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Abstract: Cytotoxic T lymphocyte antigen-4 (CTLA-4) has been identified as an immunosuppressive
molecule involved in the negative regulation of T cells. It is highly expressed in several types of
autoimmune diseases and cancers including colorectal cancer (CRC). (1) Objective: To explore the
association between CTLA-4 single nucleotide polymorphisms (SNP) and risk to (CRC) in the Saudi
population. (2) Methods: In this case-control study, 100 patients with CRC and 100 matched healthy
controls were genotyped for three CTLA-4 SNPs: rs11571317 (−658C > T), rs231775 (+49A > G) and
rs3087243 (CT60 G > A), using TaqMan assay method. Associations were evaluated using odds ratios
(ORs) and 95% confidence intervals (95% CIs) for five inheritance models (co-dominant, dominant,
recessive, over-dominant and log-additive). Furthermore, CTLA-4 expression levels were evaluated
using quantitative real-time PCR (Q-RT-PCR) in colon cancer and adjacent colon tissues. (3) Results:
Our result showed a significant association of the G allele (OR = 2.337, p < 0.0001) and GG genotype
of the missense SNP +49A > G with increased risk of developing CRC in codominant (OR = 8.93,
p < 0.0001) and recessive (OR = 16.32, p < 0.0001) models. Inversely, the AG genotype was significantly
associated with decreased risk to CRC in the codominant model (OR = 0.23, p < 0.0001). In addition,
the CT60 G > A polymorphism exhibited a strong association with a high risk of developing CRC for
the AA genotype in codominant (OR = 3.323, p = 0.0053) and in allele models (OR = 1.816, p = 0.005).
No significant association was found between −658C > T and CRC. The haplotype analysis showed
that the G-A-G haplotype of the rs11571317, rs231775 and rs3087243 was associated with high risk
for CRC (OR = 57.66; p < 0.001). The CTLA-4 mRNA gene expression was found significantly
higher in tumors compared to normal adjacent colon samples (p < 0.001). (4) Conclusions: Our
findings support an association between the CTLA-4 rs231775 (+49A > G) and rs3087243 (CT60 G > A)
polymorphisms and CRC risk in the Saudi population. Further validation in a larger cohort size is
needed prior to utilizing these SNPs as a potential screening marker in the Saudi population.

Keywords: colorectal cancer; CTLA-4; SNP polymorphism; rs231775; rs3087243; check point molecules;
haplotypes; gene expression

1. Introduction

Cancer is the leading cause of death worldwide, with approximately 10 million deaths
in 2020 [1,2]. Colorectal cancer (CRC) represents one of the major causes of cancer-related
mortalities in Western countries and, along with lung, prostate and breast cancer, is among
the most common malignancies [3,4]. In 2021, the number of new cases in Saudi Arabia
was 27,885 including 4007 colorectal cancer cases, accounting for 14.4% of the total cases [5].
Cancer is a complex disease involving interactions between environmental factors and
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genetic variations [6–8]. Chemotherapy and targeted therapy approaches have extended the
survival rate for patients with unresectable CRCs; however, side effects and drug resistance
are considered major challenges, which are mainly due to tumor heterogeneity [6,9]. Over
the past years, several studies have reported the complex relationships between cancer and
the immune system which set the foundation of immunotherapy approach [10,11]. The
immune system has a highly regulated surveillance mechanism that enables the control of
tumor growth. The maintenance of regulated immune responses by both co-stimulatory
and co-inhibitory signaling is crucial for cancer control [12]. One of the most studied
checkpoint molecules is cytotoxic T lymphocyte antigen-4 (CTLA-4) [13]. CTLA-4 or
CD152 is a member of the immunoglobulin superfamily that is expressed on the surface
of T lymphocytes and functions as a T cell activation negative regulator. CTLA-4 has a
similar binding affinity for both costimulatory receptors B7-1 (CD80) and B7-2 (CD86)
on antigen presenting cells (APC) and through this interaction it produces an inhibitory
signal that suppress T cell activation [14]. The study of immune-related genetic markers,
especially genes involved in regulating immune responses, is important in understanding
the role of the immune system in tumor progression and resorption. Single nucleotide
polymorphisms (SNPs) in immune-related genes may be involved in altered immune
responses to cancer [15]. In recent years, polymorphisms in the immune checkpoint
genes have been heavily investigated to reveal their relations to several malignancies
including CRC [16–19]. In fact, there is increasing focus on SNPs and their involvement in
individuals’ susceptibility to several diseases, including solid tumors. Large-scale genome-
wide association studies have identified different loci associated with CRC [20–23]. The
CTLA-4 gene contains multiple SNPs that can affect gene expression, and lead to amino acid
changes and changes in mRNA splicing, which could influence T cell activity leading to the
attenuation of immune response [24]. It has been reported that SNPs in the CTLA-4 gene
were linked to various types of malignancies including breast [25–28], cervical [29–34] and
lung cancers [19,27,35,36] and oral squamous cell carcinoma [37,38]. Additionally, several
studies have shown that CTLA-4 variants affect CTLA-4 expression on the cell surface,
which was associated with autoimmune diseases, such as Grave’s disease, Hashimoto’s
thyroiditis and atopic dermatitis [39–42]. Among the CTLA-4 variants, three were reported
for their functional effect on the gene expression or protein efficiency and were found
associated with many diseases. These SNPs include: CT60 in the 3′-UTR (rs3087243), the
missense variant 49AG (rs231775) resulting in a threonine to alanine amino acid change at
codon 17 (T17A) of the leader peptide, and −658C > T (rs11571317) located in the promoter
region. Therefore, this study investigated the relationships between these three functional
polymorphisms and their association with CRC in the Saudi Arabian population and the
assessment of the expression profile of CTLA-4 in cancer tissue.

