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Abstract: Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are recognized 
as part of a disease continuum (FTD-ALS spectrum), in which the most common genetic cause is 
chromosome 9 open reading frame 72 (C9ORF72) gene hexanucleotide repeat expansion. The clini-
cal phenotype of patients carrying this expansion varies widely and includes diseases beyond the 
FTD-ALS spectrum. Although a few cases of patients with C9ORF72 expansion and a clinical or 
biomarker-supported diagnosis of Alzheimer’s disease (AD) have been described, they have been 
considered too sparse to establish a definite association between the C9ORF72 expansion and AD 
pathology. Here, we describe a C9ORF72 family with pleomorphic phenotypical expressions: a 54-
year-old woman showing cognitive impairment and behavioral disturbances with both neuroimag-
ing and cerebrospinal fluid (CSF) biomarkers consistent with AD pathology, her 49-year-old brother 
with typical FTD-ALS, and their 63-year-old mother with the behavioral variant of FTD and CSF 
biomarkers suggestive of AD pathology. The young onset of disease in all three family members 
and their different phenotypes and biomarker profiles make the simple co-occurrence of different 
diseases an extremely unlikely explanation. Our report adds to previous findings and may contrib-
ute to further expanding the spectrum of diseases associated with C9ORF72 expansion. 
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1. Introduction 
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) can nowa-

days be regarded as the two opposite poles of a disease continuum (FTD-ALS) sharing a 
common histopathological and genetic background. Chromosome 9 open reading frame 
72 (C9ORF72) gene GGGGCC hexanucleotide repeat expansions represent the most com-
mon genetic cause of disease presentation along the FTD-ALS spectrum, accounting for 
25% of the familial cases of FTD, 38% of the familial cases of ALS and for up to 88% of the 
familial cases with both ALS and FTD [1,2]. 

C9ORF72-associated diseases are strongly characterized by TAR DNA-binding pro-
tein 43 (TDP-43) pathology. Combined mechanisms of loss-of-function and gain-of-func-
tion are now thought to act synergically to finally induce neurodegeneration and 
C9ORF72-related toxicity. On the one hand, the reduced expression of normal C9orf72 
protein by the expanded allele would be responsible for haploinsufficiency. On the other 
hand, the accumulation of repeat-containing RNA foci leads to dysregulation of gene ex-
pression, sequestration of RNA-binding proteins, and defects in RNA metabolism. 
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Additionally, pathological RNAs determine the production of abnormal dipeptide repeat 
proteins (DPRs), which are highly prone to aggregation [3]. 

There is no clear consensus about the cut-off to discriminate between normal repeat 
alleles and pathogenic expanded repeats and the exact threshold at which neurodegener-
ation processes begin has not been established. In most healthy control cohorts, the range 
of repeats has been shown to be between two and twenty copies, while a number of more 
than thirty repeats is usually considered pathogenic. Moreover, the repeat is unstable in 
somatic tissues and this can lead to somatic mosaicism, with different lengths of the ex-
pansion between tissues in the same individual [4]. 

The clinical phenotype of patients carrying a C9ORF72 repeat expansion can be re-
markably heterogeneous, not only between, but also within families. The age of disease 
onset can range from 27 to 83 years-old and the duration of disease variably ranges from 
1 to 22 years [4]. It has been suggested that genetic modifying factors such as the size of 
the GGGGCC expanded repeat may affect the age of onset and disease duration, though 
convincing evidence is still lacking [5]. Several studies have noted earlier disease onset in 
subsequent generations, consistently with genetic anticipation [6]. The most common clin-
ical phenotypes associated with C9ORF72 repeat expansions are the ones of the FTD-ALS 
spectrum, particularly the behavioral variant form (bvFTD), ALS, and the mixed forms 
FTD-ALS [1]. However, language predominant presentations of FTD (i.e., the nonfluent 
variant and the semantic variant of primary progressive aphasia—nfvPPA and svPPA) 
and a wide range of other neurodegenerative diseases have also been reported, including 
Huntingtonʹs disease phenocopies and atypical parkinsonism [7–9]. Case reports of 
C9ORF72 repeat expansions in patients with Parkinsonʹs disease (PD) have also been de-
scribed [10] and a possible role for intermediate repeat copies as a risk factor for PD has 
been suggested [11,12]. 

