
Citation: Wang, J.; Zhou, F.; Li, C.;

Yin, N.; Liu, H.; Zhuang, B.; Huang,

Q.; Wen, Y. Gene Association

Analysis of Quantitative Trait Based

on Functional Linear Regression

Model with Local Sparse Estimator.

Genes 2023, 14, 834. https://doi.org/

10.3390/genes14040834

Academic Editor: Stefano Lonardi

Received: 16 February 2023

Revised: 27 March 2023

Accepted: 28 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Gene Association Analysis of Quantitative Trait Based
on Functional Linear Regression Model with Local
Sparse Estimator
Jingyu Wang 1,2, Fujie Zhou 1,2, Cheng Li 1,2, Ning Yin 1,2, Huiming Liu 1,2, Binxian Zhuang 1,2, Qingyu Huang 1,2

and Yongxian Wen 1,2,*

1 College of Computer and Information Science, Fujian Agriculture and Forestry University,
Fuzhou 350002, China

2 Institute of Statistics and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China
* Correspondence: wenyx9681@fafu.edu.cn

Abstract: Functional linear regression models have been widely used in the gene association analysis
of complex traits. These models retain all the genetic information in the data and take full advantage
of spatial information in genetic variation data, which leads to brilliant detection power. However, the
significant association signals identified by the high-power methods are not all the real causal SNPs,
because it is easy to regard noise information as significant association signals, leading to a false
association. In this paper, a method based on the sparse functional data association test (SFDAT) of
gene region association analysis is developed based on a functional linear regression model with local
sparse estimation. The evaluation indicators CSR and DL are defined to evaluate the feasibility and
performance of the proposed method with other indicators. Simulation studies show that: (1) SFDAT
performs well under both linkage equilibrium and linkage disequilibrium simulation; (2) SFDAT
performs successfully for gene regions (including common variants, low-frequency variants, rare
variants and mix variants); (3) With power and type I error rates comparable to OLS and Smooth,
SFDAT has a better ability to handle the zero regions. The Oryza sativa data set is analyzed by SFDAT.
It is shown that SFDAT can better perform gene association analysis and eliminate the false positive
of gene localization. This study showed that SFDAT can lower the interference caused by noise while
maintaining high power. SFDAT provides a new method for the association analysis between gene
regions and phenotypic quantitative traits.

Keywords: association analysis; rare variants; function linear regression model; local sparse estima-
tion; common variants

1. Introduction

In recent years, with the development of high-throughput sequencing technology and
the application of second-generation and third-generation sequencing platforms, unprece-
dented large-scale and high-dimensional genetic variation data have been generated. SNP
(single nucleotide polymorphism) or CNVS (copy number variation) have become common
genetic markers for studying the genetic mechanism of traits. Linkage disequilibrium-
based association analysis has achieved great success in detecting the pathogenic genes
of human diseases and the genetic structure of complex traits of animals and plants [1–3].
Genome-wide association analysis (GWAS) is a high-throughput genotyping technique,
of which the millions of SNPs or CNVS use as genetic markers to identify causal genes by
association analysis. GWAS has achieved primary success in the genetic studies of humans,
animals and plants. GWAS falls into two categories of analysis projects: common variant
association study (CVAS, Minor Allele Frequency (MAF) > 5%) and rare variant association
study (RVAS, MAF <= 1~5% or MAF < 1%), where MAF <= 1~5% is called low-frequency
variants and MAF < 1% is called rare variants. Most of the causal loci identified by the
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current GWAS study are common variants and could only explain a small proportion of the
phenotypic variation. From the view of biological evolution and population genetics, most
of the mutant alleles are low-frequency, and the associated loci controlling complex traits
are generally low-frequency variants [4]. The association between low-frequency variation
and complex traits has been reported [5–7], and some GWAS methods for dealing with
low-frequency variants have also been proposed [8–10].

Univariate association detection is an effective method for common variants in gene
association analysis. This analysis method has many advantages and has achieved good
results through the improvement of many experts and scholars. The variants in the gene
region are detected one by one while using this method. This approach can be adopted
for common variants, while for rare variants, other important information contained in
their genetic region may be overlooked, such as the location of individual variants, the
correlation between variants, etc., so it is easy to underestimate or overestimate the power
of a rare variant. To overcome this problem, many association analysis methods based on
the genomic region have been proposed, including: OMNI [11], eSCAN [12], SKAT [13],
SKAT-O [14], CauchyGM-O [15], tpSSU [16], etc.

There are so many association analysis methods based on genomic regions, but they
could be generally divided into three kinds. The first type of method is based on merging
ideas [10,17–19]. This type of method usually integrates all the variants into a new variable
and obtains the detection power of the new variable. This is a common way is to add all
variables in the region to form a new variable and then test the variable [17]. This kind of
method can reduce the power’s loss due to the huge degree of freedom. The disadvantage
of this method is it requires uniform direction for effect in a detection region; otherwise, it
is difficult to perform an effective detection.

The second type of method is based on the variance component test of the mixed
model [20–24]. In order to solve the directional problem of the loci effect, a variance
component test was proposed. The variance component test does not focus on how
to combine rare variants. It assumed the genetic effects of rare variants subject to a
normal distribution. By testing the variance component of random effects, the associated
relationship between rare variants and phenotypic traits could be better studied [25]. This
kind of method needs to select a kernel function to measure the degree of genetic similarity
between any two individuals in the same detection area. The variance component approach
does not have many requirements for the effect's direction.

The third type of method is based on the functional data analysis (FDA) [26–29] pro-
posed in recent years. Due to high-density genetic marker data, the original genetic model
was transformed from a traditional multiple-linear regression model to a functional linear
model (FLM). A coefficient function consisting of a set of basis functions and its coefficients
could be taken from the functional linear model which represents the genetic effects. By
testing coefficients in the coefficient function, we can know whether there is a significant
non-zero genetic effect value in this region. Many previous studies have shown that the
methods based on the functional linear regression model have higher power than those
based on the merging ideas and variance component tests of the mixed model [26,27,30].
The application of the functional linear regression model in gene association analysis has
been explored in many directions (additive, dominant and epistasis) [31,32], but researchers
were paying more attention to the power of each method, it seems that power was the
whole point of evaluating methods. Of course, the power of the method was an extremely
important indicator for measuring the quality of a gene association analysis method. For
this indicator, the analysis methods based on FDA performed very well, but there is still a
problem: there is sparsity in the gene region, and traditional associated analysis methods
do not have the capacity to shrink a sparse region, resulting in high power, but they also
tend to identify some noise information as an associated signal, so if a method based on
FDA could not only effectively compress the sparse region but also without reducing the
power too much, then the application of this method would achieve better practical results.
At the same time, if we can provide quantitative indicators to measure the impact of genetic
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variation on phenotypic traits and analyze the complex relationship between phenotypic
traits and genetic loci, it will be more accurate to analyze the impact of genetic variation on
phenotypic traits.

Lin et al. [33] proposed the fSCAD (functional smoothly clipped absolute deviation)
method, which improved the original FLM by adding a SCAD (smoothly clipped absolute
deviation) penalty item based on FLM. This method can accurately compress the zero areas
of the model region to zero without excessively compressing the non-zero area of the model
region, which also means that this method can allow unassociated variants to be ignored in
gene association analysis and remain the true associated variants.

In consideration of these advantages of fSCAD and the problems of gene association
analysis methods based on FDA, a new gene association analysis approach called sparse
functional data association test (SFDAT) which is based on FDA [33] was proposed in this
paper, and the computer simulation was used to evaluate the effect coefficient estimation
accuracy, the type I error rate and power. The real data set of O. sativa was analyzed by
SFDAT to demonstrate the applicability of real data of SFDAT.

2. Theory and Methods
2.1. Genetic Model

Let yi be the phenotypic value of ith individual. For i-th individual, the traditional
linear genetic model can be expressed as:

yi = µ +
K

∑
j=1

xijβ j + εi i = 1, 2, · · · , n (1)

where xij is a genotype profile (if A and a represent a pair of alleles, then when the genotype
is AA, xij is taken as 2; when the genotype is Aa, it is taken as 1; when the genotype is
aa, it is 0). β j represents the effect coefficient of genetic marker, εi ∼ N

(
0, σ2), σ2 is the

environmental genetic variance, K is the number of genetic markers. With the increase
in the number of genetic markers, the degree of freedom gradually increases, and the
multi-collinearity among variables becomes more and more serious, eventually leading to
the reduction in estimation accuracy and power. This is especially true when the genetic
markers are low-frequency variations. In order to reduce the degree freedom of the model
and the multiple collinearities of variables due to low-frequency variation, the functional
linear model (FLM) can be used instead of the multiple linear genetic model:

yi = µ +

∫ T

0
Xi(t)β(t)dt + εi i = 1, 2, · · · , n (2)

where εi is an independent and normal distribution with zero mean and variance σ2, [0, T]
represents the genomic region under consideration, that is, a DNA fragment that contains
multiple SNP loci, among which there may be SNP loci that can affect the target quantitative
trait. The discrete genetic markers in Equation (1) are converted into the continuous genetic
marker function, and the effects of genetic markers β j are also converted into a continuous
genetic effect function β(t).

For Equation (2), the B-spline function is used to fit the genetic variants and the genetic
effects. According to the functional data analysis method [26,34]: First, let l variants be
in a sequence of their physical locations t0 < t1 ≤ t2 · · · ≤ tl < tl+1 < · · · < tT = T
which constitutes the genomic region [0, T]; Second, a series of B-spline basis functions are
defined and let Bk(t) be a B-spline basis function; Third, define M + 1 equidistant nodes
0 = v0 < v1 < · · · < vM = T in the interval [0, T]. After that, these discrete genetic variants
can be expanded as a continuous function:

Xi(t) =
KG

∑
k=1

uikBk(t) (3)
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where the coefficient could be obtained by minimizing the following equation:

T

∑
j=1

[Xi
(
tj
)
−

KG

∑
k=1

Bk
(
tj
)
uik]

2 (4)

Let Xi = [Xi(t1), · · · , Xi(tT)]
T, ui = [ui1, · · · uiKG ]

T, B =

B1(t1) · · · BKG (t1)
· · · · · · · · ·

B1(tT) · · · BKG (tT)

.