2. Materials and Methods
2.1. Study Population

Two hundred blood samples were obtained from King Khalid University Hospital. A
total of 100 patients with sporadic colorectal cancer and 100 healthy controls with no history
of cancer were included. Colorectal cancer patients comprised patients of diverse ages
(mean age = 57 years) and three stages of the disease. Blood samples were collected from
patients preoperatively. Patients did not undergo irradiation treatment or chemotherapy.
Determination of CRC was made utilizing standard diagnostic methods and confirmed
by histopathological methods. All subjects including patients and controls were of Saudi
Arabian ethnicity. Healthy controls were gender- and age-matched and enrolled after
diagnostic exclusion of cancer. The study fulfilled its requirements and has been approved
by the Ethics Committee of the King Saud University. Patient consent was acquired for
this study, IRB00008189. This study was conducted in accordance with the Declaration of
Helsinki.
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2.2. DNA Extraction

Approximately 3 mL blood samples were collected in vacutainers containing ethylene-
diaminetetraacetic acid (EDTA) from all subjects registered in the study. Genomic DNA
was extracted from peripheral blood using the QIAamp DNA Blood Mini Kit (Qiagen,
Valencia, CA, USA) and stored at −80 ◦C until used. Following extraction and purification,
the DNA was quantitated spectrophotometrically on NanoDrop 8000 (Thermo Scientific,
Wilmington, DE, USA), and examined using standard A260/A280 and A260/A230 ratios
to test its purity.

2.3. Preparation of Total RNA and qRT-PCR

RNA was extracted from 31 tumor and from 31 cancer-free margins of the adja-
cent tissue from cancer patients using a PARIS™ kit (Ambion, Foster City, CA, USA). A
High-Capacity cDNA kit was used for reverse transcription (cat. no. 4368814; Applied
Biosystems, Foster City, CA, USA). The quality of RNA was evaluated by assessing the
A260/280 ratio (1.8–2.0). To remove the contamination of genomic DNA, RNA samples
were treated with RNAse-free DNA enzyme (Ambion, Foster City, CA, USA). The final
RNA (2 µg) concentrations in each analyzed sample were subjected to the RT reaction. The
reverse transcription reaction was performed using a commercially available set of high ca-
pacity cDNA Archive Kits (Applied Biosystems, Waltham, MA, USA). cDNA was prepared
from 2 µg of total RNA, with random hexamer primers. According to the manufacturer’s
instructions the mix was run on a PCR thermocycler gene as follows: 10 min at 25 ◦C,
2 h at 37 ◦C, 5 min at 85 ◦C and kept at 4 ◦C thereafter on a PCR thermocycler (Applied
Biosystems, Waltham, MA, USA).

2.4. Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

Relative quantitative PCR analysis was performed on ViiA™ 7 real-time PCR sys-
tem (Thermo Fisher Scientific, Waltham, MA, USA) using the SYBR Green PCR Mas-
ter Mix (cat no 4385612; Thermo Fisher Scientific, Waltham, MA, USA) set for 40 cy-
cles at 95 ◦C for 15 s, 60 ◦C for 1 min/cycle. Primers for CTLA-4 analysis were 5′-
ACGGGACTCTACATCTGCAAGG-3′ and 5′-CCCCGAACTAACTGCTGCAA-3′, and for
GAPDH were 5′-ACCCACTCCTCCACCTTTGAC and 5′-TCCACCACCCTGTTGCTGTAG-
3′ as housekeeping gene. qRT-PCR was performed following the manufacturer’s protocol.
Briefly, for each sample, a 3 µL cDNA sample was used with 10 µL of SYBR green Mix and
2 µL primer mix (µL F+ µL R) to a total of 20 µL reaction volume. A negative control free
of cDNA was used for each reaction to detect non-specific amplification. All reactions were
performed with the same concentration of cDNA per reaction. The product specificity of
the primers was evaluated for each reaction through the melting curve. Figure 1 shows the
amplification curves and the melting curves of the target CTLA-4 gene and the reference
GPADH gene. The melting curves of Figure 1C,D show a single distinct peak for CTLA-4
and GAPDH, respectively. Analysis for relative gene expression was performed using
the 2−∆∆CT method [43]. where ∆Ct = (Ct target gene − Ct GAPDH). The expression of
CTLA-4 in was performed on 31 specimens and the gene expression level was normalized
relative to GAPDH. Normal tissue samples (30 specimens) were used as a calibrator, and
GAPDH as a reference gene for normalization. A two-tailed T test was performed using
GraphPad Prism software with significance threshold values of p < 0.05. Data are expressed
as mean values with SD.