Studies exploring the role of C9ORF72 repeat expansions in Alzheimer’s disease (AD) 
through genetic screening have shown that C9ORF72 repeat expansions are present only 
in small percentages of large cohorts of sporadic and familial clinically-diagnosed AD pa-
tients, and most often in young onset AD or atypical presentations [13–23]. Most of these 
cases were attributed to misdiagnoses or fortuitous associations, and this was partly con-
firmed by autopsy studies of expansion carriers with a clinical diagnosis of AD, which 
revealed either isolated FTD-related pathology or FTD with concomitant AD pathology 
[13,24]. Patients were therefore frequently reclassified as atypical FTD rather than AD in 
the light of this genetic evidence. However, cases also exist of pathology-proven AD pa-
tients carrying C9ORF72 repeat expansion. In particular, Kohli et al. examined the geno-
type of 1475 clinically diagnosed AD patients and relatives and found 11 patients with 
C9ORF72 repeat expansion. Of those cases, three revealed neuropathology consistent with 
AD in the post-mortem analysis. Interestingly, all three cases were found to carry a low 
number of repetitions (42, 42, and 43, respectively) [25]. To date, these findings have been 
considered too sparse to establish a definite causative association between the C9ORF72 
repeat expansion and the development of AD dementia, especially because the penetrance 
of C9ORF72 repeat expansion is incomplete and to be determined yet [1]. Moreover, the 
molecular role of the C9ORF72 expansion in amyloid metabolism is unknown. 

Here we describe the case of a patient with acute cognitive impairment and behav-
ioral symptoms heralding a C9ORF72 expansion, with diagnostic assessment suggestive 
of underlying AD pathology and significant family history of neurodegenerative diseases, 
including both dementia and motor neuron disease. 

