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Abstract: Circular RNAs (circRNAs) are a newly discovered class of endogenously expressed non-
coding RNAs (ncRNAs). They are highly stable, covalently closed molecules that frequently exhibit
tissue-specific expression in eukaryotes. A small number of circRNAs are abundant and have been
remarkably conserved throughout evolution. Numerous circRNAs are known to play important
biological roles by acting as microRNAs (miRNAs) or protein inhibitors (‘sponges’), by regulating the
function of proteins, or by being translated themselves. CircRNAs have distinct cellular functions
due to structural and production differences from mRNAs. Recent advances highlight the importance
of characterizing circRNAs and their targets in a variety of insect species in order to fully understand
how they contribute to the immune responses of these insects. Here, we focus on the recent advances
in our understanding of the biogenesis of circRNAs, regulation of their abundance, and biological
roles, such as serving as templates for translation and in the regulation of signaling pathways. We
also discuss the emerging roles of circRNAs in regulating immune responses to various microbial
pathogens. Furthermore, we describe the functions of circRNAs encoded by microbial pathogens that
play in their hosts.

Keywords: noncoding RNA; circRNAs; insects; immune responses; host–pathogen interaction

1. Introduction

A large portion of the genome of living organisms is transcribed but not translated
into proteins. For example, only 2% of RNA transcripts are translated into proteins in
humans [1]. In recent years, it has been demonstrated that RNA transcripts that lack
the ability to encode proteins play an important biological role in regulating various
physiological processes. These transcripts are referred to as non-coding RNAs (ncRNAs),
and they are divided into two major groups based on their functions, which are regulatory
ncRNAs and structural ncRNAs [2]. Structural ncRNAs include transfer RNA (tRNA) and
ribosomal RNA (rRNA). In both prokaryotic and eukaryotic cells, rRNAs are essential
components of ribosomes, where they can be a physical component of both large and small
subunits [3]. tRNAs consist of 76 to 90 nucleotides and are involved in the protein synthesis
process by acting as a structural component along with mRNA and ribosomal RNA to
form a polypeptide chain [4]. Regulatory ncRNAs are categorized into two main groups
based on their size: small non-coding RNAs that are less than 200 nucleotides in length
and long non-coding RNAs that are greater than 200 nucleotides in length [5,6]. Small
regulatory RNAs have been identified in a variety of forms, with microRNAs (miRNAs),
piwi interacting RNAs (piRNAs), and endogenous small-interfering RNAs (siRNAs) being
the groups that have received the most attention from the researchers [7].

Circular RNAs are a large group of endogenous ncRNAs that are generated during a
non-canonical splicing event called back-splicing. Back-splicing involves the formation of
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a covalent link between a downstream splice-donor site and an upstream splice-acceptor
site. Despite the fact that they are not produced through a back-splicing mechanism,
viroids were the first circRNA molecules to be discovered more than 40 years ago [8]. An
electron microscopy analysis of cytoplasmic fractions of animal cell lines later revealed the
presence of circRNAs in the cells [9]. At the time, only the testis-specific circRNA from the
sex-determining region Y (Sry) gene was thought to have a function in mouse testis [10].
However, prior to this discovery, the vast majority of these circRNAs were thought to be
‘junk’ produced via aberrant splicing events [11]. Thousands of circRNAs in eukaryotes
have been identified in recent years using high-throughput RNA sequencing (RNA-seq)
and circRNA-specific bioinformatics algorithms. These circRNAs have been found in both
invertebrates (e.g., fungi, protists, plants, worms, and insects) and vertebrates (e.g., fish and
mammals) and have been demonstrated to have tissue-specific expression patterns [12–18].

A growing body of evidence, aided by cutting-edge sequencing and annotation tech-
nologies, has shed light on the biological role of circRNAs in a variety of physiological
and pathological processes in living organisms [19–22]. CircRNAs play crucial functions in
innate immune responses to a variety of pathogens [23]. Furthermore, circRNAs, which
appear to regulate immune responses during microbial infection, are aberrantly expressed
in invertebrates, including insects [24]. Despite the fact that the importance of circRNAs in
invertebrates’ and vertebrates’ physiological functions is well established, research into
their involvement in the immunological functions of insects is still in its infancy. Therefore,
circRNAs research will not only improve our understanding of the molecular mechanisms
underlying microbial infection, but will also provide future management strategies to con-
trol disease outbreaks among commercial insects as well as to control insect pests. In this
review, we describe newly discovered circRNAs implicated in gene expression regulation
during host–pathogen interactions. We also highlight future research perspectives.