2.5. SNP Selection and Genotyping

Three CTLA-4 SNPs were selected: CTLA-4 −658C > T(rs11571317), +49A > G
(rs231775) and CT60 G > A (rs3087243) were genotyped using TaqMan allelic discrimination
assay following the previously described protocol [44]. TaqMan CTLA-4 SNP Genotyping
Assays having catalogue number 4351379 and assay numbers 4351379 C___3296043_10
(rs3087243), 4351379 C__30981396_10 (rs11571317) and 4351379 C___2415786_20 (rs231775)
were acquired from Applied Biosystems. These assays were supplied at 40X concentration.
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For each PCR, a 5 ng DNA sample was used with 10 µL of 2X Universal Master Mix and
1X assay mix in a total 20 µL reaction volume (Applied Biosystems, Foster City, CA, USA).
PCR conditions were pre-read stage 60 ◦C for 30 s, hold stage 95 ◦C for 10 min, PCR stage
95 ◦C for 15 s and 60 ◦C for 1 min for 40 cycles, and post-read stage at 60 ◦C for 30 s. All
genotypes were determined using end-point reading on the ViiATM 7 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). VIC and FAM were used as a probes
for the alleles [VIC/FAM]: rs11571317 [C/T], rs231775 [A/G] and rs3087243 [A/G].
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For quality control, 5 % of the samples were selected randomly and repeated analysis
were performed for verification procedures. The results were reproducible without any
inconsistencies.

2.6. Construction of Tissue Microarrays (TMAs) and Immunohistochemistry

Colorectal tissue microarrays (TMA) were constructed and immunohistochemistry
was performed as described elsewhere [45]. The hematoxylin and eosin stained sections of
FFPE tumor samples were used to identify representative areas of viable tumor tissue and
1 mm diameter needle core biopsies were taken using a manual tissue arrayer (Arraymold
Kit D IHCWORLD, Woodstock, MD, USA). Three cores of each tumor were taken in order
to ensure that representative tumor parts were examined. Cores were taken from both the
invasive border and the central tumor arrays to account for tumor heterogeneity. The cores
in the paraffin block were incubated for 30 min at 37 ◦C to improve adhesion between cores
and paraffin of the recipient block. Paraffin TMA blocks were micro-dissected using a Leica
semi-automatic microtome and mounted on glass slides.

TMA block sections with 5 m thicknesses were stained using immunohistochemistry.
The slides were then washed in Tris-buffered saline (TBS) for 10 min after endogenous
peroxidase activity had been quenched with 3% hydrogen peroxide in distilled water for
5 min. Protein Block (Novocastra, Milton Keynes, UK) was used to prevent non-specific
antibody binding. Subsequently, the mouse anti-CTLA-4 monoclonal antibody (cat #PA
5-115060) was then applied to the slides (1:100) and incubated for 1 h at room temperature.
After washing three times with TBS, biotinylated anti-mouse IgG (Novocastra, Milton
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Keynes, UK) was incubated for 30 min. Diaminobenzedine (DAB) (Novocastra, Milton
Keynes, UK) substrate was used to detect peroxidase. The last step was to counterstain the
slides with Mayer’s hematoxylin (Novocastra, Milton Keynes, UK). The negative control
was prepared following the same procedure but without primary antibody. The expression
of CTLA-4 in tumor and normal tissues was analyzed using the eSlide capture device
(ScanScope CS, Aperio Technologies Inc., Vista, CA, USA). The digital slide images were
viewed by Aperio’s viewing software version 12.3.3 (ImageScope), and analyzed using
Aperio’s image analysis algorithms. High-resolution, whole-slide digital scans of all TMA
glass slides were created with a ScanScope slide scanner (Aperio Technologies, Inc. Vista,
CA, USA) as previously described [45].

2.7. Statistical Analysis

Assessments of genotype and allelic associations between CRC and three CTLA-4
SNPs were assessed using the SNPStats software [46]. Five inheritance models, including
co-dominant, dominant, recessive, over-dominant and log-additive models were tested for
association, and odds ratios (OR) with 95 % confidence intervals (CI) were calculated using
logistic regression. Hardy–Weinberg equilibrium deviancy and χ2 values were analyzed
through the web-based programs at https://ihg.helmholtz-muenchen.de/cgi-bin/hw/
hwa1.pl accessed on 23 November 2022. A p value of <0.05 was considered significant.
Haplotype analysis and linkage disequilibrium (LD) was conducted using the website
https://www.snpstats.net/start.htm accessed on 14 November 2022.

3. Results
3.1. Demographic Characteristics of Study Population

The baseline characteristics of patients are shown in Table 1. The study included
200 participants, 100 patients with sporadic colorectal cancer and 100 healthy cancer-free
individuals without a history of cancer. The patient group consisted of 64 males and
36 females with a mean age of 56.33 ± 14.56 years. The control group consisted of 65 males
and 35 females with a mean age of 56.31 ± 14.56 years (age and sex controls). Patients were
classified into four TNM stages, I, II, III and IV, where 57% belong to stage I and II (early
stage) and 32% to stage III and IV (late stage). For all these subjects, the genotyping of CTLA-
4 was performed using TaqMan assay for three selected SNPs; rs11571317, rs231775 and
rs3087243 (Table 2). The genetic and allelic association of these polymorphisms with CRC
was tested in five genetic models (allelic, codominant, dominant, recessive, over-dominant
and additive) as reported in Table 3.

Table 1. Demographic and main clinical data of CRC patients and control used for SNPs genotyping.