The coefficient uik is estimated to be
^
ui = (BTB)−1BTXi. Similar to the genetic variants,

the genetic effects also can be expanded as

β(t) =
Kβ

∑
k=1

βkBk(t) = θT(t)β (5)

where θ(t) = [B1(t), · · · , BKβ
(t)]T = [θ1(t), · · · , θKβ

(t)]T, β = [β1, · · · , βKβ
]T.

Let Y = [y1, · · · , yn]
T, X(t) = [X1(t), · · · , Xn(t)]

T, U = [u1, · · ·un]
T,

B(t) = [B1(t), · · · , BKG(t)]
T, I = (1, 1, · · · , 1)T, ε = [ε1, ε2, · · · , εn]

T, then X(t) = UB(t).
The functional linear model of Equation (2) can be rewritten as

Y = µI +
∫ T

0 UB(t)θT(t)βdt + ε

= µI + U
[∫ T

0 B(t)θT(t)dt
]

β + ε
(6)

Let JBθ =


∫ T

0 B1(t)θ1(t)dt · · ·
∫ T

0 B1(t)θKβ
(t)dt

· · · · · · · · ·∫ T
0 BKG (t)θ1(t)dt · · ·

∫ T
0 BKG (t)θKβ

(t)dt

W = UJBθ , then Equation (6)

can be rewritten as

Y = µI + Wβ + ε (7)

The form of the linear regression equation is:

y = µ + w1β1 + w2β2 + · · ·+ wKβ
βKβ

+ ε = µ +

Kβ

∑
i=1

wiβi + ε (8)

In the actual operation, the integral interval [0, T] can be converted into [0, 1].

2.2. Parameter Estimation

It can be seen from the equations established above that the genetic variants and
effects in the functional linear genetic model are transformed into a continuous function
through B-spline. Finally, the functional genetic model is transformed into the traditional
linear regression model. In order to obtain the local sparse estimation of β(t), we use the
method of parameter estimation based on the penalty function proposed by Lin et al. [33].
Lin et al. [33] proposed that β̂(t) and µ̂ in Equation (2) could be estimated by minimizing
the following loss function:

Loss(β, µ) = 1
n

n

∑
i=1

[yi − µ−
∫ T

0 Xi(t)β(t)dt]2 + γ ‖ Dmβ ‖2

+M
T
∫ T

0 pλ(|β(t)|)dt

(9)
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where d, M, T as defined above, Dm is the m order differential operator, m ≤ d, which we
usually take m = 2, ‖•‖ is L2 norm. As defined by Fan and Li’s [35] pλ(•) is:

pλ(u) =


λu 0 ≤ u ≤ λ

− u2−2aλu+λ2

2(a−1) λ < u < aλ

(a+1)λ2

2 u ≥ aλ

(10)

Its domain is [0, +∞], the value of a could be 3.7 which is suggested by Fan and
Li [35] and the value of λ is determined by the sample size. The γ‖Dmβ‖2 term in the
loss function Loss(β, µ) is the roughness penalty of β(t), it controls the smoothness of β(t),
where parameter γ can further adjust the severity of roughness penalty, γ is called the
smoothing parameter. Due to the roughness penalty, the functional linear regression model
FLM has a certain ability to resist “noise”. M

T
∫ T

0 pλ(|β(t)|)dt is the local sparse penalty of
β(t), it can compress the tiny β(t) directly to zero. The parameter λ determines how tiny
value would be compressed, λ is called the compression parameter. In addition, the local
sparse penalty will play different constraints according to the specific form of β(t).

For Equation (9), when γ = 0, λ = 0, Loss(β, µ) is the same as the loss function of
ordinary functional linear regression model (FLM), the method of parameter estimation is
called Ordinary Least-Square Estimator (OLS); when γ 6= 0, λ = 0, Loss(β, µ) equals to the
loss function of the smoothed functional linear regression model, the method of parameter
estimation is called Smoothing Spline Estimator (Smooth); when γ 6= 0, λ 6= 0, Loss(β, µ)
is a loss function for the functional linear regression model with locally sparse. The method
of parameter estimation is called smooth and locally sparse (SLoS) estimator. There are two
advantages of SLoS’s loss function: first, these rough results due to false correlation effects
could be smoothed by the roughness penalty; second, the small and insignificant effects
would be directly compressed to zero, which further reduces the false positive.

2.3. Test Statistics

Another major problem in the genetic study for quantitative traits is whether the
association between genetic regions and phenotypic traits is real existence. In general, we
consider the following hypothesis-testing questions:

H0 : β(t) = 0 , H1 : β(t) 6= 0, for any t ∈ [0, T]

Since the genetic effect function is the expansion of the basis function, the above
assumption is equal to the following assumptions:

H0: for any βi = 0, i = 1, 2, · · · , Kβ., H1: βi not all zero, i = 1, 2, · · · , Kβ.

For

y = µ +

Kβ

∑
i=1

wiβi (11)

The statistic can be defined as:

F =
RSS
Kβ
ESS

n−Kβ−1
∼ F

(
Kβ, n− Kβ − 1

)
(12)

where RSS is the regression square sum of Equation (11), and ESS is the residual square
sum of Equation (11).

The above statistical test is for the entire gene region [0, T], let us move on to the test
for the subgene area. Suppose N(β) is the zero value area of β(t) and S(β) is non-zero
value area of β(t), then N(β) = {t ∈ [0, T] : β(t) = 0}, S(β) = {t ∈ [0, T] : β(t) 6= 0}. The
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estimation β̂(t) has Oracle property for N(β) by SLoS estimator. Lin [33] have proven the
following conclusion: if β(t) = 0 for any t ∈ [0, T], then the estimation of β̂(t) = 0 for any
t ∈ [0, T] in probability. In other words, if the estimation of β̂(t) 6= 0 for any t ∈ [0, T],
then β(t) 6= 0 for any t ∈ [0, T] in probability. Suppose N(β̂) is the zero value area of β̂(t)
and S(β̂) is the non-zero value area of β̂(t), N(β̂) is convergence to N(β) in probability
and S(β̂) is convergence to S(β) in probability. Therefore, the zero and non-zero area of
β̂(t) represent that of β(t). The view of statistical genetic, the effect function β̂(t) to be
zero means that there is no correlation between phenotypic traits and locus t; the effect
function β̂(t) to be non-zero, it means that there is a correlation between phenotypic traits
and locus t.

Therefore, it is necessary to establish indicators for SFDAT to estimate the effect
function in zero or non-zero regions. On the one hand, it can measure the accuracy of the
model estimation; on the other hand, it can provide a reference for a more accurate analysis
of functional linear model regional association.

2.4. Indicators of Estimated Accuracy

There are numerous SNP loci in the gene region, and the identified causal SNP loci
will inevitably have location deviation, so we regard the region with a total of 200 loci
centered on the causal SNP loci as the region of acceptable deviation (Abbr. RAD), that
is, we can accept that the identified causal SNP is within the RAD. Then, on the basis of
being closer to reality, in order to evaluate the ability of the function to compress the zero
regions on the one hand, and measure the accuracy of the function to identify the non-zero
region on the other hand, we evaluate the identification ability and the region-selection
ability of the model through the correct selection ratio (Abbr.CSR) of zero regions outside
RAD and the discovery length (Abbr. DL) for non-zero regions in RAD, which was defined,
respectively, by

CSR =
S0(β̂(t)∩ β(t))

S0(β(t))
(13)

DL = S1
(

β̂(t)
)

(14)

S0(β(t)) and S1(β(t)) are denoted as the length of β(t) in zero region and non-zero re-
gion. β(t) and β̂(t) represent the real and estimated effect values at the locus t, respectively.
For a good test method, its CSR should be enough large to handle non-association signals
region effectively; in the meantime, the more precise ability to identify the association
signals, the lower DL it has.

For areas with zero or non-zero effects in the integral region, the following integral
squared errors (ISE) are defined by Lin [33]:

ISE0 = 1
l0

∫
N(β)

(β̂(t)− β(t))
2dt and ISE1 = 1

l1

∫
S(β)

(β̂(t)− β(t))
2dt (15)

where l0 is the length of zero areas, l1 is the length of non-zero areas. ISE0 and ISE1 can be
used to estimate the error between estimated β̂(t) and true β(t) on zero and non-zero areas,
respectively. In addition to the performance of model prediction, it is judged by prediction
mean squared errors (PMSE):

PMSE = 1
N ∑
(x,y)∈test

(y− µ̂−
∫ T

0
X(t)β̂(t)dt)2

(16)

where test is the test individual set, N is the number of samples, µ̂ and β̂(t) are estimated
of µ and β(t).
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According to the above definition, we can define ISE0, ISE1 and PMSE as criteria for
evaluating the accuracy of effect estimates for gene regions. To determine the degree of
fitting on zero effects, we define

ISE0 =
1

|A0| − 1 ∑
t∈A0

(
β̂(t)− β(t)

)2
(17)

A0 denotes a set of variants loci in which no association exists, |A0| denotes the number
of elements in set A0. β̂(t) and β(t), respectively, denote estimated effects and actual effect
values on locus t in set A0. It indicates the degree of the overall deviation of the true and
estimated values at the zero effects, the lower ISE0, the more accurate estimation of zero
effects. To determine the degree of fitting on the non-zero effects, we define

ISE1 =
1

|A1| − 1 ∑
t∈A1

(
β̂(t)− β(t)

)2
(18)

A1 represents the set of associated variants loci in the region, |A1| represents the
number of elements in set A1 A1. β̂(t) and β(t) represent the estimated and actual effect
values on locus t in set A1, respectively. It indicates the degree of overall deviation between
true and estimated values at the non-zero effects, the lower ISE1, the more precise estimation
of non-zero effects. To determine the degree of fit for the genetic model, we define

PMSE =
1

N − 1 ∑
yi∈test

(yi − ŷi)
2 (19)

test represents the test individual set, N represents the number of individuals in the
test set, yi represents the true effect value of ith individual in the test set and ŷi represents
the predicted value of ith individual in the test set, which indicates the overall deviation
degree between true and estimated trait values at the test set, the lower PMSE, the more
powerful predict ability.