2. Biosynthesis of CircRNAs

Circular RNAs were discovered in RNA viruses for the first time by a group of
researchers in 1976 [8]. CircRNAs have since been discovered in eukaryotic cells and yeast
mitochondria [9,25]. As a result of recent advances in molecular techniques, including high-
throughput sequencing technology and microarray techniques, researchers have recently
discovered a diverse range of circRNAs in various organisms in nature. CircRNAs are
typically produced through ‘back-splicing’ events that occur mainly after the synthesis of
precursor messenger RNAs (pre-mRNAs), in which a downstream 5′ splice donor is linked
to an upstream 3′ splice acceptor via a 3′→5′ phosphodiester bond [26,27]. CircRNAs
are classified into three types based on their components: exonic circular RNAs [28],
intronic circular RNAs [29], and exon–intron circular RNAs [30], with exonic circular RNAs
accounting for the vast majority of the total. The biosynthesis of circRNAs is mainly
dependent on cellular splicing machinery [31]. In contrast, in Drosophila melanogaster
cells, inhibiting the spliceosome by depleting components of the U2 snRNP resulted in an
increase in the ratio of circular to linear RNAs [32]. Therefore, it has been proposed that by
slowing down pre-mRNA processing events, nascent RNA can be directed to alternative
pathways that facilitate back-splicing [32]. A similar observation was demonstrated in
another study on D. melanogaster, where splicing factor depletion was found to result in an
increase in the level of circRNAs. Because additive effects were observed when multiple
factors were depleted, it appears that each splicing factor may play an essential but non-
redundant biological role in the formation of circRNAs [33]. A number of biogenetic
pathways might be involved in the production of circRNA, including a complementary
sequence-mediated circularization pathway, a lariat-driven circularization pathway, and an
RNA-binding protein-mediated circularization pathway [34]. Some introns, such as Alu
elements, which include both splice sites and flanking inverted complementary repeats,
have been discovered to be required for the circularization of the intervening exons in cells.
In addition, intronic complementary sequences (ICSs) and RNA-binding proteins (RBPs)
have a role in circRNA generation regulation [35]. To facilitate back-splicing, the intronic
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repeat sequences must be base-paired with each other. Notably, when a pre-mRNA contains
multiple intronic repeat sequences, the competitive pairing between the repeat sequences
results in alternate circularization, which influences the splicing process [36]. A single gene,
for example, may end up producing a variety of distinct circRNA transcripts as a result of
this alternate circularization [37]. Exon skipping is another method of circRNA production
in which a lariat precursor with one or more skipped exons is initially produced [38,39].
The lariat then removes its own internal intron sequences, resulting in the production of
a mature circRNA and a double lariat. In certain circumstances, the intervening introns
within the encircled exons are not removed, resulting in the generation of the exon–intron
circular RNA [27]. Additionally, some RNA-binding proteins, such as the muscle blind,
nuclear factor 90/nuclear factor 110 (NF90/NF110), and alternative splicing factor Quaking
(QKI), have been found to increase back-splicing events by strengthening the interaction
between upstream and downstream introns [40–42]. CircRNAs are generated by intron
lariats that cannot be degraded or debranched, and they lack linear 3′ tails [29]. Despite the
fact that the models described above provide some insight into the molecular mechanism of
the circRNA generation, more research is needed to precisely understand the mechanisms
underlying the process (Figure 1).
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3. Functional Mechanism of CircRNAs

The circRNAs appear to be a diverse class of non-coding regulatory RNAs with a
diverse range of functions, localization, and characteristics [43,44]. The biological roles of
circRNAs are likely to be determined by their subcellular localization, i.e., in the nucleus
or cytoplasm. The research shows that circRNAs can not only regulate the expression of
genes in the nucleus, but they can also act as decoys for miRNAs and proteins, as well as
create scaffolds for the formation of circRNA–protein complexes. There is evidence that
certain circRNAs may act as templates for translation or as sources for the generation of
pseudogenes [43,45,46]. Here, we describe the molecular functions of circRNAs and the
roles they play in the nucleus and cytoplasm.

3.1. Functions of CircRNAs in the Nucleus

CircRNAs play a diverse biological role in the nucleus of a cell, including chro-
matin looping, transcription regulation, and alternative splicing [30,47–49]. For example,
Conn et al. [47] discovered a circRNA called circSEP3 in the cell nucleus of Arabidopsis
thaliana, which has been shown to be involved in modulating the splicing of SEPALLATA3,
a homeotic MADS-box transcription factor important for floral homeotic phenotypes. In
this particular example, circSEP3 is generated from exon 6 of SEP3, and it forms an RNA–
DNA hybrid with its cognate DNA. This causes a pause in the transcription process, which
is then followed by exon 6 skipping, resulting in an alternative splicing of SEP3 mRNA.
In Zea mays, RNAs transcribed from centromeric retrotransposons were shown to have
back-splicing; the resulting circRNAs bind to centromeres and promote chromatin looping
by generating R-loops in these regions of the genome [49]. Therefore, it is important to
investigate which molecular mechanisms are involved in the retention of centromeric
circRNAs in the nucleus and how these circRNAs interact with the genome in order to
regulate gene transcription at the nuclear level.