Characteristics Cancer (100) Control (100)

Gender (number)
Male 64 65
Female 36 35

Age (average ± SD) 56.33 ± 14.56 56.31 ± 14.56

Localization
Colon 40 -
Recto-sigmoid 60 -

Stage

I 11 -

II 57 -

III 32 -

IV 0 -

https://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
https://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
https://www.snpstats.net/start.htm
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Table 2. Characteristics of selected polymorphisms involved in the CTLA-4 gene.

SNP
ID/Assay

ID
Common

Name
Chromosome

Position
Nucleotide

Change Region

MAF in Human Populations
(1000 Genomes Study) Present

Study
Global European South

Asian Qatari

rs11571317 −658C > T Chr2:203867285 C/T promoter T = 0.024 T = 0.08 T = 0.022 T = 0.078 T = 0.26

rs231775 +49A > G Chr2:203867991 A/G Exon 1 G = 0.42 G = 0.36 G = 0.28 G = 0.208 G = 0.33

rs3087243 CT60 G > A chr2:203874196 G/A 3-’UTR A = 0.36 A = 0.45 A = 0.59 A = 0.567 A = 0.44

Table 3. Distribution of CTLA-4 SNPs genotypes and allele frequencies in colorectal cancer cases and
control population. CRC, colorectal cancer; AIC, Akaike information criteria; OR, odds ratio; 95 % CI,
95 % confidence interval. * p < 0.05 was considered significant.

Locus Model Genotype CRC (%)
N = 99

Controls (%)
N = 96 OR (95% CI) * p-Value AIC

rs11571317
(−658C > T)

Alleles C 136 143 Ref
T 62 49 0.75 (0.483–1.170) 0.20502

Codominant
CC 56 (56.6%) 61 (63.5%) 1.00
CT 24 (24.2%) 21 (21.9%) 1.24 (0.63–2.48) 275.2
TT 19 (19.2%) 14 (14.6%) 1.48 (0.68–3.22) 0.57

Dominant CC 56 (56.6%) 61 (63.5%) 1.00
CT + TT 43 (43.4%) 35 (36.5%) 1.34 (0.75–2.38) 0.32 273.3

Recessive CC + CT 80 (80.8%) 82 (85.4%) 1.00
TT 19 (19.2%) 14 (14.6%) 1.39 (0.65–2.96) 0.39 273.5

Overdominant CC + TT 75 (75.8%) 75 (78.1%) 1.00
CT 24 (24.2%) 21 (21.9%) 1.14 (0.59–2.23) 0.69 274.1

Log-Additive 1.22 (0.84–1.770 0.29 273.2

Locus Model Genotype CRC (%)
N = 100

Controls (%)
N = 97 OR (95% CI) * p-Value AIC

rs231775
(+49A > G)

Alleles A 0.46 0.67 Ref -
G 0.54 0.33 2.337 (1.553–3.516) <0.0001

Codominant
AA 40 (40%) 38 (39.2%) 1.00 1
AG 13 (13%) 54 (55.7%) 0.23 (0.11–048) <0.0001 212.9
GG 47 (47%) 5 (5.2%) 8.93 (3.21–24.84)

Dominant AA 40 (40%) 38 (39.2%) 1.00
AG + GG 60 (60%) 59 (60.8%) 0.97 (0.55–1.71) 0.91 277

Recessive AG + AA 53 (53%) 92 (94.8%) 1.00
GG 47 (47%) 5 (5.2%) 16.32 (6.11–43.56) <0.0001 227.3

Overdominant AA-GG 45 (46.4%) 86 (86%) 1.00 235
AG 13 (13%) 54 (55.7%) 0.12 (0.06–0.24) <0.0001

Log-Additive 1.94 (1.34–2.81) <0.0001 263.9

Locus Model Genotype CRC (%)
N = 97

Controls (%)
N = 99 OR (95% CI) * p-Value AIC

rs3087243
(CT60 G > A)

Alleles G 0.42 0.56 1
A 0.58 0.44 1.743 (1.168–2.599) 0.00631

Codominant
GG 19 (19.6%) 26 (26.3%) 1.00
GA 44 (45.4%) 59 (59.6%) 1.021 (0.502–2.073) 0.95521 265.8
AA 34 (35%) 14 (14.1%) 3.323 (1.408–7.843) 0.00535

Dominant GG 19 (19.6%) 26 (26.3%) 1.00
GA + AA 78 (80.4%) 73 (73.7%) 1.462 (0.747–2.864) 0.26660 263.8

Recessive GG + GA 63 (65%) 85(85.9%) 1.00
AA 34 (35%) 14 (14.1%) 0.305 (0.151–0.616) 0.00067 274.5

Overdominant AA + GG 53 (54.6%) 40 (40.4%) 1.00
AG 44 (45.4%) 59 (59.6%) 0.56 (0.32–0.99) 0.046 271.7