2. Case Presentation 
A 54-year-old Caucasian woman with an unremarkable past medical history pre-

sented to the emergency department due to a 2-day lasting headache, nausea, and di-
plopia. Magnetic resonance imaging (MRI) scan evidenced pituitary macroadenoma with 
signs of pituitary apoplexy and blood tests detected central hypoadrenalism. The patient 
was treated with substitution therapy, with clinical benefit and almost complete recovery 
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from diplopia. She underwent periodic controls with MRI scans which showed a progres-
sive reduction of the macroadenoma and no need for surgical therapy. However, since the 
admission the patient exhibited an abrupt onset of psychotic symptoms, including psy-
chomotor agitation, delusions, hallucinations, and anxiety, which gradually weaned with 
antipsychotic therapy. Despite some lifelong peculiarities in the patient’s personality, re-
ported by her husband and father, her previous history revealed neither clear-cut psychi-
atric disturbances nor memory or behavioral complaints. The neuropsychological evalu-
ation revealed severe deficits in all cognitive domains, except for short-term verbal 
memory (Table 1, Time A). After discharge, behavioral disturbances underwent a signifi-
cative improvement, and antipsychotic treatments were progressively discontinued, 
while memory impairment persisted. Indeed, neuropsychological evaluation two months 
later showed a diffuse involvement of almost all cognitive domains, with constructive 
apraxia, reduction of short-term verbal memory span, alteration of the attentive-executive 
functions, learning deficits of verbal, spatial, and visual material (Table 1, Time B). Ante-
rograde verbal memory dysfunctions were the most prominent element, and the Free and 
Cued Selective Reminding Test (FCRST) showed a reduction of both free and total recall, 
with poor cue efficiency. Moreover, significative anosognosia for cognitive deficits was 
detected. Although cerebrospinal fluid (CSF) examination excluded infectious or autoim-
mune causes, biomarkers dosage revealed elevated total-tau (t-tau 445 pg/mL, normal 
value (n.v.) <400 pg/mL), elevated phosphorylated-tau (p-tau 65.8 pg/mL, n.v. <56.5 
pg/mL), decreased amyloid-β peptide 1-42 (Aβ1-42 406 pg/mL, n.v. >600 pg/mL), and de-
creased Aβ1-42/Aβ1-40 ratio (0.052, n.v. >0.069 pg/mL) (Table 2). These results were con-
sistent with AD pathology. CSF light chain neurofilaments (NfL) were 795 pg/mL (Table 
2). Imaging biomarkers further supported the diagnosis, revealing bilateral, left predom-
inant parietal lobe atrophy on structural MRI (Figure 1A,B) and significant left predomi-
nant parietal cortical hypometabolism on 18-fluorodeoxyglucose positron emission to-
mography (18-FDG-PET) (Figure 1E,F). These imaging findings are consistent with the 
pattern of atrophy and hypometabolism seen in AD. The patient underwent Next Gener-
ation Sequencing (NGS) genetic testing for the principal known genes associated with 
both to AD and FTD-ALS spectrum (i.e, AARSI, ALS2, ANG, ANXA11, APSZI, APEXI, 
ARHGEF28, ARPP2I, ASAFI, ATXN2, BAG3, BSCL2, CFAP410, CHCHD10, CHMP2B, 
CRYM, CXP2TAI, CYP7BI, DAO, DCINI, DHTKDI, DPP6, ELP3, EPHA4, ERBB4, FIG4, 
FUS, GARSI, GRN, HNRNPAI, EINRNPALBI, FINRNPA3, HSPBI, HSPB3, WISPB8, 
IGHMBP2, KIF5A, KIFSB, KIFSC, MAPT, MATR3, MEN2, NEFIt, NEKI, OPTN, PENI, 
PNPLA6, PRNR, PRPH, PSENI, PSEN2, REEP1, SETX, SIGMARI, SODI, SPAST, SPGII, 
SPG2I, SPG7, SPTLCI, SQSTMI, TAFIS, TARDBP, TREM2, IRPY4, TUBA4A, UBOLN2, 
VAPB, VCP, 2FYVE26), whereas C9ORF72 status was determined by repeat primed PCR 
as described previously [26], founding a positive result for C9ORF72 expansion (51 re-
peats). Cholinesterase inhibitor was commenced on the basis of the imaging and CSF bi-
omarkers. Follow-up overtime (for more than 2 years now) showed a slow progression of 
memory and visuospatial abilities. The patient remains completely unaware of her dis-
turbances and has not had any relapse of psychotic symptoms. To date, she has not devel-
oped motor signs. 

Table 1. Patient’s Neuropsychological Assessment. 

 Time A Time B Normal Values 
Language    
Boston Naming Test 41.85 50.85 ≥43 
Semantic fluency 32.95 36.95 >32.92 
    
Visuospatial processing    
ROCF copy n.e. 25.34 >27.995 
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Short-term memory    
Digit Span 5 3 ≥4 
Corsi Span 3 4 ≥4 
    
Anterograde memory    
Babcock story 1.08 4.08 ≥15.76 
Verbal paired-associate learning 1.84 3.34 ≥8.73 
FCSRT immediate recall n.e. 10.09 ≥21.26 
FCSRT total recall n.e. 22 ≥40 
FCSRT ISC n.e. 0.35 ≥0.61 
ROCF delayed recall n.e. 8.38 >6.195 
    
Executive functions    
Cancellation test n.e. 25 ≥30 
Phonemic fluency 16.04 21.04 >18.68 
RCMP n.e. 21.50 >20.75 
WAIS similarities 4 6 ≥8 
FAB 10.1 13.3 ≥13.5 
Stroop—time  120.25 19.75 ≤36.91 
Stroop—errors 6.5 9 ≤4.23 
TMT—A  n.e. 60 ≤94 
TMT—B n.e. 470 ≤283 
TMT—B-A n.e. 420 ≤187 
Proband’s neuropsychological assessment at time A (at onset, during hospitalization) and time B 
(two months after discharge). ROCF: Rey-Osterrieth Complex Figure. FCSRT: Free and Cued Selec-
tive Reminding Test. ICS: Index of Sensitivity of Cueing. RCMP: Raven’s Coloured Progressive Ma-
trices. FAB: Frontal Assessment Battery. TMT: Trail Making Test. N.E.: not executable. 