2.5. Determine Tune Parameters

In the SFDAT method, the choice of parameter M value is not very important [36] as
long as the selected M is large enough to reflect the local appearance of β(t) (including the
area of zero). For selection of γ and λ, a series of candidate values are given and find out the
optimal parameters based on cross-validation, generalized cross-validation, BIC (Bayesian
information criterion), AIC (Akaike information criterion) or RIC (Risk Inflation Criterion).

3. Simulation Studies

In order to verify the feasibility and effectiveness of the SFDAT method, a computer
simulation was carried out. The simulated SNP genotype data were used to study the
power, type I error rate and estimation accuracy of the method. To compare the advantages
of the SFDAT method, the OLS and Smooth methods were also adopted. The computer
simulation code was written in R language.

The power of the model and type I error rate can be obtained by the following
steps: firstly, test Equation (2) to obtain the p value of the genetic model under different
assumptions; secondly, count the number of p values less than a certain threshold; thirdly,
the counted number divided by the total number of simulations, and then the ratio under
the non-zero hypothesis is the power and the ratio under the null hypothesis is the type I
error rate. The reason for calculating in this way is: under a non-zero hypothesis, there
is an associated variant in the region, if the p value is less than threshold α at this time,
the phenotype trait and gene region have an associated relationship, so the ratio is the
power; under the null hypothesis, there is no associated variant in the region, if the p value
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is still less than threshold α at this time, the phenotype trait and gene region have a false
associated relationship, so this ratio become the type I error rate.

At last, a test set for each simulation (an additional 100 individuals from the simulated
SNP genotype data) was generated to calculate the PMSE.

3.1. Simulated SNP Genotype Data

In the simulation, we consider the linkage equilibrium and linkage disequilibrium
simulation. For the linkage equilibrium simulation, the simulated SNP genotype dataset
consists of many simulated gene regions, each of which contains 900 SNPs, and the MAF of
SNPs within each region is generated by uniform distribution U(a, b). In fact, we generate
the MAF of each SNP through uniform distribution, then generate the corresponding SNP
through the MAF, and finally, form the simulated gene region from these SNPs. For the
generation of the simulated SNP genotype of linkage disequilibrium simulation, we refer to
Wang and Pan [37,38] and set the measure of linkage disequilibrium 0.2 in the simulation.

In the simulation, the number of basis functions KG, KB is 15, the order d is 4, the node
M is 11. A set of smoothing parameters γ [102,103,104,105,106] and a set of compression
parameters λ [0.03, 0.04, 0.05, 0.06] are given here. In the calculation process, the optimal
parameters will be automatically selected according to BIC.

For linkage equilibrium and linkage disequilibrium simulation, four kinds of gene
regions will be discussed: rare variants gene regions, low-frequency variants gene regions,
common variants gene regions and mixed variants gene regions. The rare variant's gene
region is constituted by rare variants of which MAFs are generated by uniform distribution
U(0.0005, 0.01); The low-frequency variants gene region is constituted by low-frequency
variants of which MAFs are generated by uniform distribution U(0.01, 0.05); The common
variants gene region is constituted by common variants of which MAFs are generated by
uniform distribution U(0.05, 0.5); The mixed variants gene region is randomly composed
by 60% rare variants, 15% low-frequency variants, and 25% common variants.

Simulated phenotypic trait values were generated by y = µ + ∑
i∈A

xiβi + ε, where A is

the set of causal SNPs, µ = 1 , ε ∼ N(0, 1). Two different types of simulation cases were
considered:

Case I: A total of three scenarios will be considered: Scenario I: setting a positive causal
SNP at locus 450 in the gene region; Scenario II: setting a positive causal SNP at locus 100
and 800 in the gene region, respectively; Scenario III: setting a positive causal SNP and a
negative causal SNP at locus 100 and 800 in the gene region, respectively. The effect size of
each scenario is fixed at 5 (β = 5).

Case II: The value of genetic effect β is ln(c)×
∣∣log10(MAF)|/2 (MAF is the minor

allele frequency of the SNP). A total of 27 scenarios will be considered: the number of causal
SNPs is 5, 10 or 20. Namely, the associated variants proportion of gene region (900 SNP) is
1/180, 1/90 and 1/45 ; the proportion of negative effect in causal SNPs was 0%, 20%, or
40%; The parameter c in the genetic effect ln(c)×

∣∣log10(MAFi)|/2 equals to 3, 5 or 7.
The simulated gene regions of Case I and Case II were shown in Figure 1. For each

case, we generated 2000 samples for each gene region to simulate, and all simulations were
replicated 1000 times. CSR, DL will be calculated in Case I and power, ISE0, ISE1 and PMSE
will be calculated in Case II.

3.2. The Power Evaluation and the Estimation of Indicators

Figures 2 and 3 show the CSR and DL of OLS, Smooth, and SFDAT in the three
scenarios of Case I, respectively. Note that SFDAT can compress β(t) to 0 in the region of
most unassociated SNPs. However, neither OLS nor Smooth has this ability, which results
in their failure to compress unassociated SNP loci, that is, OLS and Smooth estimate the
coefficients of these SNP loci with no genetic effect as non-zero. The ability of SFDAT to
compress the non-effect region in common variants and low-frequency variants is stronger
than that of mixed variants and rare variants, indicating that the gene regions with rare
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variants may limit the compression ability of SFDAT. SFDAT performs better in gene
regions with only one causal SNP, and worst in gene regions with a positive and negative
causal SNP. Meanwhile, compared with linkage equilibrium, SFDAT performs better in
the simulation of linkage disequilibrium. As can be seen from Figure 3, OLS, Smooth and
SFDAT can all find causal signals in RAD, but the signal regions found by SFDAT are
more concentrated. OLS and Smooth explore the causal signal at each locus in the RAD,
while SFDAT only identified the causal SNPs in part of the RAD under all cases. This is
because OLS and Smooth do not have the ability to compress the zero region, resulting
the noise fluctuations when estimating the effect functions on the unassociated SNPs loci,
which mistakenly deems all the loci have the effect. SFDAT cannot only perfectly detect
unassociated SNPs regions, but also accurately identify causal SNP loci. When there is only
one causal SNP in the gene region, SFDAT can detect the locations of rare variants more
accurately. The DL100 probed by SFDAT is similar to DL800 under scenario II and scenario
III (Gene regions exist two causal SNPs). In general, the DL of linkage disequilibrium
simulation is smaller than that of linkage equilibrium, that is, the location of the identified
causal SNPs is more concentrated.
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Table 1 illustrates the power of three methods of Case II under the significant level 0.01.
As can be seen from Table 1, under the simulation of linkage equilibrium, the power for
common variant regions and low-frequency variant regions are similar, the powers of rare
variants regions and mixed variants regions are similar. The powers of the former (common
variants and low-frequency variants) are higher than that of the latter (rare variants and
mixed variants), and the powers of rare variant regions are also lower than that of mixed
variant regions. That is because the former does not contain rare variants, the latter contains
rare variants and the rare variants contained in the mixed variants regions will be fewer
than the rare variants regions, indicating that the gene regions that do not contain rare
variants have a higher power, the power of the gene region containing common variants
is higher than that of a gene region containing only rare variants. For common variant
regions and low-frequency variant regions, there are similar powers in various situations
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for the OLS, Smooth and SFDAT methods, and the OLS method is slightly better. However,
for rare variants regions and mixed variants regions, the power of the OLS method is
significantly better. Obviously, the powers of methods are higher when the number of
causal SNPs or the effect size increases, but when the proportion of negative effect increases,
the powers of methods are just the opposite. In rare variant regions, the detection results
are unstable while the causal SNPs contained in the gene region become less. Finally, it has
a higher power in all cases, when the number of pathogenic SNPs in the gene region reaches
20. It is shown that similar performance patterns are observed in linkage disequilibrium.
However, compared with the simulation of linkage equilibrium, the power of linkage
disequilibrium has improved enormously. This is owing to the overall effect of gene regions
as the correlation of loci.
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Figure 2. The simulation CSR of four variants using OLS, SFDAT and Smooth under three scenarios
of Case I. (A): The situation of linkage equilibrium; (B): the situation of linkage disequilibrium;
Scenario I: Set a positive causal SNP at locus 450 in the gene region. Scenario II: Set a positive causal
SNP at locus 100 and 800 in the gene region, respectively. Scenario III: Set a positive causal SNP and a
negative causal SNP at locus 100 and 800 in the gene region, respectively.

The ISE0 and its standard deviation of three methods for linkage equilibrium and
linkage disequilibrium under Case II are shown in Table 2. From Table 2, under the
simulation of linkage equilibrium, the standard deviation increases with the MAF decreases,
it shows that the common variants fit better in the region where the effect is zero; the ISE0
value or standard deviation of the OLS method is the largest among three methods, while
there are smaller and similar results for the Smooth and SFDAT methods; the ISE0 standard
deviation of the Smooth method has a larger deviation than that of SFDAT method when
the number of causal SNPs in the gene region is small; the ISE0 values are similar (in
other words the degree of the fitting is close) when the number of the causal SNPs and the
effect size are the same regardless of the proportion of the negative effect; the ISE0 and
its standard deviation increase while the number of the causal SNPs and the effect size
increase. Compared to the simulation of linkage equilibrium, ISE0 decreased significantly
in the regions of common variants and mixed variants under linkage disequilibrium, and
slightly increased in the regions of low-frequency variants and rare variants. It is also
verified that the models can better fit the zero region of common variants.
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Table 3 displays the ISE1 and its standard deviation of three methods under linkage
equilibrium and linkage disequilibrium based on Case II. In the situation of linkage equi-
librium, the standard deviation increases as MAF decreases which indicated that three
methods fitted better on the common variants in the non-zero region; the ISE1 and its
standard deviation of the three methods were similar: as the effect size c or the proportion
of the negative effects increases. Under linkage disequilibrium, the results of OLS, Smooth
and SFDAT in fitting non-zero regions of common variants, low-frequency variants and
rare variants decreased slightly. When fitting the rare variants that do not exist negative
causal SNPs, the fitting results are also slightly lower than that of linkage equilibrium, but
the ISE1 of linkage disequilibrium simulation is significantly lower than that of linkage
equilibrium when the rare variants region exists negative causal SNPs.
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Figure 3. The simulation DL of four variants using OLS, SFDAT and Smooth under three scenarios of
Case I. DL100, DL450, DL800 denotes the discovery length for non-zero region at locus 100, 450 and 800,
respectively. (A): The situation of linkage equilibrium; (B): the situation of linkage disequilibrium;
Scenario I: Set a positive causal SNP at locus 450 in the gene region. Scenario II: Set a positive causal
SNP at locus 100 and 800 in the gene region, respectively. Scenario III: Set a positive causal SNP and a
negative causal SNP at locus 100 and 800 in the gene region, respectively.