3.2. Functions of CircRNAs in the Cytoplasm

Following their generation, most circRNAs are transported from the nucleus to the
cytoplasm. CircRNAs have been shown to play a variety of biological roles in the cytoplasm,
such as acting as decoys for miRNA, or serving as protein scaffolds, or sequestering proteins.
There are some circRNAs in the cytoplasm that serve as competing endogenous RNAs
(ceRNAs), which are defined as miRNA sponges that bind miRNAs, inhibiting them from
binding and suppressing their target mRNAs [50,51]. Despite concerns about the number
of ceRNAs and miRNA binding sites needed to be present to achieve a measurable effect
within a given cell, researchers believe that many abundant circRNAs can act as sponges for
miRNA [52,53]. In the mouse, circSry is possibly involved in the development of the testis
by sponging miRNAs since there are 16 target sites for miR-138 on circSry [11]. CircHIPK2
can act as a sponge for miR124-2HG in human cells and can regulate the activation of
astrocytes during endoplasmic reticulum stress and autophagy [54]. On the other hand, a
high expression of circHIPK3 either improves cell proliferation or governs insulin secretion
by acting as a sponge for a variety of miRNAs [55,56]. There have also been reports that
circRNAs frequently interact with different types of proteins during their life cycle [44]. The
following examples can be used to illustrate how circRNAs function as protein scaffolds.
The circFoxo3 gene is highly expressed in the cytoplasm of mouse cells and is associated
with the progression of the cell cycle. This is accomplished by interacting with the cell
cycle proteins cyclin-dependent kinase 2 (CDK2) and cyclin-dependent kinase inhibitor
1 (p21), resulting in the formation of the ternary complex circFoxo3–p21–CDK2 and the
inhibition of the CDK2 function, which is normally required for the progression of the cell
cycle [57]. It was proposed that circFoxo3 promotes cardiac-cell senescence by interacting
in the cytoplasm with the proteins that are associated with senescence, such as E2F1 and
ID-1, as well as proteins that are associated with stress, such as hypoxia-inducible factor
1α (HIF1α) and FAK, thereby preventing FAK from localizing to mitochondria or HIF1α
from translocating to the nucleus in stressed cells [58]. In addition, it has been shown that
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circACC1 can act as a metabolic adapter in response to serum deprivation by forming a
ternary complex with the AMPK β and γ regulatory subunits, promoting the enzymatic
activity of the AMP-activated protein kinase (AMPK), which acts as an enzyme in the AMPK
metabolic cycle [59]. Furthermore, exon–intron-comprising circRNAs play an important
biological role in the nucleus, which includes their ability to promote the transcription of
their parent genes by interacting with the U1 small nuclear ribonucleoproteins and with
Pol II at the promoters of their parent genes [30].

Many circRNAs can also exhibit the ability to sponge up proteins, which is an indi-
cation of their ability to bind proteins. By promoting the generation of circMbl, increased
expression of the multifunctional protein MBL leads to decreased production of the lin-
ear Mbl mRNA; as a result, circMbl sequesters MBL and prevents it from performing
other neural functions [40]. CircANRIL, which is associated with atherosclerotic cardio-
vascular disease, suppresses ribosome biogenesis in vascular smooth muscle cells and in
macrophages by binding to the essential 60S ribosome subunit assembly factor pescadillo
homologue 1, resulting in atherosclerosis-related nucleolar stress and cell death [60,61].
Finally, circPABPN1 is largely localized to the cytoplasm and inhibits the binding of the RBP
HuR (also known as ELAVL1) to its cognate linear PABPN1 mRNA, resulting in reduced
mRNA translation [62].

4. CircRNAs in Insects

CircRNAs, as with most other vertebrates and invertebrates, have been demonstrated
to exist in a wide range of insect species, particularly those whose entire genome has
been sequenced. Researchers have been able to identify novel circRNAs by revising or
discovering existing ones in recent years as the depth of sequencing platforms has in-
creased. CircRNAs of insects are involved in various aspects of insect biology, including
development [63], reproduction [64,65], metamorphosis [66,67], insecticide resistance, ag-
ing [68], life-span [69], and host–pathogen interactions and immunity [70,71], among others
(Figure 2). These potential functions imply that they could be key regulators of insect
physiological functions.
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5. CircRNAs in the Innate Immunity of Insects

CircRNAs in insects have not been extensively studied so far, so the majority of their
functions are still unclear. In insects, they may be produced in response to microbial
pathogen infection to regulate immune responses. CircRNAs have been shown to perform
biological functions in life processes in a variety of ways, such as miRNA sponges, protein
sponges, translation proteins, biomarkers, and so forth [72]. Here, we describe examples of
recent studies on circRNAs discovered in insects after microbial pathogen infection and
their possible biological role in host–pathogen interactions (Table 1).

5.1. CircRNAs in Anti-Viral Immunity

Viruses, in general, are pathogenic agents that can replicate within host cells if the
host cell provides the necessary resources. Because of this, viruses are considered to be
obligatory intracellular pathogens with limited coding capacity. There are significant
medical and economic costs associated with viruses that infect insects. So far, a large
number of studies and review articles have been published that address the insect innate
immunity and the molecules associated with immunity that is involved in the anti-viral
processes of insects [73–78]. However, the biological role of circRNAs in the regulation of
innate immunity during viral infection is still unknown.

Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a silkworm-specific viral
pathogen that can be transmitted via oral feeding [70,79,80]. The BmCPV specifically
infects the epithelial cells of the silkworm midgut, and as the disease progresses, white
wrinkles typically appear in the posterior part of the midgut. Consequently, the digestive
and absorption functions of the midgut are severely impaired [70,71]. Silkworms utilize
various defense mechanisms to inhibit or remove viral infections. A new class of ncRNAs
(circRNAs) was recently discovered in insects and has been reported to play an important
biological role in viral infection inhibition. Hu et al. [81] uncovered a novel biological
function of circRNAs in anti-viral immune responses. The authors discovered thousands of
circRNAs in BmCPV-infected and normal silkworm midguts, the vast majority of which
were conserved. Based on the differential gene expression, they proposed that most
of the circRNAs are up-regulated after BmCPV-infection in the midguts of silkworms.
Moreover, the silkworm immune system generates immunoglobulin-like proteins and
anti-viral factors. Interestingly, many of the immune genes that are up-regulated are the
target genes of the downstream miRNAs of the up-regulated circRNAs [81]. Furthermore,
Bmo-miR-278-3p has been shown to bind circRNA_9444, circRNA_8115, circRNA_4553,
and circRNA_6649, and the miR-278-3p has the ability to negatively regulate the expression
of the insulin-related peptide-binding protein 2 gene in silkworm larvae, while positively
regulating the mRNA transcript levels of BmCPV [82]. These results suggest that miR278-3p
may play an important role in BmCPV replication by interacting with host-genome-encoded
circRNAs [81]. These results indicate that circRNAs may regulate the progression of BmCPV
infection by binding miRNAs that control the expression of associated genes, though the
precise regulatory mechanism remains unknown.

B. mori nucleopolyhedrovirus (BmNPV) causes diseases that have always been difficult
to control, resulting in tremendous economic losses in the sericulture industry [83,84]. It has
been proposed that BmNPV proliferation within host cells is mediated by a cascade of viral
gene expression, and identifying host genes that respond to BmNPV infection is a promising
strategy for developing BmNPV-resistant silkworms [85,86]. Despite this, several recent
studies have investigated the effect of circRNA involvement in BmNPV infection [81,84,87].
It has been demonstrated that after BmNPV infection, the expression levels of circRNAs
in the silkworm midgut are altered, and these dysregulated circRNAs may play roles in
BmNPV infection, implying that these altered circRNAs may be a novel type of anti-viral
factor [88]. In addition, Hu et al. characterized the altered circRNA and demonstrated
that these circRNAs are linked to various biological functions and can modulate various
immune pathways, such as the Notch signaling pathway, ABC transporters, and the
endocytosis pathway. This study established circRNA–miRNA interaction networks and
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predicted the relationships between the circRNAs and miRNAs. The identified circRNAs
were found to have a variable number of binding sites for miRNAs; for example, bmo-miR-
3262 can bind to 34 circRNAs, and bmo-miR-3373-3p and bmo-miR-745-3p can interact
with 30 and 29 circRNAs, respectively. CircRNA_0930, circRNA_2873, circRNA_5070,
circRNA_0413, and circRNA_4553 contain multiple binding sites for miRNA, implying that
circRNAs might regulate the progression of BmNPV infection by sponging to miRNAs that
could regulate gene expression; however, further experimental confirmation is required
to prove these initial outcomes. Another study also found the differential expression
of circRNAs in the fat body of silkworms, along with differentially expressed miRNAs
and 730 differentially expressed mRNAs that are associated with BmNPV infection. The
circRNA/miRNA/mRNA analysis suggested that various immune signaling pathways
(e.g., Wnt signaling pathway, phagosome, Hedgehog signaling pathway) are influenced
that are possibly involved in impairing viral infection [87]. The expression of circ_0001432
in various tissues and at different infected time-points was widely detected in all tissues,
and it could be up-regulated 24–72 h post-infection, suggesting that BmNPV infection
triggered the immune response to be accomplished by circ_0001432 at the transcription
level. Further experiments, such as the luciferase reporter assay for the validation of the
interaction between circ_0001432 and its target miRNAs and knockdown or overexpression
of circ_0001432 in vivo and in vitro, are needed to illustrate the function of circ_0001432 [87].
Furthermore, Zhang et al. [89] discovered 444 novel circRNAs from the BmN cells. Of
these 75 circRNAs, some have been shown to be differentially expressed during BmNPV
infection. Interestingly, the abundance of circRNAs has been reported to be higher in the
control group than the BmNPV infection group, and only 1 of 75 differentially expressed
circRNAs was up-regulated in the infection group, suggesting that BmNPV infection can
widely induce the down-regulation of circRNAs in BmN cells. However, the mechanism
remains to be explored why BmNPV infection down-regulates circRNAs in BmN cells.
In contrast, various in vivo studies have proposed the up-regulation of circRNAs after
BmNPV infection in silkworm [87,88]. The circRNA–miRNA–mRNA network indicates
that the target genes modulate the metabolic pathway and immune-related signaling
pathways, such as pantothenate and CoA biosynthesis, β-alanine metabolism, glyoxylate,
and dicarboxylate metabolism, and citrate cycle [89]. Thus, it seems that circRNAs mainly
control the metabolic processes in these cells. It is reported that the reproduction of BmNPV
is highly dependent on host energy metabolism [90–92], suggesting that alteration in the
metabolic activities of BmN cells influences viral infection.