Table 2. Biomarkers profile. 

 Patient Mother HC 
t-tau 445 422 <400 
p-tau 65.8  43.4 <56.5 
Aβ1-42 406 454 >600 
Aβ1-42/Aβ1-40 ratio 0.052 0.058 >0.069 
NfL CSF 795 3778 n.a. 
Biomarker profile for the proband and her mother. t-tau: total tau protein; p-tau: phosphorylated 
tau protein; Aβ1-42: Aβ amyloid peptide 1-42; Aβ1-40: Aβ1 amyloid peptide 1-40; NfL: light chain 
neurofilaments; CSF: cerebrospinal fluid; HC: healthy controls. 
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Figure 1. Structural and functional imaging of the proband and her mother. Brain axial T1 MRI scan 
of the proband showed bilateral hippocampal atrophy (A) and bilateral, left-predominant frontopa-
rietal (B) atrophy. Brain axial T1 MRI scan of the proband’s mother showed bilateral anterior tem-
poral (C) and frontoparietal atrophy (D). Brain 18-FDG-PET scan of the proband showed bilateral, 
left predominant temporoparietal hypometabolism (E,F). 

The patient’s family history was highly significant for neurodegenerative diseases. 
Her mother had been diagnosed with bvFTD at the age of 63 (Figure 2II2). She had devel-
oped progressive apathy and social withdrawal, compulsive behaviors, hyperorality, and 
extensive cognitive deficits involving executive functions, language, and memory. Her 
structural MRI documented bilateral anterior temporal and frontoparietal atrophy (Figure 
1C,D), while CSF examination revealed biomarkers suggestive of AD pathology (t-tau 422 
pg/mL, p-tau 43.4 pg/mL, Aβ1-42 454 pg/mL, Aβ1-42/Aβ1-40 ratio 0.058). CSF NfL was 
3778 ng/mL (Table 2). She died at the age of 69, 8 years after symptoms onset, due to com-
plications of dementiaʹs advanced stages. The patient’s brother had been diagnosed with 
bvFTD associated with ALS (FTD-ALS) at the age of 49 (Figure 2III2) and had been found 
to carry a C9ORF72 hexanucleotide repeat expansion. His medical history had started at 
the beginning of his forties with impulsive and careless behaviors, irritability, loss of in-
terest in personal care, dietary changes, and complete social withdrawal, with anosogno-
sia for these disturbances. In the following years, he subsequently developed apathy and 
progressive motor impairment, firstly involving the upper limbs for the left more than the 
right, and then lower limbs, distally more than proximally. The neuropsychological eval-
uation showed cognitive impairment in almost all domains, with prominent involvement 
of executive functions and sparing of short-term verbal memory. Neurophysiological as-
sessments revealed diffuse signs of upper and lower motor neuron dysfunction, leading 
to a diagnosis of FTD-ALS. The patient died due to respiratory insufficiency at the age of 
49, 18 months after motor symptoms onset. Finally, the patient’s maternal grandmother 
had been diagnosed with Parkinson’s disease (Figure 2I2). CSF samples of the brother and 
DNA samples of the mother and grandmother were not obtained. 
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Figure 2. Pedigree of the family: the filled symbols indicate the affected individuals, with black in-
dicating Amyotrophic Lateral Sclerosis, dark grey indicating Dementia, and light grey indicating 
Parkinson’s Disease. Roman numerals (I, II, III) indicate the generation within the pedigree. Availa-
ble DNA samples are indicated by asterisks (*); available CSF samples are marked with §; proband 
(III-1) is marked with an arrow. 