PMSE and its standard deviation of three methods under linkage equilibrium and
linkage disequilibrium in Case II are shown in Table 4. In general, the functional-based
genetic model containing rare variants fits better than those containing common variants.
PMSE and its standard deviation of the three methods are similar. PMSE and its standard
deviation increase with the number of causal SNPs or effect size, while the proportion of
negative effect only has little influence on it. Compared with linkage equilibrium simula-
tions, PMSE and its standard deviation of linkage disequilibrium decrease significantly
in common variants, low-frequency variants and rare variants, but slightly increase in
mixed variants.
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Table 1. The power of association analysis of simulated quantitative trait for linkage equilibrium and linkage disequilibrium based on SFDAT, OLS and Smooth at
significance level of 0.01.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mixed Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/180 3 0 0 0.274 0.293 0.285 0.203 0.237 0.203 0.039 0.108 0.039 0.034 0.089 0.036
0.2 1.000 1.000 1.000 0.999 0.999 0.999 0.318 0.438 0.319 0.993 0.995 0.994

0.2 0 0.217 0.233 0.228 0.163 0.195 0.163 0.036 0.080 0.037 0.046 0.107 0.046
0.2 0.990 0.995 0.995 0.833 0.857 0.836 0.141 0.238 0.142 0.821 0.837 0.831

0.4 0 0.193 0.210 0.199 0.145 0.177 0.146 0.026 0.077 0.026 0.046 0.092 0.046
0.2 0.239 0.267 0.251 0.278 0.319 0.280 0.060 0.119 0.061 0.281 0.298 0.288

5 0 0 0.528 0.542 0.534 0.452 0.491 0.453 0.147 0.229 0.147 0.159 0.269 0.159
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.721 0.806 0.723 0.998 0.998 0.998

0.2 0 0.466 0.483 0.472 0.432 0.480 0.432 0.132 0.232 0.133 0.125 0.219 0.127
0.2 1.000 1.000 1.000 0.985 0.986 0.985 0.415 0.542 0.419 0.953 0.955 0.954

0.4 0 0.443 0.456 0.446 0.403 0.459 0.403 0.096 0.199 0.097 0.123 0.214 0.123
0.2 0.589 0.617 0.604 0.617 0.650 0.617 0.187 0.308 0.189 0.562 0.573 0.564

7 0 0 0.636 0.648 0.638 0.614 0.654 0.617 0.250 0.349 0.250 0.240 0.358 0.241
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.857 0.902 0.858 1.000 1.000 1.000

0.2 0 0.604 0.626 0.612 0.577 0.620 0.577 0.225 0.352 0.225 0.209 0.311 0.210
0.2 1.000 1.000 1.000 0.999 1.000 0.999 0.588 0.701 0.590 0.970 0.971 0.970

0.4 0 0.568 0.581 0.569 0.517 0.566 0.517 0.180 0.298 0.180 0.197 0.322 0.197
0.2 0.757 0.763 0.760 0.753 0.799 0.753 0.354 0.499 0.357 0.694 0.706 0.697

1/90 3 0 0 0.618 0.638 0.630 0.590 0.624 0.591 0.178 0.286 0.179 0.162 0.267 0.163
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.922 0.953 0.924 1.000 1.000 1.000

0.2 0 0.485 0.495 0.490 0.428 0.479 0.430 0.103 0.223 0.103 0.119 0.232 0.121
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.565 0.680 0.568 0.998 0.998 0.998

0.4 0 0.463 0.479 0.465 0.384 0.450 0.384 0.102 0.192 0.104 0.104 0.187 0.104
0.2 0.807 0.821 0.815 0.713 0.751 0.715 0.196 0.336 0.196 0.650 0.669 0.656

5 0 0 0.852 0.859 0.854 0.850 0.869 0.850 0.472 0.595 0.473 0.472 0.616 0.472
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996 1.000 1.000 1.000

0.2 0 0.781 0.793 0.784 0.742 0.775 0.742 0.343 0.464 0.344 0.338 0.496 0.338
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.869 0.910 0.869 0.998 0.998 0.998

0.4 0 0.698 0.707 0.700 0.672 0.713 0.672 0.316 0.449 0.318 0.287 0.436 0.287
0.2 0.964 0.969 0.966 0.922 0.936 0.922 0.532 0.683 0.534 0.846 0.853 0.847

7 0 0 0.920 0.922 0.920 0.920 0.931 0.920 0.628 0.748 0.629 0.643 0.757 0.645
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
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Table 1. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mixed Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0 0.851 0.855 0.851 0.851 0.870 0.851 0.514 0.642 0.514 0.508 0.642 0.508
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.971 0.958 1.000 1.000 1.000

0.4 0 0.809 0.813 0.809 0.747 0.777 0.747 0.456 0.590 0.458 0.463 0.603 0.463
0.2 0.983 0.987 0.984 0.966 0.975 0.966 0.750 0.845 0.752 0.921 0.925 0.921

1/45 3 0 0 0.949 0.950 0.949 0.945 0.955 0.945 0.607 0.742 0.607 0.596 0.725 0.599
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0 0.812 0.815 0.813 0.802 0.837 0.802 0.399 0.549 0.400 0.396 0.564 0.398
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.992 0.985 1.000 1.000 1.000

0.4 0 0.712 0.724 0.712 0.690 0.729 0.690 0.286 0.441 0.286 0.274 0.430 0.276
0.2 0.998 0.998 0.998 0.973 0.980 0.973 0.575 0.711 0.575 0.928 0.930 0.929

5 0 0 0.997 0.997 0.997 0.995 0.995 0.995 0.919 0.949 0.919 0.910 0.947 0.910
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0 0.935 0.938 0.935 0.942 0.952 0.942 0.740 0.843 0.742 0.720 0.816 0.720
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000

0.4 0 0.859 0.868 0.859 0.862 0.886 0.862 0.587 0.722 0.587 0.605 0.748 0.606
0.2 1.000 1.000 1.000 0.992 0.994 0.992 0.869 0.928 0.870 0.970 0.975 0.970

7 0 0 0.997 0.997 0.997 0.999 0.999 0.999 0.963 0.979 0.963 0.959 0.978 0.959
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0 0.970 0.971 0.970 0.969 0.974 0.969 0.855 0.914 0.855 0.841 0.906 0.841
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000

0.4 0 0.892 0.895 0.892 0.901 0.923 0.901 0.716 0.822 0.716 0.727 0.853 0.727
0.2 1.000 1.000 1.000 0.997 0.997 0.997 0.946 0.975 0.946 0.982 0.984 0.982

Note: r2 represents the measure of linkage disequilibrium, r2 equals to 0 means there is linkage equilibrium between SNP.

Table 2. The means and standard errors (in the parenthesis) of ISE0 for association analysis of simulated quantitative trait based on SFDAT, OLS and Smooth on
linkage equilibrium and linkage disequilibrium.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/180 3 0 0 0.068 0.071 0.069 0.379 0.414 0.380 1.431 1.810 1.445 1.418 1.789 1.433
(0.027) (0.027) (0.026) (0.121) (0.134) (0.120) (0.468) (0.549) (0.456) (0.451) (0.540) (0.437)

0.2 0.061 0.064 0.062 0.402 0.440 0.404 1.553 1.971 1.564 0.097 0.102 0.098
(0.019) (0.018) (0.017) (0.125) (0.136) (0.125) (0.503) (0.605) (0.495) (0.032) (0.032) (0.031)
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Table 2. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0 0.066 0.068 0.067 0.379 0.413 0.381 1.414 1.764 1.425 1.462 1.834 1.473
(0.025) (0.025) (0.024) (0.124) (0.134) (0.122) (0.467) (0.553) (0.458) (0.492) (0.606) (0.485)

0.2 0.061 0.064 0.063 0.394 0.431 0.395 1.566 1.982 1.577 0.095 0.100 0.097
(0.020) (0.019) (0.019) (0.127) (0.138) (0.125) (0.514) (0.613) (0.505) (0.030) (0.031) (0.029)

0.4 0 0.065 0.068 0.067 0.377 0.411 0.379 1.395 1.763 1.412 1.435 1.800 1.445
(0.027) (0.025) (0.026) (0.122) (0.131) (0.121) (0.476) (0.567) (0.464) (0.489) (0.588) (0.481)

0.2 0.059 0.063 0.062 0.399 0.435 0.401 1.573 2.004 1.588 0.096 0.101 0.098
(0.020) (0.019) (0.018) (0.123) (0.133) (0.122) (0.524) (0.626) (0.509) (0.032) (0.032) (0.030)

5
0

0 0.102 0.105 0.103 0.549 0.595 0.549 1.809 2.252 1.816 1.818 2.275 1.827
(0.048) (0.049) (0.048) (0.191) (0.215) (0.190) (0.642) (0.773) (0.637) (0.672) (0.862) (0.673)

0.2 0.084 0.087 0.085 0.581 0.632 0.582 2.039 2.571 2.045 0.132 0.138 0.133
(0.025) (0.025) (0.025) (0.183) (0.202) (0.183) (0.659) (0.791) (0.656) (0.044) (0.046) (0.044)

0.2 0 0.103 0.106 0.104 0.569 0.621 0.570 1.828 2.295 1.837 1.834 2.293 1.841
(0.051) (0.052) (0.051) (0.204) (0.227) (0.203) (0.669) (0.822) (0.662) (0.663) (0.825) (0.660)

0.2 0.085 0.088 0.086 0.584 0.634 0.585 2.032 2.566 2.041 0.137 0.142 0.137
(0.027) (0.027) (0.026) (0.184) (0.203) (0.183) (0.673) (0.820) (0.666) (0.046) (0.049) (0.046)