Log-Additive 1.816 (1.19–2.77) 0.0050 267.7

The distribution of the genotype CT60 G > A SNPs in the control group followed HW
equilibrium while the −658C > T and +49A > G (p ≤ 0.0001) deviated from HWE. The
TaqMan genotyping of +49A > G showed that the GG genotype was significantly more
frequent in patients (47%) compared to controls (5%) and was associated with high risk to
develop CRC in both codominant model (OR = 8.93; 95% CI (3.21–24.84); p < 0.0001) and
recessive model (OR = 16.32; 95% CI (0.03–0.19); p < 0.0001). Conversely, the AG genotype
exhibited a protective effect against CRC in both codominant (OR = 0.23; 95% CI (0.11–0.48);
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p < 0.0001), and additive (OR = 1.94; 95% CI (1.34–2.81); p = 3 × 10−4) models, after
applying the Bonferroni correction. The G allele was significantly highly frequent in CRC
patients compared to the healthy individual group (0.53 vs. 0.33), suggesting an increased
susceptibility to CRC for individuals sharing this allele (OR = 2.337; 95% CI (1.553–3.516);
p = 0.00004). For the rs3087243 CT60 G > A polymorphism, our analysis showed that the
GA genotype was the most frequent in both patients and controls followed by the AA
in patients and GG in healthy controls. In the codominant model, the AA genotype was
found with higher frequency in CRC (35%) compared to healthy controls (14.1%), and this
difference was found to be significant (OR = 3.323; 95% CI (1.408–7.843); p = 0.00535). The
A allele was associated with higher risk of CRC (OR = 1.816; 95% CI (2.77–1.19); p = 0.005).
Furthermore, the allele G was the most common allele in comparison with the A allele
in patients, which aligns with the global MAF database (A = 0.3690. Our analysis for the
rs11571317 −658C > T polymorphism did not show any significant association with CRC
for all the studied models (Table 3).

3.2. Age and Gender Stratified Analysis

We stratified 100 cases into 2 subgroups to investigate the possible effect of SNPs
according to age distribution: CRC≥ 56 (n = 59) and CRC < 56 years (n = 41). We compared
the allelic and genetic distributions of three SNPs between these two groups according to
five genetic patterns. Our analysis did not reveal significant associations for all three SNPs
(Table 4). A higher frequency of the G allele was observed in patients older than 56 years,
but its significance was lost after application of the Bonferroni correction. Furthermore, we
divided the 100 cases into 2 subgroups: female (n = 36) and male (n = 64) to investigate
the possible effect of SNPs on risk according to gender distribution. We compared the
allelic and genetic distributions of the three SNPs between these two groups across the five
inheritance patterns (Table 5).

Table 4. Association of CTLA-4 with colorectal cancer cases after age stratification. CRC, colorectal
cancer; OR, odds ratio; 95 % CI, 95 % confidence interval. * p < 0.05 was considered significant.

Locus Model Genotype CRC < 56 (%)
N = 41

CRC > 56 (%)
N = 58 OR (95% CI) * p-Value AIC

rs11571317
C > T

Allele C 0.67 0.7 Ref
T 0.33 0.3 0.880 (0.479–1.616) 0.68059

Codominant
CC 23 (56.1%) 33 (56.9%) 1.00
CT 9 (21.9%) 15 (25.9%) 1.22 (0.45–3.29) 0.79 140.7
TT 9 (21.9%) 10 (17.2%) 0.79 (0.28–2.26)

Dominant CC 23 (56.1%) 33 (56.9%) 1.00 139.2
CT + TT 18 (43.9%) 25 (43.1%) 1 (0.44–2.26) 1

Recessive CC + CT 32 (78 %) 48 (82.8%) 1.00
TT 9 (21.9%) 10 (17.2%) 0.74 (0.27–2.05) 0.57 138.8

Overdominant CC + TT 32 (78%) 43 (74.1%) 1.00
CT 9 (21.9%) 15 (25%) 1.29 (0.50–3.36) 0.59 138.9

Log-Additive 0.93 (0.56–1.55) 0.78 139.1

Locus Model Genotype CRC < 56 (%)
N = 41

CRC > 56 (%)
N = 59 OR (95% CI) * p-Value AIC

rs231775
A > G

Allele A 0.38 0.53 Ref
G 0.62 0.47 0.549 (0.309–0.975) 0.03986

Codominant
AA 13 (31.7%) 27 (45.8%) 2.02 (0.84–4.86)
AG 5 (12.2%) 8 (13.5%) 1.50 (0.43–5.31) 0.28 140
GG 23 (56.1%) 24 (40.7%) 1.00

Dominant GG 13 (31.7%) 27 (45.8%) 1.00
AG-AA 28 (68.3%) 32 (54.2%) 1.87 (0.83–4.21) 0.13 138.2

Recessive GG-AG 18 (43.9%) 35 (59.3%) 1.00
AA 23 (56.1%) 24 (40.7%) 1.85 (0.80–4.28) 0.15 138.4

Overdominant AA-GG 36 (87.8%) 51 (87.5%) 1.00
AG 5 (12.2%) 8 (13.5%) 1.10 (0.33–3.67) 0.87 140.4

Log-Additive 1.42(0.92–2.21) 0.11 138
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Table 4. Cont.