3. Discussion 
We describe a family carrying a C9ORF72 repeat expansion with different clinical 

expressions, including a case with a bvFTD-ALS phenotype (the proband’s brother) and 
a case with dementia with clinical and radiological features suggestive of bvFTD as well 
as some CSF biomarkers consistent with AD (the proband’s mother). Additionally, and 
more surprisingly, the proband of this family is a young woman carrying a 51-repeats 
expansion in the C9ORF72 gene with rapid onset of severe cognitive impairment and be-
havioral disturbances with both neuroimaging and CSF biomarkers strongly consistent 
with AD pathology. Interestingly, levels of NfL in CSF differed between the proband and 
her mother. The latter showed a significative increase in NfL levels, consistent with FTD-
related pathology and then supportive of a bvFTD clinical diagnosis, while the proband 
presented only a moderate rise, which does not suggest underlying pathology of the FTD 
spectrum, although NfL age-specific and disease-specific reference values have not been 
established yet [27]. 

The association between C9ORF72 repeat expansions and AD pathology remains un-
clear and is mainly based on the sporadic identification of the expansion in cohorts of 
patients clinically diagnosed with AD and on its even rarer identification in pathologically 
proven cohorts of AD [13,24]. Some single case reports describe patients carrying the 
C9ORF72 repeat expansion with clinically diagnosed AD, supported by functional neu-
roimaging and/or amyloid-PET [28,29]. In one of these cases, a 61-year-old woman with 
symptoms consistent with AD and positive amyloid-PET was found to have an interme-
diate repeat expansion (between 12 and 38 repeats), highlighting how the problem of so-
matic mosaicism can make it even harder to understand the causal role of this genotype 
on the clinical picture [29]. Another report described a patient with a mixed clinical phe-
notype, presenting both symptoms consisting of AD and bvFTD, who had a positive am-
yloid-PET and was found to have a C9ORF72 repeat expansion. However, this case also 
had a past medical history of traumatic brain injury with subsequent encephalomalacia in 
the left frontal and right temporal lobes, suggesting a possible co-pathology of FTD-re-
lated pathology and chronic traumatic encephalopathy [30]. Among the studies on cohorts 
with clinical AD also supported by CSF biomarkers, only one reported 3 cases in whom 
C9ORF72 expansion was identified: they were interpreted by the authors as cases of FTD 
and AD co-pathology [31]. Conversely, in C9ORF72 cohorts in which the CSF biomarkers 
profile was investigated, isolated abnormal levels of either Aβ1-42, t-tau, or p-tau were 
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found, and none of these cases presented with clinical features suggestive of AD [32,33]. 
Of these series, neuropathological confirmation was available only in one case with de-
creased Aβ1–42, and it revealed TDP-43 neuropathology without amyloid- or tau-pathol-
ogy. Neuropathological studies of patients with C9ORF72 repeat expansions found AD 
pathology to a very limited extent: in these patients, tau pathology was more common 
than amyloid pathology [32,34,35]. In one of these studies, the authors suggested that the 
expansion in the C9ORF72 gene may involve disrupted protein degradation that favors 
the accumulation of multiple different proteins [34]. 