0.4 0 0.101 0.104 0.102 0.564 0.614 0.565 1.815 2.264 1.823 1.817 2.275 1.827
(0.046) (0.047) (0.046) (0.198) (0.222) (0.198) (0.635) (0.774) (0.627) (0.652) (0.801) (0.646)

0.2 0.085 0.088 0.086 0.585 0.637 0.585 1.994 2.516 2.003 0.132 0.137 0.133
(0.028) (0.028) (0.027) (0.182) (0.202) (0.181) (0.651) (0.794) (0.644) (0.044) (0.046) (0.044)

7 0 0 0.131 0.134 0.131 0.714 0.222 0.714 2.169 2.707 2.174 2.165 2.721 2.172
(0.066) (0.069) (0.066) (0.265) (0.309) (0.265) (0.822) (1.070) (0.818) (0.773) (1.000) (0.770)

0.2 0.106 0.109 0.107 0.730 0.795 0.730 2.404 3.027 2.409 0.167 0.173 0.167
(0.033) (0.033) (0.032) (0.218) (0.243) (0.218) (0.815) (1.003) (0.810) (0.058) (0.061) (0.058)

0.2 0 0.132 0.135 0.132 0.737 0.800 0.738 2.173 2.726 2.179 2.158 2.698 2.165
(0.065) (0.068) (0.065) (0.280) (0.319) (0.280) (0.822) (1.076) (0.817) (0.805) (1.024) (0.800)

0.2 0.106 0.109 0.107 0.746 0.813 0.746 2.415 3.055 2.421 0.167 0.173 0.168
(0.034) (0.035) (0.033) (0.242) (0.267) (0.242) (0.826) (1.025) (0.821) (0.058) (0.062) (0.058)

0.4 0 0.129 0.132 0.129 0.710 0.772 0.710 2.109 2.636 2.117 2.167 2.717 2.174
(0.064) (0.066) (0.063) (0.254) (0.283) (0.253) (0.779) (0.968) (0.775) (0.810) (1.064) (0.805)

0.2 0.106 0.109 0.107 0.753 0.821 0.753 2.448 3.075 2.455 0.168 0.174 0.168
(0.033) (0.034) (0.033) (0.240) (0.272) (0.239) (0.867) (1.048) (0.863) (0.057) (0.060) (0.057)

1/90 3 0 0 0.099 0.101 0.099 0.548 0.596 0.548 1.791 2.235 1.796 1.782 2.221 1.789
(0.039) (0.040) (0.038) (0.171) (0.191) (0.171) (0.617) (0.755) (0.613) (0.566) (0.685) (0.562)
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Table 2. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0.081 0.084 0.082 0.554 0.603 0.554 1.989 2.520 1.992 0.130 0.135 0.130
(0.024) (0.025) (0.024) (0.171) (0.184) (0.171) (0.642) (0.786) (0.640) (0.039) (0.041) (0.039)

0.2 0 0.097 0.099 0.098 0.534 0.579 0.534 1.787 2.230 1.793 1.780 2.222 1.788
(0.037) (0.038) (0.036) (0.166) (0.185) (0.166) (0.557) (0.674) (0.554) (0.583) (0.712) (0.578)

0.2 0.082 0.085 0.083 0.550 0.600 0.551 1.965 2.491 1.973 0.128 0.134 0.129
(0.025) (0.025) (0.024) (0.165) (0.181) (0.165) (0.641) (0.779) (0.632) (0.042) (0.044) (0.041)

0.4 0 0.099 0.101 0.099 0.555 0.603 0.555 1.803 2.242 1.809 1.784 2.226 1.792
(0.035) (0.036) (0.035) (0.171) (0.187) (0.171) (0.589) (0.716) (0.584) (0.592) (0.709) (0.588)

0.2 0.082 0.085 0.083 0.576 0.626 0.576 1.969 2.482 1.976 0.130 0.135 0.130
(0.025) (0.025) (0.024) (0.174) (0.188) (0.174) (0.617) (0.734) (0.612) (0.042) (0.043) (0.041)

5 0 0 0.165 0.169 0.166 0.901 0.975 0.901 2.601 3.228 2.605 2.601 3.239 2.604
(0.068) (0.070) (0.067) (0.289) (0.320) (0.289) (0.906) (1.135) (0.904) (0.929) (1.131) (0.926)

0.2 0.130 0.133 0.130 0.922 1.004 0.922 2.867 3.620 2.870 0.204 0.211 0.204
(0.039) (0.040) (0.039) (0.274) (0.300) (0.274) (0.907) (1.111) (0.905) (0.068) (0.073) (0.068)

0.2 0 0.170 0.173 0.170 0.896 0.973 0.896 2.567 3.199 2.570 2.595 3.234 2.599
(0.071) (0.074) (0.071) (0.301) (0.343) (0.301) (0.968) (1.227) (0.966) (0.882) (1.135) (0.881)

0.2 0.129 0.132 0.129 0.922 1.004 0.922 2.862 3.605 2.865 0.202 0.209 0.202
(0.040) (0.040) (0.039) (0.284) (0.312) (0.284) (0.934) (1.140) (0.933) (0.066) (0.070) (0.066)

0.4 0 0.166 0.169 0.166 0.921 0.999 0.921 2.638 3.280 2.642 2.598 3.244 2.603
(0.069) (0.071) (0.069) (0.297) (0.336) (0.297) (0.896) (1.125) (0.892) (0.934) (1.139) (0.929)

0.2 0.130 0.133 0.131 0.934 1.016 0.934 2.908 3.666 2.912 0.200 0.207 0.200
(0.040) (0.041) (0.040) (0.284) (0.309) (0.284) (0.950) (1.184) (0.949) (0.064) (0.067) (0.064)

7 0 0 0.223 0.227 0.223 1.217 1.322 1.217 3.287 4.095 3.290 3.298 4.083 3.300
(0.097) (0.101) (0.097) (0.404) (0.455) (0.404) (1.220) (1.563) (1.220) (1.207) (1.465) (1.206)

0.2 0.168 0.172 0.168 1.235 1.344 1.235 3.606 4.528 3.607 0.265 0.274 0.265
(0.053) (0.054) (0.053) (0.372) (0.409) (0.372) (1.250) (1.540) (1.250) (0.088) (0.093) (0.088)

0.2 0 0.225 0.229 0.225 1.211 1.309 1.211 3.303 4.096 3.305 3.303 4.111 3.306
(0.097) (0.100) (0.097) (0.387) (0.429) (0.387) (1.157) (1.429) (1.156) (1.238) (1.560) (1.237)

0.2 0.170 0.173 0.170 1.246 1.353 1.246 3.705 4.664 3.706 0.267 0.276 0.267
(0.053) (0.055) (0.053) (0.385) (0.422) (0.385) (1.270) (1.567) (1.269) (0.086) (0.091) (0.086)

0.4 0 0.224 0.228 0.224 1.215 1.316 1.215 3.312 4.110 3.314 3.348 4.154 3.349
(0.092) (0.094) (0.092) (0.424) (0.471) (0.424) (1.174) (1.492) (1.173) (1.196) (1.529) (1.196)

0.2 0.172 0.176 0.172 1.276 1.387 1.276 3.773 4.740 3.776 0.267 0.276 0.267
(0.050) (0.051) (0.050) (0.401) (0.445) (0.400) (1.190) (1.486) (1.188) (0.087) (0.092) (0.087)
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Table 2. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/45 3 0 0 0.154 0.157 0.154 0.841 0.914 0.841 2.476 3.083 2.478 2.487 3.098 2.489
(0.054) (0.055) (0.054) (0.259) (0.283) (0.259) (0.807) (0.978) (0.807) (0.794) (0.972) (0.795)

0.2 0.122 0.125 0.122 0.863 0.941 0.863 2.737 3.443 2.738 0.198 0.204 0.198
(0.037) (0.038) (0.037) (0.251) (0.275) (0.251) (0.887) (1.069) (0.887) (0.062) (0.066) (0.062)

0.2 0 0.157 0.160 0.157 0.854 0.926 0.854 2.522 3.134 2.526 2.489 3.108 2.491
(0.056) (0.058) (0.056) (0.258) (0.277) (0.258) (0.831) (0.977) (0.828) (0.818) (0.995) (0.817)

0.2 0.123 0.126 0.123 0.879 0.956 0.879 2.789 3.529 2.790 0.195 0.202 0.195
(0.034) (0.035) (0.034) (0.254) (0.281) (0.254) (0.894) (1.103) (0.893) (0.063) (0.066) (0.063)

0.4 0 0.160 0.164 0.161 0.870 0.944 0.870 2.523 3.146 2.527 2.475 3.095 2.480
(0.059) (0.060) (0.058) (0.262) (0.290) (0.262) (0.790) (0.969) (0.787) (0.779) (0.953) (0.776)

0.2 0.123 0.125 0.123 0.896 0.973 0.896 2.815 3.540 2.818 0.195 0.203 0.196
(0.037) (0.037) (0.037) (0.264) (0.289) (0.264) (0.887) (1.075) (0.886) (0.059) (0.061) (0.058)

5 0 0 0.292 0.297 0.292 1.581 1.717 1.581 4.125 5.089 4.125 4.133 5.146 4.133
(0.107) (0.110) (0.107) (0.509) (0.562) (0.509) (1.443) (1.717) (1.443) (1.372) (1.728) (1.372)

0.2 0.219 0.224 0.219 1.609 1.752 1.609 4.661 5.852 4.661 0.353 0.365 0.353
(0.067) (0.068) (0.067) (0.470) (0.516) (0.470) (1.419) (1.737) (1.419) (0.114) (0.122) (0.114)

0.2 0 0.298 0.304 0.298 1.617 1.758 1.617 4.144 5.163 4.146 4.057 5.043 4.058
(0.108) (0.112) (0.108) (0.512) (0.565) (0.512) (1.398) (1.732) (1.397) (1.341) (1.667) (1.341)

0.2 0.217 0.222 0.217 1.631 1.772 1.631 4.687 5.839 4.687 0.346 0.358 0.346
(0.065) (0.067) (0.065) (0.489) (0.524) (0.489) (1.549) (1.844) (1.549) (0.109) (0.115) (0.109)