Locus Model Genotype CRC < 56 (%)
N = 40

CRC > 56 (%)
N = 57 OR (95% CI) * p-Value AIC

rs3087243
G > A

Allele G 39 43 Ref
A 41 71 1.571 (0.880–2.803) 0.12576

Codominant
GG 12 (30%) 7 (12.3%) 0.38 (0.12–1.22)
AG 15 (37.5%) 29 (50.9%) 3.314

(1.080–10.172) 0.03238 134.2
AA 13(32.5%) 21 (36.8%) 2.769 (0.867–8.840) 0.08133

Dominant AA 12 (30%) 7 (12.3%) 1.00
AG-GG 28 (70%) 50 (87.7%) 3.061 (1.081–8.666) 0.03042 136.1

Recessive AA-AG 27 (67.5%) 36 (63.2%) 1.00
GG 13(32.5%) 21 (36.8%) 0.825 (0.352–1.937) 0.65906 132.3

Overdominant GG-AA 25 (62.5%) 28 (49.1%) 1.00
AG 15 (37.5%) 29 (50.9%) 1.65 (0.72–3.79) 0.24 134.9

Log-Additive 0.67 (0.38–1.19) 0.17 134.9

Table 5. Association of CTLA-4 with colorectal cancer cases after gender stratification. CRC, colorectal
cancer; OR, odds ratio; 95 % CI, 95 % confidence interval. * p < 0.05 was considered significant.

Locus Model Genotype CRC Female (%)
N = 34

CRC Male (%)
N = 62 OR (95% CI) * p-Value AIC

rs11571317
C > T

Alleles C 0.66 0.7 Ref
T 0.34 0.3 0.81 (0.43–1.51) 0.505

Codominant
CC 18 (51.4%) 38 (59.4%) 1.00
CT 10 (28.6%) 14 (21.9%) 0.66 (0.25–1.78) 0.71 133.9
TT 7 (20%) 12 (18.8%) 0.81 (0.27–2.41)

Dominant CC 18 (51.4%) 38 (59.4%) 1.00
CT + TT 17 (48.6%) 26 (40.6%) 0.72 (0.32–1.66) 0.45 132

Recessive CC + CT 28 (80%) 52 (81.2%) 1.00
TT 7 (20%) 12 (18.8%) 0.92 (0.32–2.61) 0.88 132.6

Overdominant CC + TT 25 (71.4%) 50 (78.1%) 1.00
CT 10 (28.6%) 14 (21.9%) 0.70 (0.27–1.80) 0.46 132.1

Log-Additive 0.86 (0.60–1.25) 0.58 132.3

Locus Model Genotype CRC Female (%)
N = 36

CRC Male (%)
N = 64 OR (95% CI) * p-Value AIC

rs231775
A > G

Alleles A 0.47 0.46 Ref -
G 0.53 0.54 1.05 (0.59–1.87) 0.88

Codominant
AA 15 (41.7%) 25 (39.1%) 0.94 (0.39–2.26)
AG 4 (11.1%) 9 (14.1%) 1.27 (0.34–4.77) 0.91 136.5
GG 17 (47.2%) 30 (46.9%) 1

Dominant GG 17 (47.2%) 30 (46.9%) 1.00
AG + AA 19 (52.8%) 34 (53.1%) 1.01 (0.45–2.30) 0.97 134.7

Recessive AG + GG 21 (58.3%) 39 (60.9%) 1.00
AA 15 (41.7%) 25 (39.1%) 0.90 (0.39–2.06) 0.8 134.6

Overdominant AA-GG 32 (88.9%) 55 (85.9%) 1.00 0.67
AG 4 (11.1%) 9 (14.1%) 1.31 (0.37–4.60) 134.5

Log-Additive 0.97 (0.63–1.51) 0.91 134.7

Locus Model Genotype CRC Female (%)
N = 34

CRC Male (%)
N = 64 OR (95% CI) * p-Value AIC

rs3087243
G > A

Alleles A 0.53 0.6 Ref
G 0.47 0.4 1.365 (0.756–2.466) 0.30173

Codominant
AA 10 (28.6%) 9 (14.5%) 1
AG 13 (37.1%) 31 (50%) 2.650 (0.874–8.034) 0.08068 129.8
GG 12 (34.3%) 22 (35.5%) 2.037 (0.650–6.386) 0.21929

Dominant AA 10 (28.6%) 9 (14.5%) 1
AG + GG 25 (71.4%) 53 (85.5%) 2.356 (0.851–6.522) 0.09392 130.8

Recessive AG + AA 23 (65.7%) 40 (64.5%) 1
GG 12 (34.3%) 22 (35.5%) 0.949 (0.397–2.265) 0.90545 128.1

Overdominant AA-GG 22 (62.9%) 31 (50%) 1
AG 13 (37.1%) 31 (50%) 1.69 (0.73–3.95) 0.22 129.4

Log-Additive 0.75 (0.42–1.33) 0.32 129.9

3.3. Haplotype Analysis

As shown in Table 6, three SNPs were used to generate haplotypes for the cases and
controls. The accumulated frequency of five common haplotypes of rs11571317, rs231775
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and rs3087243 exceeded 90%. There were differences between cases and controls in the
distribution of haplotypes. As a reference, the A-G-G haplotype was the most common
with 20% in cases and 29% in healthy people. In individuals with G-A-G haplotypes, CRC
risk was decreased by 57 times (OR = 57.66; 95% CI 6.82–487.84; p = 3 × 10−4). The global
statistical test suggests an association between these haplotypes and CRC (0 < 0.0001).

Table 6. Haplotype analysis. CRC, colorectal cancer; OR, odds ratio; 95 % CI, 95 % confidence interval.
* p < 0.05 was considered significant.