Rice black-streaked dwarf virus (RBSDV) is a species of the genus Fijivirus in the
family Reoviridae. RBSDV is transmitted persistently by Laodelphax striatellus (Fallén) and
causes severe losses in East Asian countries. A recent study determined the circRNA
expression profile in L. striatellus midgut tissues that were either RBSDV free or RBSDV
infected. After RBSDV infection, circRNAs were found to be differentially expressed, with
a variable number of binding sites for miRNAs thought to control immune-pathway as-
sociate genes. A single miRNA was predicted to interact with multiple circRNAs, such
as miR-14-3p, which could be bound by four differentially expressed circRNAs [89]. In
addition, Zhang et al. [89] reported that circRNA2030 is up-regulated in the midgut of
L. striatellus after RBSDV infection. Loss of functional analysis experiments has shown that
the suppression of circRNA2030 can regulate the expression patterns of the parental gene
phospholipid-transporting ATPase (PTA) and enhance RBSDV infection in L. striatellus,
implying that circRNA2030 has antivirus functions in L. striatellus under RBSDV infection.
Interestingly, this study also showed that the six miRNAs predicted to interact with cir-
cRNA2030 were also shown to be down-regulated after circRNA2030 was depleted. The
possible molecular mechanism of circRNA2030 in regulating RBSDV infection might be via
regulating the expression of PTA at the mRNA level; however, more research is required to
fully understand the molecular mechanism [89].

Overall, even though numerous circRNAs from different species of insects have been
identified thus far, this suggests that circRNAs play a vital biological role in anti-viral
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immunity in insects. However, how host receptors detect viral pathogens and which
receptor types are crucial for anti-viral immunity are still unknown. It has been established
that viruses activate Toll and IMD pathways, but it is unclear how viruses do so and
whether PRRs or other sensors are involved. It is interesting to note that only Dicer-2,
a receptor for viral double-stranded (ds) RNA, has been identified in insects. Dicer-2
has been suggested to have a dual biological role in anti-viral immunity, activating both
anti-viral RNAi and signaling that results in the expression of anti-viral molecules such as
Vago [93–95]. In vertebrates, PRRs belong to different structural families, such as Toll-like
receptors, melanoma differentiation-associated gene 5, RIG-I-like receptors, nucleotide-
binding domains, and leucine-rich repeat-containing receptors. These proteins interact
with viral RNAs to generate anti-viral effector molecules, which consequently lead to the
elicitation of anti-viral immune responses [96–99]. Recently, Chen et al. [100] reported on
a potential molecular mechanism, revealing a novel role for circRNAs in inducing anti-
viral immune responses. They discovered that the delivery of purified circRNAs activates
RIG-I and provides a strong immune defense against viral infection. Further analysis
suggested that self-splicing intron-derived circRNAs, rather than the same circRNAs
produced with endogenous introns and spliced by cellular splicing machinery, are the ones
that activate RIG-I; consequently, the splicing mechanism of circRNAs is necessary for the
activation of immune responses. In host cells, a set of diverse RNA-binding proteins bind
to the endogenous cellular circRNAs. In contrast, ‘non-self’ circRNAs rarely interact with
proteins. The RNA-binding proteins are used to identify ‘self’ circRNAs and help host cells
to distinguish them apart from foreign circRNAs.

5.2. CircRNAs in Anti-Bacterial Immunity

Both the IMD (activated against Gram-negative bacteria) and Toll (activated against
Gram-positive bacteria) pathways have been shown to be involved in the inhibition of
bacterial infection in insects and other invertebrates [49,83,101–103]. CircRNAs have re-
cently been reported to be implicated in the regulation of anti-bacterial immunity [104].
Using D. melanogaster as a model organism, Xiong et al. [104] confirmed the involve-
ment of circRNAs in anti-bacterial immunity. They used a combination of the molting
hormone, 20-hydroxyecdysone, and a mixture of Escherichia coli and Micrococcus luteus
to detect the anti-bacterial circRNAs, and they treated Drosophila S2 cells with bacteria,
which activates innate immunity signaling [73,103]. Following the bacterial treatment
described above, a total of ~5000 circRNA candidates were identified from Drosophila,
and the majority of the identified circRNAs were found to be conserved across animal
species [15,104,105]. Following this, a conserved circ_1705 (circ_Ect4) was isolated and
named Edis (Ect4-derived immune suppressor), which is derived from a single exon of
the Ect4 transcripts, and was proposed to regulate innate immunity [15,104,105]. Ect4 and
Edis, respectively, promote and suppress optimal antimicrobial peptide gene expression in
terms of immune regulation in neurons. Ect4 dampens the IMD anti-bacterial signaling in
the tracheal epithelium but not in the fat body or digestive tract [104,106], implying that
both circRNAs are actively involved in immune responses against bacteria. Edis may also
suppress IMD innate immune signaling. In addition, Edis can code for a protein with a
biological function. However, because the ORF of Edis terminates after only 1 nucleotide
downstream of the back-spliced exon junction, it does not produce any distinctive amino
acid sequences that could distinguish Edis-p from Ect4. The ability of endogenous Edis
to generate Edis-p is still an unknown fact. Experimental evidence indicates that the neu-
rodevelopmental phenotypes and the innate immunity hyperactivation triggered through
Edis depletion are rescued by the ectopic expression of Edis-p, which not only phenocopies
Edis overexpression. Additionally, Edis-p co-immunoprecipitated analysis suggested that
Edis-p can inhibit endogenous Relish processing both in cells and in vitro. The simplest
interpretation of this phenomenon is that the immune suppressor function of Edis is depen-
dent, at least in part, on Edis-p [104]. Overall, Edis appears to be a novel circRNAs that
has the ability to produce functional proteins that modulate immune responses [107,108].
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Furthermore, Xiong et al. [104] found that in both the presence and absence of Gram-
positive (M. luteus) bacterial infection, Edis depletion can affect the anti-bacterial IMD
signaling pathway as well as up-regulate the anti-fungal peptide gene Drosomycin. Thus,
Edis appears to have an effect on both branches of innate humoral immunity in Drosophila
(Figure 3).
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5.3. CircRNAs in Anti-Fungal and Anti-Parasite Immunity