0.4
0 0.296 0.302 0.296 1.598 1.733 1.598 4.121 5.095 4.122 4.193 5.172 4.194

(0.111) (0.114) (0.111) (0.504) (0.562) (0.504) (1.368) (1.717) (1.367) (1.408) (1.699) (1.408)
0.2 0.218 0.222 0.218 1.655 1.799 1.655 4.659 5.841 4.659 0.342 0.354 0.342

(0.063) (0.064) (0.063) (0.487) (0.530) (0.487) (1.505) (1.844) (1.504) (0.109) (0.118) (0.109)
7 0 0 0.404 0.412 0.404 2.161 2.344 2.161 5.402 6.695 5.401 5.367 6.695 5.368

(0.145) (0.148) (0.145) (0.637) (0.700) (0.637) (1.857) (2.245) (1.858) (1.771) (2.208) (1.771)
0.2 0.296 0.302 0.296 2.216 2.412 2.216 6.211 7.795 6.211 0.480 0.497 0.480

(0.086) (0.088) (0.086) (0.652) (0.710) (0.652) (1.915) (2.299) (1.915) (0.158) (0.168) (0.158)
0.2 0 0.409 0.417 0.409 2.209 2.402 2.209 5.446 6.791 5.447 5.516 6.813 5.516

(0.155) (0.160) (0.155) (0.713) (0.784) (0.713) (1.892) (2.382) (1.893) (1.864) (2.322) (1.864)
0.2 0.298 0.304 0.298 2.281 2.474 2.281 6.234 7.830 6.234 0.472 0.488 0.472

(0.087) (0.089) (0.087) (0.659) (0.718) (0.659) (1.936) (2.375) (1.936) (0.142) (0.151) (0.142)
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Table 2. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.4 0 0.408 0.415 0.408 2.213 2.394 2.213 5.551 6.877 5.552 5.510 6.868 5.511
(0.158) (0.163) (0.158) (0.736) (0.804) (0.736) (1.922) (2.443) (1.922) (1.832) (2.307) (1.831)

0.2 0.296 0.302 0.296 2.318 2.526 2.318 6.384 8.051 6.385 0.471 0.487 0.471
(0.088) (0.090) (0.088) (0.678) (0.744) (0.678) (2.048) (2.528) (2.049) (0.152) (0.160) (0.152)

Note: Each data in the table are multiplied by 10−3. Each data unit has an average value of ISE0 on top and a standard deviation of ISE0 in parentheses below, r2 represents the measure
of linkage disequilibrium, r2 equals to 0 means there is linkage equilibrium between SNP.

Table 3. The means and standard errors (in the parenthesis) of ISE1 for association analysis of simulated quantitative trait based on SFDAT, OLS and Smooth on
linkage equilibrium and linkage disequilibrium.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/180 3 0 0 0.018 0.018 0.018 0.011 0.011 0.011 0.029 0.029 0.029 0.027 0.027 0.027
(0.012) (0.012) (0.012) (0.007) (0.007) (0.007) (0.022) (0.023) (0.022) (0.020) (0.021) (0.020)

0.2 0.019 0.019 0.019 0.013 0.013 0.013 0.056 0.057 0.056 0.150 0.150 0.150
(0.013) (0.013) (0.013) (0.008) (0.008) (0.008) (0.052) (0.054) (0.052) (0.098) (0.098) (0.098)

0.2 0 0.102 0.102 0.102 0.560 0.559 0.560 1.293 1.284 1.292 1.302 1.292 1.301
(0.043) (0.043) (0.043) (0.076) (0.076) (0.076) (0.188) (0.189) (0.188) (0.190) (0.190) (0.190)

0.2 0.112 0.112 0.112 0.569 0.567 0.569 1.405 1.397 1.404 0.448 0.448 0.448
(0.050) (0.050) (0.050) (0.085) (0.086) (0.085) (0.304) (0.307) (0.305) (0.268) (0.268) (0.268)

0.4 0 0.147 0.147 0.147 0.839 0.837 0.839 1.942 1.928 1.941 1.939 1.927 1.939
(0.057) (0.057) (0.057) (0.098) (0.098) (0.098) (0.250) (0.252) (0.250) (0.237) (0.237) (0.237)

0.2 0.154 0.154 0.154 0.846 0.845 0.846 2.101 2.089 2.101 0.596 0.596 0.596
(0.060) (0.060) (0.060) (0.105) (0.106) (0.105) (0.378) (0.382) (0.378) (0.321) (0.321) (0.321)

5 0 0 0.040 0.040 0.040 0.023 0.023 0.023 0.061 0.062 0.061 0.057 0.058 0.057
(0.028) (0.028) (0.028) (0.014) (0.014) (0.014) (0.047) (0.048) (0.047) (0.044) (0.044) (0.043)

0.2 0.043 0.043 0.043 0.026 0.027 0.026 0.115 0.117 0.115 0.329 0.329 0.329
(0.027) (0.027) (0.027) (0.016) (0.016) (0.016) (0.109) (0.111) (0.109) (0.212) (0.212) (0.212)

0.2 0 0.228 0.228 0.228 1.219 1.216 1.219 2.820 2.802 2.819 2.790 2.771 2.790
(0.099) (0.099) (0.099) (0.166) (0.166) (0.166) (0.422) (0.419) (0.422) (0.418) (0.419) (0.418)

0.2 0.234 0.233 0.233 1.230 1.227 1.230 3.043 3.027 3.042 0.955 0.955 0.955
(0.105) (0.105) (0.105) (0.184) (0.184) (0.184) (0.650) (0.656) (0.650) (0.558) (0.558) (0.558)
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Table 3. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.4 0 0.314 0.314 0.314 1.798 1.794 1.798 4.155 4.127 4.154 4.162 4.134 4.161
(0.123) (0.123) (0.123) (0.210) (0.211) (0.210) (0.536) (0.539) (0.536) (0.532) (0.535) (0.532)

0.2 0.335 0.335 0.335 1.823 1.819 1.822 4.501 4.477 4.501 1.260 1.260 1.260
(0.128) (0.128) (0.128) (0.225) (0.226) (0.225) (0.803) (0.808) (0.804) (0.692) (0.692) (0.692)

7 0 0 0.055 0.055 0.055 0.032 0.032 0.032 0.084 0.085 0.084 0.082 0.084 0.082
(0.037) (0.037) (0.037) (0.019) (0.019) (0.019) (0.063) (0.065) (0.063) (0.063) (0.064) (0.063)

0.2 0.060 0.060 0.060 0.040 0.040 0.040 0.174 0.178 0.174 0.475 0.475 0.475
(0.041) (0.041) (0.041) (0.022) (0.023) (0.022) (0.168) (0.171) (0.168) (0.302) (0.302) (0.302)

0.2 0 0.328 0.328 0.328 1.767 1.763 1.767 4.090 4.063 4.090 4.080 4.053 4.079
(0.143) (0.143) (0.143) (0.239) (0.239) (0.239) (0.606) (0.607) (0.605) (0.605) (0.602) (0.604)

0.2 0.345 0.344 0.345 1.786 1.782 1.786 4.425 4.402 4.425 1.377 1.376 1.377
(0.150) (0.150) (0.150) (0.270) (0.272) (0.270) (0.967) (0.976) (0.967) (0.813) (0.813) (0.813)

0.4 0 0.465 0.464 0.465 2.637 2.630 2.637 6.100 6.059 6.099 6.080 6.039 6.080
(0.180) (0.180) (0.180) (0.308) (0.308) (0.308) (0.779) (0.779) (0.779) (0.755) (0.759) (0.754)

0.2 0.479 0.478 0.478 2.652 2.646 2.652 6.543 6.508 6.542 1.842 1.841 1.842
(0.181) (0.181) (0.181) (0.321) (0.323) (0.321) (1.163) (1.171) (1.162) (1.007) (1.007) (1.007)

1/90 3 0 0 0.018 0.018 0.018 0.011 0.011 0.011 0.029 0.030 0.029 0.028 0.029 0.028
(0.008) (0.008) (0.008) (0.004) (0.005) (0.004) (0.014) (0.015) (0.014) (0.015) (0.016) (0.015)

0.2 0.020 0.020 0.020 0.013 0.013 0.013 0.056 0.058 0.056 0.151 0.151 0.151
(0.009) (0.009) (0.009) (0.005) (0.005) (0.005) (0.036) (0.037) (0.036) (0.064) (0.064) (0.064)

0.2 0 0.094 0.094 0.094 0.502 0.501 0.502 1.160 1.153 1.160 1.165 1.158 1.164
(0.029) (0.029) (0.029) (0.050) (0.050) (0.050) (0.128) (0.129) (0.128) (0.127) (0.128) (0.127)

0.2 0.099 0.099 0.099 0.509 0.508 0.509 1.270 1.264 1.270 0.415 0.414 0.414
(0.032) (0.032) (0.032) (0.055) (0.055) (0.055) (0.197) (0.199) (0.197) (0.171) (0.171) (0.171)

0.4 0 0.134 0.134 0.134 0.748 0.746 0.748 1.730 1.719 1.730 1.723 1.712 1.722
(0.037) (0.037) (0.037) (0.063) (0.063) (0.063) (0.160) (0.161) (0.160) (0.150) (0.151) (0.150)

0.2 0.139 0.139 0.139 0.759 0.757 0.759 1.859 1.849 1.859 0.543 0.543 0.543
(0.039) (0.039) (0.039) (0.065) (0.065) (0.065) (0.245) (0.248) (0.245) (0.205) (0.205) (0.205)

5 0 0 0.038 0.038 0.038 0.022 0.022 0.022 0.058 0.059 0.058 0.059 0.061 0.059
(0.017) (0.017) (0.017) (0.009) (0.009) (0.009) (0.029) (0.030) (0.029) (0.030) (0.031) (0.030)

0.2 0.043 0.043 0.043 0.027 0.027 0.027 0.125 0.128 0.125 0.319 0.319 0.319
(0.018) (0.018) (0.018) (0.011) (0.011) (0.011) (0.079) (0.080) (0.079) (0.140) (0.140) (0.140)