Rs11571317 Rs231775 Rs3087243 CRC Control OR (95% CI) * p-Value

A G G 0.1971 0.2973 Ref
A A G 0.2066 0.2357 0.57 (0.26–1.25) 0.16
G G G 0.1518 0.2043 1.16 (0.58–2.33) 0.68
A G A 0.116 0.1332 1.44 (0.55–3.79) 0.46
G A G 0.1364 0 57.66 (6.82–487.84) 3 × 10−4

3.4. Gene Expression Analysis

Relative quantification of CTLA-4 gene expression was performed by quantitative
real-time (q-RT) PCR from 31 colon cancer fresh tissues and 30 normal adjacent matching
tissues. The CTLA-4 mRNA was found significantly higher (5–6-fold differences; p < 0.001)
in tumors (mean = 5.4 ± 0.92; CI = 3.5–7.3) compared to normal adjacent colon samples
(mean = 0.30 ± 0.064; CI = 0.17–0.44) (Figure 2).
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3.5. Protein Expression of CTLA-4 in CRC Patients

CTLA-4 immunohistochemistry was performed on the TMA of paired tumor and
adjacent normal specimens (n = 20). Increased expression of CTLA-4 (brown staining) was
confirmed in cancer tissues compared to normal tissues (Figure 3a). Early-stage (stages 1
and 2) tumor tissues had higher numbers of CTLA-4-positive tumor cells compared to late
stage (stages 3 and 4) (Figure 3a,b). Semiquantitative analysis was also performed with
negative, weak or strong staining depending on the intensity of CTLA-4 staining. Weak
staining was observed in 47% of late CRC samples, whereas 53% samples showed strong
staining in early stage. While all tumors showed CTLA-4 positivity, the intensity of staining
varied from weak and/or strong between early (stages I and II) and late stages (stages III
and IV) of cancer and within the same stage, demonstrating heterogeneous expression.
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4. Discussion

In the present study, we have explored the possible correlation between three CTLA-4
SNPs: rs11571317 (−658C > T), rs231775 (+49A > G) and rs3087243 (CT60 G > A), and the
risk of CRC in Saudi Arabia. The departure from HWE for two out of three SNPS could be
explained by non-random mating because of the highly consanguineous marriages that
characterize the Saudi society, causing a deficiency in heterozygous genotypes [47]. Our
analyses show strong positive associations of the +49A > G and CT60 polymorphisms with
CRC. For the +49A > G polymorphism, strong positive associations were found for the G
allele and GG genotype in almost all tested inheritance models (p < 0.001). This CTLA-4
genetic variants in the exon 1 is a missense variation leading to a threonine to alanine
substitution at codon 17 (Thr17Ala). Functional analysis has shown that this polymorphism
result in an inefficient CTLA-4 glycosylation and reduced cell surface expression and
consequently disruption of the balance CD28 and CTLA-4 interactions with B7-1/2 [48,49].
In various case reports or systematic review, the +49A > G variant was connected to
increased risks to many cancer diseases, including head and neck cancer, breast cancer,
lung cancer, esophageal, liver cancer and pancreatic cancer [27,50–52]. This variant was
associated with an increased risk of CRC [53]. Wang found a significant association between
the CTLA-4 A49G polymorphism and CRC risk among an Asian population, but not among
Caucasians [54]. Furthermore, a meta-analysis showed a significant association between
the +49A/G polymorphism and CRC risk; after subgroup analysis by ethnicity, a significant
association in Asian ethnicity was reported but this was not present among Europeans [55].
Conversely, a study performed in Iran did not find statistically significant differences in
the genotype distribution and allele frequencies among CRC patients and controls [56].
In addition, in a Turkish population showed no significant association between rs231775
and the risk of gastric cancer [57]. Two meta-analyses found similar results regarding
the rs231775 variant, showing an associated risk for cancer development even through
subgroup analysis by type and ethnicity suggesting that CTLA-4 rs231775 is a key variant
that could be associated with cancer development [58,59]. A previous study on the rs231775
variant involving the Taiwanese population showed that patients with the AA genotype had
early onset of German oral squamous cell carcinoma (OSCC) in comparison to AG and GG
carriers, and that the G allele might provide an active immune response [38]. Our findings
are supported by a study that reported that the absence of the G allele in rs231775 decreases
immune response and contributes to peripheral tolerance [60,61]. Individuals with the
GG genotype showed 30% less CTLA-4 on their T cell surfaces when compared to the AA
genotype [62]. Moreover, in another study, individuals with the AA genotype had lower T
cell activity compared to the GG genotype [27]. Furthermore, the rs231775 GG genotype
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may be associated with a lower risk of breast cancer in Iranian women [25]. The proportion
of the AG genotype was higher in patients than in controls, which agrees with a previous
meta-analysis that showed that genotypic variation at this locus significantly increased the
risk of non-epithelial and epithelial tumors in Caucasian, Asian and Chinese people [63].
In addition, the CTLA-4 49A/G SNP was related to infection-related hepatocellular and
cervical carcinomas [51]. Our findings are further supported by Li et al.; they reported that
patients carrying the rs231775 AA genotype had a 2.06-fold higher risk for cervical cancer
compared to patients with the GG genotype. Several studies reported that the rs231775 G
allele increases susceptibility to many autoimmune diseases; however, it is also linked to a
lower risk of graft-vs.-host disease after allogeneic transplantation [64], while the A allele
has been linked to an increased cancer risk, such as breast cancer and lung cancer [50,58].