Entomopathogenic fungi recognize and infect insects by adhering their spores to the
cuticles of insects and forming special appressoria that allow the fungi to penetrate the
cuticles. When fungal filaments enter into a body cavity or hemocoel of an insect, they
transform into yeast-like cells that undergo budding in order to propagate rapidly and coun-
teract the immune response of the hosts. When the infection cycle is complete, dead insects
either mycose to produce asexual conidial spores or are colonized to form a fruiting body,
which in turn produces sexual spores for the next infection cycle [109]. Entomopathogenic
fungi are widely used to control agricultural pests but are also responsible for causing
diseases in economically important insects [110–113]. Therefore, the resistance mechanism
of insects is crucial to understand the precise management of fungal infection. In this
section, we describe the biological role of circRNAs in the inhibition of fungal infection.

Honey bees not only pollinate a large number of wildflowers and crops, but they
also produce a variety of API products, such as honey, royal jelly, propolis, bee pollen,
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and beeswax, thus playing critical ecological and economic roles. Honey bees, as eusocial
insects, are susceptible to bacterial, fungal, and viral infections. The western honey bee
(Apis mellifera), a eusocial insect with superior economic and ecological value, is widely used
in global beekeeping [114]. CircRNAs were found to be altered in the Apis mellifera ligustica
larval guts during the Ascosphaera apis infection and have been linked to host immune
responses [115]. It has also been proposed that exonic circRNAs are the most abundant
during fungal infection. Furthermore, it was reported that circRNAs greatly fluctuate
during the A. apis infection in comparison to uninfected groups. These circRNAs in the
larval guts are likely to play critical biological roles during an A. apis infection, as evidenced
by their involvement in a variety of immune pathways, such as apoptosis, autophagy,
endocytosis, as well as MAPK, Toll, and IMD signaling pathways. This indicated that the
circRNAs likely perform extensive regulatory functions via modulating the transcription
of source genes, though the impact may not be strong. In addition, three source genes
encoding storage proteins (HEX110, HEX70B, and HEX70C) have also been suggested to be
targeted by these circRNAs in larval guts infected by A. apis, implying that these circRNAs
could affect storage protein synthesis by regulating the transcription of the related source
genes and modulate the host immune defenses against an A. apis invasion [115]. These
storage proteins found in holometabolous insects, including honey bees, not only provide
the material basis for larval and pupal development but also play essential roles in various
processes such as immunity and oviposition. Vieira et al. [116] found that miR-34 and
miR-210 negatively regulated the expression of both HEX70B and HEX110 by directly
and redundantly binding to their 3′ untranslated region (UTR) sequences. However,
establishing the interaction between circRNAs–miRNAs-source genes is still an open
question for the honey bee during fungal infection that requires further research. On the
whole, circRNA-regulated source genes may regulate various cellular and humoral immune
pathways, including apoptosis, autophagy, endocytosis, MAPK, Toll, and IMD signaling
pathways. Another recent study challenged Apis cerana cerana, which is a subspecies of the
eastern honeybee, Apis cerana, with A. apis. This study suggests that fungal pathogens have
a strong impact on circRNAs, which are produced to counter infection, as a large number
of circRNAs are modulated following the fungal infection; however, this study did not
further explore the functions of circRNAs [44].

Nosema ceranae is a common unicellular fungal parasite that can infect honey bees and
cause bee nosemosis. Infection with this parasite (N. ceranae) has been shown to influence
circRNAs in the midgut of the honey bee A. cerana. In particular, N. ceranae invasion
regulates circRNA production, and it appears that infection time has a significant impact
on circRNA production. A recent study showed that the abundance of circRNAs varies
with infection time, suggesting that the infection period is important for the induction of
the host immune response. Interestingly, only a small number of circRNAs were found to
be differentially expressed at different infection times in A. cerana after N. ceranae infection.
These circRNAs modulate various immune pathways, including endocytosis, lysosomes,
phagosomes, ubiquitin-mediated proteolysis, the metabolism of xenobiotics by cytochrome
P450, and insect hormone biosynthesis [117]. In addition, evidence demonstrates that
circRNAs have a crucial role in detecting damage caused to the midgut epithelial cell
structure by N. ceranae infection. It also appears that the circRNAs of the host are employed
to regulate source gene transcription, thereby modulating the Hippo signaling pathway
to facilitate cell renewal and regulate the immune response [118,119]. Thus, it is evident
that N. ceranae altered the expression pattern of circRNAs in the midguts of A. c. cerana,
and the circRNAs are likely to regulate host cellular and humoral immune response to
microsporidian infection [117]. Another study determined the impact of the parasite
Vairimorpha ceranae on adult honey bees, which can cause diseases such as nosemosis. The
infection caused by V. ceranae has been demonstrated to modulate circRNAs. Furthermore,
these circRNAs were proposed to be involved in various immune-associated processes such
as cellular renewal, cellular structure, carbohydrate and energy metabolism, and cellular
and humoral immunity [80].
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In summary, besides viral and bacterial pathogens, fungal and parasitic pathogens
have also influenced the production of circRNAs. This fact has been established by various
studies that were conducted by various research groups. Fungal or parasitic infections
induce a plethora of circRNAs that are proposed to be involved in anti-fungal immunity.
However, the molecular mechanism has not been established, but this knowledge will
help researchers around the globe design studies to deepen our knowledge regarding
anti-fungal immunity in insects.