0.2 0 0.204 0.204 0.204 1.080 1.078 1.080 2.499 2.485 2.499 2.493 2.477 2.493
(0.063) (0.063) (0.063) (0.109) (0.109) (0.109) (0.271) (0.271) (0.271) (0.278) (0.280) (0.278)
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Table 3. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0.211 0.211 0.211 1.097 1.095 1.097 2.713 2.699 2.713 0.886 0.886 0.886
(0.068) (0.068) (0.068) (0.121) (0.121) (0.121) (0.432) (0.436) (0.432) (0.354) (0.354) (0.354)

0.4 0 0.285 0.285 0.285 1.602 1.598 1.602 3.704 3.680 3.704 3.699 3.674 3.699
(0.076) (0.076) (0.076) (0.128) (0.128) (0.128) (0.323) (0.325) (0.324) (0.327) (0.329) (0.327)

0.2 0.296 0.296 0.296 1.625 1.621 1.625 3.980 3.958 3.980 1.172 1.171 1.172
(0.080) (0.080) (0.080) (0.145) (0.146) (0.145) (0.480) (0.484) (0.480) (0.446) (0.446) (0.446)

7 0 0 0.056 0.056 0.056 0.033 0.033 0.033 0.086 0.088 0.086 0.084 0.086 0.084
(0.026) (0.026) (0.026) (0.014) (0.014) (0.014) (0.045) (0.048) (0.045) (0.043) (0.045) (0.043)

0.2 0.064 0.064 0.064 0.039 0.040 0.039 0.174 0.178 0.174 0.467 0.467 0.467
(0.027) (0.027) (0.027) (0.015) (0.015) (0.015) (0.116) (0.118) (0.116) (0.194) (0.194) (0.194)

0.2 0 0.297 0.297 0.297 1.574 1.570 1.574 3.637 3.615 3.637 3.629 3.605 3.629
(0.092) (0.092) (0.092) (0.155) (0.155) (0.155) (0.389) (0.389) (0.389) (0.391) (0.393) (0.391)

0.2 0.312 0.312 0.312 1.603 1.600 1.603 3.925 3.904 3.925 1.312 1.311 1.312
(0.097) (0.097) (0.097) (0.172) (0.173) (0.172) (0.610) (0.617) (0.610) (0.556) (0.556) (0.556)

0.4 0 0.415 0.415 0.415 2.341 2.336 2.341 5.407 5.373 5.407 5.415 5.380 5.415
(0.109) (0.109) (0.109) (0.188) (0.189) (0.188) (0.471) (0.473) (0.471) (0.473) (0.472) (0.473)

0.2 0.438 0.438 0.438 2.372 2.367 2.372 5.848 5.817 5.848 1.672 1.672 1.672
(0.124) (0.124) (0.124) (0.203) (0.204) (0.203) (0.719) (0.724) (0.719) (0.636) (0.636) (0.636)

1/45 3 0 0 0.018 0.018 0.018 0.011 0.011 0.011 0.029 0.030 0.029 0.029 0.030 0.029
(0.005) (0.005) (0.005) (0.003) (0.003) (0.003) (0.010) (0.011) (0.010) (0.010) (0.010) (0.010)

0.2 0.020 0.020 0.020 0.013 0.013 0.013 0.058 0.060 0.058 0.153 0.153 0.153
(0.006) (0.006) (0.006) (0.004) (0.004) (0.004) (0.027) (0.028) (0.027) (0.045) (0.045) (0.045)

0.2 0 0.091 0.091 0.091 0.477 0.476 0.477 1.104 1.098 1.104 1.099 1.093 1.099
(0.019) (0.019) (0.019) (0.033) (0.033) (0.033) (0.086) (0.086) (0.086) (0.085) (0.086) (0.085)

0.2 0.095 0.095 0.095 0.484 0.483 0.484 1.198 1.193 1.198 0.397 0.397 0.397
(0.021) (0.021) (0.021) (0.037) (0.037) (0.037) (0.132) (0.134) (0.132) (0.117) (0.117) (0.117)

0.4 0 0.126 0.126 0.126 0.707 0.706 0.707 1.634 1.623 1.634 1.637 1.627 1.637
(0.024) (0.024) (0.024) (0.042) (0.043) (0.042) (0.107) (0.108) (0.107) (0.102) (0.103) (0.102)

0.2 0.133 0.133 0.133 0.718 0.716 0.718 1.769 1.760 1.769 0.532 0.532 0.532
(0.026) (0.026) (0.026) (0.047) (0.047) (0.047) (0.161) (0.163) (0.161) (0.138) (0.138) (0.138)

5 0 0 0.039 0.039 0.039 0.023 0.024 0.023 0.061 0.063 0.061 0.060 0.062 0.060
(0.012) (0.012) (0.012) (0.007) (0.007) (0.007) (0.021) (0.022) (0.021) (0.021) (0.023) (0.021)

0.2 0.043 0.043 0.043 0.027 0.028 0.027 0.121 0.125 0.121 0.324 0.324 0.324
(0.013) (0.013) (0.013) (0.007) (0.008) (0.007) (0.057) (0.059) (0.057) (0.094) (0.094) (0.094)
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Table 3. Cont.

Associated Variants
Proportion

c Negative Effect
Proportion r2

Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0 0.195 0.195 0.195 1.023 1.020 1.023 2.367 2.352 2.367 2.359 2.345 2.359
(0.043) (0.043) (0.043) (0.074) (0.075) (0.074) (0.189) (0.192) (0.189) (0.178) (0.181) (0.178)

0.2 0.201 0.201 0.201 1.034 1.032 1.034 2.565 2.553 2.565 0.872 0.872 0.872
(0.045) (0.045) (0.045) (0.078) (0.078) (0.078) (0.284) (0.286) (0.284) (0.253) (0.253) (0.253)

0.4 0 0.275 0.275 0.275 1.526 1.523 1.526 3.528 3.505 3.528 3.519 3.497 3.518
(0.052) (0.052) (0.052) (0.090) (0.090) (0.090) (0.226) (0.228) (0.226) (0.219) (0.221) (0.219)

0.2 0.283 0.283 0.283 1.543 1.540 1.543 3.804 3.784 3.804 1.121 1.120 1.121
(0.054) (0.054) (0.054) (0.097) (0.097) (0.097) (0.346) (0.349) (0.346) (0.292) (0.292) (0.292)

7 0 0 0.057 0.057 0.057 0.034 0.035 0.034 0.089 0.091 0.089 0.088 0.090 0.088
(0.017) (0.017) (0.017) (0.010) (0.010) (0.010) (0.031) (0.033) (0.031) (0.030) (0.033) (0.030)

0.2 0.062 0.062 0.062 0.041 0.041 0.041 0.177 0.182 0.177 0.476 0.476 0.476
(0.018) (0.018) (0.018) (0.011) (0.012) (0.011) (0.082) (0.084) (0.082) (0.137) (0.137) (0.137)

0.2 0 0.285 0.285 0.285 1.496 1.493 1.496 3.462 3.441 3.462 3.466 3.446 3.466
(0.061) (0.061) (0.061) (0.107) (0.107) (0.107) (0.265) (0.266) (0.265) (0.271) (0.274) (0.271)

0.2 0.300 0.300 0.300 1.513 1.510 1.513 3.759 3.741 3.759 1.266 1.266 1.266
(0.067) (0.067) (0.067) (0.118) (0.119) (0.118) (0.413) (0.418) (0.413) (0.373) (0.373) (0.373)

0.4 0 0.395 0.395 0.395 2.219 2.215 2.219 5.123 5.091 5.123 5.138 5.105 5.138
(0.076) (0.076) (0.076) (0.135) (0.135) (0.135) (0.335) (0.338) (0.335) (0.324) (0.325) (0.324)

0.2 0.412 0.412 0.412 2.253 2.249 2.253 5.532 5.501 5.532 1.644 1.644 1.644
(0.078) (0.078) (0.078) (0.146) (0.146) (0.146) (0.518) (0.524) (0.518) (0.420) (0.420) (0.420)

Note: The average ISE1 value is shown above each data unit, and the standard error of ISE1 is shown in parentheses below. r2 represents the measure of linkage disequilibrium, r2 equals
to 0 means there is linkage equilibrium between SNP.

Table 4. The means and standard errors (in the parenthesis) of PMSE for association analysis of simulated quantitative trait based on SFDAT, OLS and Smooth and
on linkage equilibrium and linkage disequilibrium.

Associated Variants
Proportion c Negative Effect

Proportion r2
Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/180 3 0 0 0.260 0.260 0.260 0.230 0.226 0.225 0.097 0.100 0.097 0.097 0.100 0.097
(0.108) (0.107) (0.107) (0.068) (0.068) (0.068) (0.045) (0.044) (0.045) (0.046) (0.046) (0.046)

0.2 0.173 0.174 0.174 0.197 0.198 0.197 0.083 0.086 0.083 0.170 0.170 0.170
(0.039) (0.039) (0.039) (0.049) (0.049) (0.049) (0.037) (0.037) (0.037) (0.045) (0.045) (0.045)
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Table 4. Cont.

