
pattern. The intercept value is the average response score; in the current model, it is 0.453.

The increased Ralstonia at the genus level, Chitinophagaceae, and Rhizobiaceae Family
level positively impacted the sample prediction as cervical cancer, provided at the top of
Figure 10. The breakdown figure at the bottom provides the positive contribution of each
microbiome in the prediction. This inference exhibits the importance of the microbiomes
mentioned above in classifying cervical cancer individuals. The analysis of the control sam-
ple in Figure 11 determined that the decreased count of Streptococcus, Ralstonia, Pseudomonas,
and Brevundimonas at the genus level positively correlated with the control sample.

Ralstonia and Rhizobiaceae were observed in both predictions. However, the decrease in
the count of these microbiomes contributed to the control sample prediction. The prediction
probability confidence of the model on the cervical cancer sample is 0.07, and the control
sample is 0.85, with class label values 0 and 1, respectively. Figure 12 depicts the ROC curve
of the random forest model at the top, with a score of 1. The reverse cumulative distribution
curve at the bottom indicates that most residuals fall below 0.1. This phenomenon occurs
when the dataset contains many features, assigning varying contributions to every feature.
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4. Discussion

Characterization of the microbiome is essential to untangle the disease etiology. Mi-
crobial dysbiosis is a crucial factor associated with disease dynamics, also evident in
accurate diagnosis of the condition. This study analyzed the vaginal microbiome of
65 cervical cancer and 54 healthy samples to discern microbial pathogenicity. The taxon
abundance assessment at different levels determined unique microbial patterns exhibiting
clear discrimination between the case and control groups. Firmicutes, Actinobacteria, and
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Proteobacteria, are abundant at the Phylum level. Lactobacillus genera are elevated when
compared to Gardnerella and Streptococcus. In much literature, the influence of Lactobacillus
on cervical cancer is reported [42,43]. Lactobacillus iners showed higher abundance in
cervical samples over control (Figure 4). The oncogenic nature of Lactobacillus iners in
cervical cancer was delineated in a microbial study [44]. Other abundant species, such
as Prevotella timonensis [45,46], Gardnerella vaginalis [47], and Streptococcus anginosus [48],
confirmed microbial pathogenicity.

The diversity and richness analysis identified a decline in the cervical cancer microbial
community, calculated by Shannon and Chao index. The Bray–Curtis distance measure was
used to quantify the compositional dissimilarity of the microbiome, visualized using PCoA.
The plot displayed a distinct cluster pattern among the vaginal microbial communities of
cervical cancer and healthy control groups with p-value: 0.001, R2: 0.027, and F-value: 3.269
(Figure 6). LEfSe predicted enriched taxonomical units at a different level. Lactobacillus
iners ranked top, followed by Pseudomonas, Streptococcus, and Enterococcus, describing the
pathogenic association with cervical cancer. Proteobacteria, Rhizobiaceae, and Bacteriodota
were highly enriched in the control group.

The differentially expressed taxa were calculated to perform disease-functional en-
richment of microbiomes. The disease association of the enlisted taxa reported aerobic
vaginitis, bacterial vaginosis, and chlamydia. Prolonged exposure to the pathogenic bacte-
rial environment increases the risk of developing cervical cancer [49]. Another dimension
of this study scrutinized the influence of each microbe contributing to the discrimination of
cervical cancer and control samples. It examined the importance of each feature and its
impact on prediction through SHAP values. The dataset was trained with a random forest
ensemble classification algorithm. The prediction result of the model was interpreted using
the SHAP algorithm. Increased Ralstonia impacted the prediction of the sample as cervical
cancer with a higher probability (0.056) [50].

Conversely, the highly pathogenic taxa, Streptococcus [51], has a minor abundance
contributing to the prediction (0.058) of the control sample, followed by Ralstonia (0.057).
The reverse cumulative distribution curve indicates that the features lie below 0.1, impacting
the predictions (Figure 12). The lesser value is due to many features (594) in the database.
This study unveiled many potential pathogenic vaginal microbiomes causing a detrimental
effect on individuals. Meanwhile, there exist many factors involved in the disease condition.
Multi-omic studies on cervical cancer will further broaden the understanding of the disease
etiology. Clinical informatics, combined with artificial intelligence, makes personalized
medicine possible in the near future to treat complex diseases through effective mechanisms.

5. Conclusions

This study identified the dominance of Lactobacillus iners species in the vaginal mi-
crobiome of cervical cancer samples. The imbalance in microbial distribution is observed
during α diversity analysis. Lactobacillus, Gardnerella, Pseudomonas, and Enterococcus are
abundant at the genus level in cervical cancer. The microbiome disease association en-
richment detects increased susceptibility with aerobic vaginitis, bacterial vaginosis, and
chlamydia. These diseases have a direct coalition with cervical cancer and other severe
vaginal infections. The discriminative evidence to classify healthy and cervical cancer
group samples is deliberated with the SHAP model. The explainable approach identifies
Ralstonia as a microbial predictor marker. The increased composition of Ralstonia impels
the model to predict the sample as cervical cancer. Though Ralstonia is not reported as
highly prevalent in cervical cancer, this inference unveils the decisive characteristics of the
marker. Thus, the current findings invigorate the development of probiotics as targeted
therapeutics for effective treatment. The following limitation is identified and reported in
the present work. This study delineates the microbiome information of a single dataset,
and though it is valid, a comparative analysis cannot be conducted. In the future, this study
could be further extended by adding more datasets to demonstrate and benchmark the
results, thereby ensuring in-depth validation of the findings.
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