Table 1. Circular RNAs involved in the immune responses of insects to microbial pathogens.

CircRNA Insect Species Pathogen Expression Target Effect Reference

circRNA_9444,
circRNA_8115,
circRNA_4553

and
circRNA_6649

B. mori BmCPV Up ↑ Bmo-miR-278-3p

Likely negatively regulate
the insulin-related

peptide-binding protein 2
expression while positively

controlling the transcript
levels of BmCPV

[82]

circ_0001432 B. mori BmNPV Up ↑ ? ? [87]

circRNA2030 L. striatellus RBSDV Up ↑

Likely target
miR-14-3p,
miR-9a-3p,

miR-92a, and
miR-315-5p

Regulates the expression
patterns of

phospholipid-transporting
ATPase (PTA) and enhance

RBSDV infection

[89]

Ect4 Drosophila Escherichia coli and
Micrococcus luteus Up ↑ ?

Promotes optimal
antimicrobial peptide

expression via the IMD
pathway

[104,105]

Edis Drosophila E. coli and M. luteus Up ↑ ?
Suppresses antimicrobial

peptide expression via
repressing the IMD pathway

[104,105]

↑ upward arrow indicates the expression circRNA induced. ? question mark showed that relevant information is
still undiscovered.

6. Pathogen-Encoded CircRNAs Hijack the Host System for Proliferation

At present, many different viral strains with various genome types, such as single-
stranded DNA, double-stranded dsDNA, single-stranded RNA, and double-stranded RNA,
have been described to encode circRNAs, and some of them have been demonstrated to
be involved in biological processes. Despite the fact that viral circRNAs can be found
in both the DNA viruses and RNA viruses, it has been observed that a large number of
viral circRNAs have been identified and validated in the DNA viruses, such as human
papillomaviruses (HPVs) and Hepatitis B virus (HBV) [120,121]. Some recent studies have
confirmed that circRNAs are encoded by RNA viruses such as the B. mori cytoplasmic
polyhedrosis virus (BmCPV) [122,123]. The viral circRNAs have a number of biological
roles, including controlling viral over-proliferation and preventing innate immunity from
being activated [124]. In this section, we highlight the effect of circRNAs that are encoded
by pathogens on the immune systems of insects.

B. mori nucleopolyhedrovirus (BmNPV) is one of the dangerous pathogens that infects
the silkworm B. mori, and causes enormous economic losses to the sericulture industry.
BmNPV contains over 140 protein-coding genes in its 128.4 kilobases pair-long double-
stranded genome as well as generates circRNAs [73,125,126]. This viral pathogen has also
been reported to produce a variety of circRNAs in order to evade host immunity. Recently,
a viral circRNA-00010 was identified in BmN cells infected with BmNPV, and its expression
level increased along with viral infection. This suggests that viral circRNA-00010 is the
result of alternative splicing of a delayed early gene, the mechanism of which is known
during viral infection. Interestingly, the level of expression of the viral replication markers
(e.g., Bm59 gene and GFP protein) is increased in a dose-dependent manner in relation to
the expression level of circRNA-000010, indicating that circRNA-000010 may play a pivotal
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role in viral replication in host cells [126]. The viral circRNA-00010 is localized in the
cytoplasm and may act as mRNA to direct protein synthesis [127]. A significant proportion
of circRNAs contained ORF that can be translated cap independently, such as internal
ribosome entry site and N6-methyladenosine [128]. These translation elements were also
discovered in viral circRNA-00010. Thus, it appears that viral circRNA-00010 exhibits
anti-viral activity, likely through its translated product VSP39. In addition, circRNA-000010
can also sponge a number of silkworm miRNAs, such as bmo-miR-2808c, bmo-miR-2808a-
3p, and bmo-miR-2739, suggesting that this circRNA may have multiple roles in the host
cells [126]. Further studies that focus on the molecular mechanism of circRNA-000010 in
the replication process of virus will further improve our understanding of viruses.

CircRNAs have been identified in other pathogenic interactions, and functions for
these circRNAs have been proposed; further experimental evidence is needed to understand
their precise functions. For example, circRNAs from A. apis, a fungus that infects honeybee
larvae, were recently discovered. These circRNAs appear to regulate gene expression by
competitively binding miRNAs, and they have been proposed as potential biomarkers for
chalkbrood [129]. Overall, there is very little knowledge regarding circRNAs encoded by
pathogens, and cutting-edge new molecular techniques are hoped to accelerate research on
circRNAs in pathogens.