On the other hand, the AA and AG genotypes of CT60 were also found positively
associated with CRC in codominant, dominant and additive models. For the CTLA-4 gene,
few studies have reported an association between the tested SNPs and CRC. The CT60 of
the CTLA-4 gene was found associated with the risk of CRC in the Swedish population
and patients carrying the A allele were at a higher risk for CRC and the dissemination
of the disease [65]. A previous study, however, suggested an association between the G
allele of CT60 and risk of breast cancer [28]. Although another study performed on the
Han population from northeastern China did not find any association with breast cancer
risk [26,66], another pooled analysis on CT60 showed a lower risk for breast cancer [67,68].
A previous meta-analysis reported that the CTLA-4 CT60 is associated with an increased
risk of skin cancer [69], while another study showed an increased risk of hepatocellular
carcinoma (HCC) [68]. Moreover, reports on European and Asian populations showed an
increased risk of rheumatoid arthritis (RA) in individuals carrying the G allele compared
to those having the A allele of CT60 [70,71]. Inversely, another study on the Mexican
population showed a decreased risk of RA [72] and there was no association found in
a Polish population [66,73]. The mechanism and function of CTLA-4 expression and
regulation is complex, and more studies are required to confirm the mechanisms by which
CTLA-4 expression affects T cell activity [58]. Conflicting results obtained from previous
studies could be due to differences in genetic background, environmental exposures,
various lifestyles and different experimental designs that could influence results [74–76].
Moreover, these environmental factors could cause alterations or epigenetic effects that
could alter the DNA structure, causing changes in the level of expression or stability [77,78].
Although it is debatable whether genotype combinations increase cancer risk, in our study,
results showed that the GG A haplotype was found only in patients and was associated
with CRC risk (OR 57.66; CI (6.82–487.84); p value 3 × 10−4). Haplotype analysis revealed
that the TACG haplotype for the CTLA-4 variants (−1722T, −1661A, −318C, +49G) was
significantly associated with an increased risk of CRC and gastric cancer. However, the
TACA haplotype in the same study was significantly lower in CRC patients but not in gastric
cancer patients [56]. A study found a significantly higher risk among the carriers of CTLA-4
1661AG and 49AA genotypes [79]. Li et al. showed that CTLA-4 haplotype CAAA of the
variants 1722C, 1661A, 49A and CT60A had a significant association with progesterone
receptor status and high risk of breast cancer [26]. On the other hand, a study by Rahimifar
showed that the TGTA haplotype of the CTL4 variants (1722 T, 1661 G, 318 T, 49A) was
protective against cervical cancer and that the TGCG haplotype was associated with higher
risk [33]. Even after multivariate logistic regression analysis, another study showed an
increased risk of OSCC in individuals with the haplotypes TACAG, TGCAA, TATAG
and TACGA, while individuals with CACGG and TACGG had a significantly decreased
risk [79]. Previous reports have also suggested that the CTLA-4 genotype is an influencing
factor, alone or in combination with other T cell regulatory polymorphisms [37,79].

Additionally, we have investigated gene expression in tumor tissue and surrounding
normal colon tissue. Our results revealed high expression of the CTLA-4 gene in colorectal
cancer tissue as compared to normal tissue. These findings are supported by other reports
on the association of CTLA-4 up-regulation and clinical outcomes in several types of
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cancer including chronic lymphocytic leukemia, breast cancer and CRC [35,80,81]. The
CTLA-4 rs231775 SNP causes the substitution of 17Threonine (Thr) to 17Alanine (Ala)
(17Thr > 17Ala) in the leading peptide of the CTLA-4 receptor [82], leading to a lower
expression of flCTLA-4 on the cell surface. Studies have shown that rs231775 G alleles have
lower mRNA efficiency and lower CTLA-4 when compared to the rs231775 A allele [83].
Consequently, carriers of the GG genotype have greater T cell production compared carriers
of the AA genotype under suboptimal stimulation [61]. In addition, substitution of 17 Thr
to 17Ala in the CTLA-4 rs231775 SNP improves the CTLA-4/B7 interaction. This CTLA-4
17Ala showed more ability to decrease T cell activity compared to the CTLA-4 17Thr [27],
suggesting that the 17Thr to 17Ala substitution in CTLA-4 produces a stronger CTLA-4
function in negatively regulating T cell activity [84]. In addition, the A allele of the CTLA-4
rs231775 gene has a higher mRNA efficiency and higher CTLA-4 production compared
to the G allele [85]. Accordingly, immunotherapy based on the CTLA-4 blockade has
determined its value against several malignancies [86,87].

5. Conclusions

In conclusion, this is the first study to evaluate the role of CTLA-4 polymorphisms
in the risk of developing colorectal cancer in the Saudi population. This study needs
to be evaluated in a larger Saudi population for prediction confirmation and exploring
the beneficial role for CTLA-4 as a screening biomarker or immunotherapeutic agent
against colorectal cancer. Additional studies are crucial to explore the role of CTLA-4
polymorphisms and their involvement in CTLA-4 expression for an improved utilization
in immunotherapy against cancer.
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