Our report adds to previous studies by giving further elements that may contribute 
to improving the understanding of the complex relationship between AD and C9ORF72. 
First, the presence of two diseases belonging to the FTD-ALS spectrum in the same family 
supports the idea that the C9ORF72 expansion documented both in our proband and her 
brother is genetically transmitted and not simply found fortuitously. Secondly, the possi-
bility of misdiagnosis of AD in our proband is unlikely: although the clinical presentation 
was atypical because of the apparently “acute” onset and the prominence of behavioral 
and psychotic symptoms along with cognitive disturbances, the whole combination of 
clinical and neuropsychological profile and biomarker-based elements supported the AD 
diagnosis. These include the pattern of atrophy and hypometabolism in MRI and FDG-
PET respectively, and the neuropsychological performance on memory tests, which doc-
umented memory difficulties that did not benefit from semantic cueing, suggesting a def-
icit of encoding (i.e., the hippocampal-related memory deficit typical of AD) rather than 
retrieval (i.e., the executive dysfunction typical of bvFTD). Moreover, the acute event of 
pituitary apoplexy and consequent hospitalization could have significantly impacted the 
clinical presentation, resulting in an apparently abrupt onset. Moreover, the 2-year clinical 
and neuropsychological follow-up of the patient has shown, so far, a slowly progressive 
prominent decline in memory and visuospatial abilities, without relapses of psychotic 
symptoms, which is consistent with AD clinical progression of the disease. Finally, the 
very young age of onset in our proband makes the possibility of a fortuitous co-occurrence 
of the two different diseases (AD and FTD) very unlikely, since the presence of co-pathol-
ogies is age-dependent and unexpected at that age [36,37]. The case reported by Saint-
Aubert et al. of a 65-year-old woman with the logopenic variant of PPA, positive amyloid 
biomarkers, and the presence of a pathological expansion of the C9ORF72 gene [38] also 
goes against the hypothesis of a coincidental pathology of diseases that are rare at young 
ages. Nonetheless, the hypothesis that in our case both AD and FTD-related (i.e., TDP-43) 
pathology, each one driven by C9ORF72 expansion, could have contributed to the pleo-
morphic clinical presentation could not be excluded a priori. 

Taken together, these elements suggest a potential association between the C9ORF72 
expansion and the development of a clinical and pathological AD phenotype and are in 
line with studies suggesting that the expansion may play a role in amyloid deposition. 
C9ORF72 has been shown to be expressed in dystrophic neurites that accumulate on senile 
plaques in the AD brain [39]. Some studies found that an increase in the number of normal 
repeats in the C9ORF72 gene is significantly associated with a decrease in C9ORF72 tran-
scriptional activity, due to the increased methylation of the CpG sequence and transcrip-
tional silencing of the promoter, suggesting that intermediate repeat copies may promote 
neurodegeneration through a loss of function mechanism [40,41]. However, studies on the 
association between neurodegenerative diseases other than FTD-ALS (including AD) and 
an intermediate repeat of C9ORF72 expansion have so far given contradictory results [42–
44]. In addition, C9orf72 deficiency seems to alter microglial function, which is known to 
modulate neurodegeneration. In particular, Lall et al. found that the decreased expression 
of C9orf72 in microglia determines a transition to an inflammatory state and enhances 
synapse loss and neuronal deficits in aged and AD mouse models, leading to cognitive 
deficits [45]. Testing C9orf72 deficiency in a mouse model of amyloid-β deposition showed 
that the altered functional status of C9orf72-/- microglia inhibits the growth of extracellu-
lar amyloid-β plaques while paradoxically also enhancing synaptic loss, memory deficits, 
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and neuronal damage [46]. Finally, Leskela et al. found a correlation between decreased 
levels of C9orf72 and altered expression of amyloid-β protein precursor and amyloid-β 
[47]. 

In conclusion, over the years a number of patients with AD diagnosed clinically and 
pathologically and also carrying the C9ORF72 hexanucleotide repeat expansion have been 
described. In addition, some cell-based studies have found early evidence of an associa-
tion between C9ORF72 haploinsufficiency and AD neuropathology. These findings make 
the hypothesis of AD-related pathology due to C9ORF72 repeat expansion plausible. Our 
case further strengthens this idea, by reporting a family carrying the C9ORF72 expansion 
in which typical phenotypes of the FTD-ALS spectrum co-occur with clinically and bi-
omarker-diagnosed AD. From a clinical point of view, it contributes to expanding the 
spectrum of possible C9ORF72-associated diseases and suggests that young AD patients 
with an indicative family history should also be screened for FTD genes. 
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