7. Host Hijack Pathogen Encoded CircRNAs to Inhibit Infection

The host immune system also has the ability to hijack circRNAs encoded by pathogens
in order to inhibit the infection of that pathogen. In a study published recently, vSP27, a
novel viral small peptide derived from the negative strand of S5 of BmCPV, was identified
and shown to negatively regulate BmCPV infection [130]. The vSP27 peptide is translated
by BmCPV from circRNA-vSP27, and it is considered that vSP27 could act as a catalyst for
the induction of ROS inside cells, and interact with Akirin to activate the NF-κB signaling
pathway against viral infection [122,130]. The relationship between ROS generation in-
duced by vSP27 and BmCPV infection has recently been established. The vSP27 can induce
ROS generation in BmN cells and can inhibit BmCPV infection. There is some evidence
that N-Acetyl-L-cysteine, an antioxidant, reduces ROS levels in cells and increases viral
infection. Furthermore, it was found that treatment with vSP27b resulted in the deterio-
ration of mitochondrial functions and decreased activity of antioxidant enzymes in BmN
cells. Thus, it appears that vSP27 induces mitochondrial damage, inhibits the activity of
antioxidant enzymes, and promotes ROS production; thus, vSP27 inhibits BmCPV infection
via ROS-dependent signal transduction. NF-κB is a transcription factor that becomes active
in response to cellular stress, such as oxidative stress and viral infection [131,132]. The
vSP27 can induce NF-κB, which in turn activates the NF-κB signaling pathway in BmN
cells, leading to an increase in the production of antimicrobial peptides (e.g., CecB, CecA,
and lysozymes). These antimicrobial peptides have also been reported to be induced by
the co-expression of STING and Relish, suggesting that these antimicrobial peptides are
induced through the activation of anti-viral immune responses by Relish [132]. Therefore, it
seems that vSP27 activates the canonical NF-κB signaling pathway to produce antimicrobial
peptides to inhibit BmCPV infection, although the anti-viral mechanism differs from the
immune defense of the Toll and IMD pathways. In addition, Zhang et al. [122] investigated
the molecular mechanism of vSP27 for the activation of the NF-κB signaling pathway using
different molecular techniques. The authors suggested that vSP27 can directly interact with
Akirin in the process of virus infection. Akirin regulates the NF-κB-mediated signaling
pathway via binding to NF-κB’s promoter region of NF-κB. Furthermore, Akirin could
directly positively regulate the NF-κB signaling pathway [122]. Overall, the anti-viral
mechanism of vSP27 from the BmCPV-derived circRNA-vSP27 was played by the ROS or
Akirin-dependent activation of the NF-κB signaling pathway.

Furthermore, another study conducted by the same research group has identified
a viral circRNA_000048 whose sequence corresponds with that of the region 164–1245
nucleotides on the BmCPV genomic dsRNA S5 segment (GQ294468.1). The viral cir-
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cRNA_000048 has been shown to be translated into a micropeptide, vsp21, with 21 amino
acid residues in an IRES-dependent manner [123]. The expression of vcircRNA_000048 and
vsp21 is increased with the progress of virus infection, suggesting that vcircRNA_000048 is
associated with disease pathogenesis. The vsp21 encoded by vcircRNA 000048 attenuates
viral replication as S5-sORF (vSP27). In the silkworm B. mori, cytoplasmic polyhedro-
sis resulting from BmCPV infection is a chronic disease that progresses over a period of
8 to 12 days. Thus, it has been proposed that the vsp21 encoded by vcircRNA_000048 can
forestall the premature death of silkworms caused by rapid virus proliferation [123]. There
is a possibility that the inhibitory activity of vsp21 on BmCPV replication may be similar
to that of the egt gene of the baculovirus, which encodes an enzyme called ecdysteroid
UDP-glucosyltransferase. There has been evidence that the expression of egt in silkworms
after BmNPV infection can block the molting of infected larvae for a longer period of time,
thus enhancing virus yield [123,133,134].

8. Conclusions and Future Perspectives

Over the last decade, we have gained a deeper understanding of the biological role of
ncRNAs in the context of host–pathogen interactions through the use of transcriptomics
analysis [24]. The study of ncRNAs has been a subject of a great deal of research in order
to gain a better understanding as to how the defense system of the host responds to
infection by the immunoproteome [24,71,80]. In recent years, there has been a growing
body of evidence demonstrating that circRNAs are involved in immune regulation in
living organisms. We described a number of aspects of circRNAs in this review, such as
their classification, biological roles, molecular mechanisms of actions, and their possible
functions in the interaction between host and pathogen. Using examples from the biological
context, we provided insight into the functions that circRNAs play as miRNA sponges,
scaffolds, and decoys. In spite of this, many circRNAs have yet to be determined in terms of
their biological roles and/or their functional roles within various cellular processes. What
we know about circRNAs leads us to believe that the responses of host circRNAs are of
biological significance. Thus, there is a need for extensive research into the precise biological
roles of circRNAs in host–pathogen interactions, particularly with regard to the manner
in which pathogens regulate host circRNAs to improve their survival. There have been
a number of new molecular biology techniques developed that are likely to improve our
understanding of the biogenesis and biological roles of circRNAs. It is possible to use these
techniques to understand the molecular mechanism by which circRNAs interact with other
types of RNA and proteins at the pathogen and host levels. Due to this, it is suggested that
future studies on the molecular basis of host responses to pathogenic/parasitic interactions
should focus on circRNAs in order to provide new insights into the control of infections
caused by pathogenic organisms.
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