Associated Variants
Proportion c Negative Effect

Proportion r2
Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0 0.247 0.247 0.247 0.220 0.223 0.222 0.097 0.099 0.097 0.095 0.097 0.095
(0.101) (0.101) (0.101) (0.061) (0.061) (0.061) (0.045) (0.045) (0.045) (0.044) (0.044) (0.044)

0.2 0.176 0.177 0.177 0.198 0.200 0.198 0.083 0.086 0.083 0.168 0.168 0.168
(0.040) (0.040) (0.040) (0.053) (0.053) (0.053) (0.039) (0.039) (0.039) (0.045) (0.045) (0.045)

0.4 0 0.250 0.251 0.250 0.220 0.221 0.220 0.097 0.100 0.097 0.097 0.100 0.097
(0.111) (0.111) (0.110) (0.062) (0.062) (0.062) (0.046) (0.046) (0.046) (0.046) (0.046) (0.046)

0.2 0.176 0.176 0.176 0.200 0.202 0.200 0.084 0.087 0.084 0.170 0.170 0.170
(0.040) (0.040) (0.040) (0.054) (0.054) (0.054) (0.040) (0.041) (0.040) (0.047) (0.047) (0.047)

5 0 0 0.523 0.523 0.523 0.460 0.460 0.459 0.196 0.198 0.196 0.193 0.196 0.193
(0.226) (0.226) (0.226) (0.134) (0.134) (0.134) (0.099) (0.099) (0.099) (0.097) (0.096) (0.097)

0.2 0.362 0.362 0.362 0.413 0.414 0.413 0.171 0.174 0.171 0.339 0.340 0.339
(0.084) (0.084) (0.084) (0.105) (0.106) (0.105) (0.084) (0.084) (0.084) (0.094) (0.094) (0.094)

0.2 0 0.536 0.537 0.536 0.470 0.468 0.467 0.199 0.202 0.199 0.198 0.201 0.199
(0.239) (0.239) (0.239) (0.136) (0.136) (0.136) (0.103) (0.103) (0.103) (0.096) (0.096) (0.096)

0.2 0.364 0.365 0.365 0.407 0.409 0.407 0.166 0.170 0.166 0.345 0.346 0.345
(0.085) (0.085) (0.085) (0.104) (0.104) (0.104) (0.085) (0.085) (0.085) (0.094) (0.094) (0.094)

0.4 0 0.520 0.521 0.520 0.470 0.469 0.468 0.202 0.205 0.202 0.197 0.200 0.197
(0.228) (0.228) (0.228) (0.141) (0.141) (0.141) (0.105) (0.104) (0.105) (0.095) (0.095) (0.095)

0.2 0.363 0.364 0.364 0.407 0.409 0.407 0.167 0.170 0.167 0.343 0.344 0.343
(0.084) (0.084) (0.083) (0.101) (0.101) (0.101) (0.083) (0.083) (0.083) (0.094) (0.094) (0.094)

7 0 0 0.754 0.754 0.754 0.670 0.668 0.666 0.281 0.284 0.281 0.280 0.282 0.280
(0.331) (0.331) (0.331) (0.200) (0.200) (0.200) (0.146) (0.145) (0.146) (0.143) (0.142) (0.143)

0.2 0.521 0.522 0.521 0.590 0.592 0.590 0.239 0.242 0.239 0.498 0.499 0.498
(0.120) (0.120) (0.120) (0.150) (0.150) (0.150) (0.117) (0.117) (0.117) (0.138) (0.138) (0.138)

0.2 0 0.762 0.763 0.762 0.670 0.670 0.668 0.283 0.286 0.283 0.279 0.282 0.279
(0.315) (0.315) (0.315) (0.190) (0.190) (0.190) (0.141) (0.140) (0.141) (0.144) (0.143) (0.144)

0.2 0.528 0.528 0.528 0.595 0.597 0.595 0.243 0.247 0.243 0.502 0.503 0.502
(0.123) (0.123) (0.123) (0.150) (0.150) (0.150) (0.126) (0.126) (0.126) (0.136) (0.136) (0.136)

0.4 0 0.751 0.752 0.751 0.660 0.662 0.660 0.273 0.276 0.273 0.277 0.279 0.277
(0.323) (0.323) (0.323) (0.187) (0.187) (0.187) (0.142) (0.141) (0.141) (0.143) (0.143) (0.143)

0.2 0.524 0.524 0.524 0.597 0.599 0.597 0.239 0.242 0.239 0.509 0.510 0.509
(0.125) (0.126) (0.125) (0.153) (0.154) (0.153) (0.116) (0.117) (0.116) (0.138) (0.138) (0.138)

1/90 3 0 0 0.487 0.488 0.487 0.430 0.431 0.430 0.184 0.186 0.184 0.181 0.183 0.181
(0.153) (0.153) (0.153) (0.099) (0.099) (0.099) (0.067) (0.067) (0.067) (0.068) (0.067) (0.068)
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Table 4. Cont.

Associated Variants
Proportion c Negative Effect

Proportion r2
Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.2 0.335 0.335 0.335 0.379 0.380 0.379 0.156 0.159 0.156 0.323 0.324 0.323
(0.066) (0.066) (0.066) (0.087) (0.087) (0.087) (0.062) (0.062) (0.062) (0.073) (0.073) (0.073)

0.2 0 0.486 0.486 0.486 0.430 0.430 0.429 0.183 0.186 0.184 0.182 0.184 0.182
(0.156) (0.156) (0.156) (0.097) (0.097) (0.097) (0.068) (0.068) (0.068) (0.066) (0.066) (0.066)

0.2 0.338 0.339 0.339 0.388 0.389 0.388 0.157 0.160 0.157 0.324 0.324 0.324
(0.066) (0.066) (0.066) (0.087) (0.087) (0.087) (0.063) (0.063) (0.063) (0.072) (0.072) (0.072)

0.4 0 0.491 0.491 0.491 0.430 0.431 0.430 0.184 0.186 0.184 0.183 0.185 0.183
(0.160) (0.160) (0.160) (0.098) (0.098) (0.098) (0.068) (0.068) (0.068) (0.067) (0.067) (0.067)

0.2 0.342 0.342 0.342 0.383 0.385 0.383 0.159 0.162 0.159 0.324 0.325 0.324
(0.067) (0.067) (0.067) (0.085) (0.085) (0.085) (0.064) (0.064) (0.064) (0.073) (0.073) (0.073)

5 0 0 1.024 1.025 1.025 0.920 0.916 0.915 0.383 0.386 0.383 0.375 0.378 0.375
(0.333) (0.333) (0.333) (0.218) (0.218) (0.218) (0.141) (0.141) (0.141) (0.140) (0.140) (0.140)

0.2 0.711 0.711 0.711 0.796 0.798 0.796 0.316 0.320 0.316 0.681 0.682 0.681
(0.141) (0.141) (0.141) (0.179) (0.179) (0.179) (0.125) (0.125) (0.125) (0.162) (0.162) (0.162)

0.2 0 1.043 1.044 1.043 0.910 0.909 0.908 0.380 0.382 0.380 0.380 0.382 0.380
(0.338) (0.338) (0.338) (0.211) (0.210) (0.211) (0.145) (0.145) (0.145) (0.139) (0.138) (0.139)

0.2 0.712 0.713 0.712 0.813 0.815 0.813 0.319 0.323 0.319 0.689 0.689 0.689
(0.141) (0.142) (0.142) (0.184) (0.184) (0.184) (0.125) (0.126) (0.125) (0.153) (0.153) (0.153)

0.4 0 1.029 1.030 1.029 0.910 0.907 0.905 0.382 0.385 0.382 0.377 0.380 0.377
(0.338) (0.338) (0.338) (0.215) (0.215) (0.215) (0.139) (0.139) (0.139) (0.143) (0.143) (0.143)

0.2 0.712 0.712 0.712 0.809 0.811 0.809 0.330 0.334 0.330 0.686 0.687 0.687
(0.136) (0.136) (0.136) (0.185) (0.185) (0.185) (0.131) (0.132) (0.131) (0.159) (0.159) (0.159)

7 0 0 1.474 1.475 1.474 1.310 1.314 1.312 0.546 0.549 0.546 0.547 0.550 0.547
(0.487) (0.487) (0.487) (0.305) (0.304) (0.305) (0.202) (0.202) (0.202) (0.202) (0.202) (0.202)

0.2 1.041 1.042 1.041 1.155 1.158 1.155 0.465 0.470 0.465 1.002 1.003 1.002
(0.209) (0.209) (0.209) (0.259) (0.259) (0.259) (0.185) (0.185) (0.185) (0.224) (0.225) (0.224)

0.2 0 1.504 1.505 1.504 1.320 1.320 1.318 0.552 0.555 0.552 0.553 0.556 0.553
(0.492) (0.492) (0.492) (0.312) (0.312) (0.312) (0.221) (0.221) (0.221) (0.210) (0.209) (0.210)

0.2 1.035 1.036 1.035 1.191 1.193 1.191 0.459 0.463 0.459 0.998 0.999 0.998
(0.205) (0.205) (0.205) (0.274) (0.274) (0.274) (0.185) (0.184) (0.185) (0.229) (0.229) (0.229)

0.4 0 1.497 1.497 1.497 1.330 1.332 1.330 0.550 0.553 0.550 0.550 0.552 0.550
(0.484) (0.484) (0.484) (0.310) (0.310) (0.310) (0.202) (0.202) (0.202) (0.201) (0.199) (0.201)

0.2 1.047 1.048 1.047 1.189 1.191 1.189 0.471 0.476 0.471 1.003 1.004 1.003
(0.207) (0.207) (0.207) (0.266) (0.266) (0.266) (0.195) (0.196) (0.195) (0.228) (0.228) (0.227)
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Table 4. Cont.

Associated Variants
Proportion c Negative Effect

Proportion r2
Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

1/45 3 0 0 0.949 0.950 0.949 0.840 0.844 0.842 0.354 0.357 0.354 0.350 0.353 0.350
(0.236) (0.236) (0.236) (0.161) (0.162) (0.161) (0.099) (0.099) (0.099) (0.098) (0.098) (0.098)

0.2 0.658 0.658 0.658 0.745 0.748 0.745 0.299 0.303 0.299 0.636 0.637 0.636
(0.115) (0.115) (0.115) (0.153) (0.153) (0.153) (0.097) (0.097) (0.097) (0.126) (0.126) (0.126)

0.2 0 0.960 0.960 0.960 0.840 0.837 0.836 0.351 0.354 0.351 0.357 0.360 0.357
(0.239) (0.239) (0.239) (0.158) (0.158) (0.158) (0.096) (0.096) (0.096) (0.100) (0.100) (0.100)

0.2 0.667 0.667 0.667 0.754 0.756 0.754 0.306 0.310 0.306 0.633 0.634 0.633
(0.116) (0.116) (0.116) (0.156) (0.156) (0.156) (0.097) (0.098) (0.097) (0.127) (0.127) (0.127)

0.4 0 0.964 0.964 0.964 0.850 0.847 0.846 0.355 0.357 0.355 0.356 0.359 0.356
(0.244) (0.244) (0.244) (0.158) (0.158) (0.158) (0.100) (0.099) (0.100) (0.096) (0.095) (0.096)

0.2 0.669 0.669 0.669 0.752 0.754 0.752 0.305 0.309 0.305 0.637 0.637 0.637
(0.113) (0.113) (0.113) (0.156) (0.156) (0.156) (0.106) (0.108) (0.106) (0.122) (0.122) (0.122)

5 0 0 2.019 2.020 2.019 1.770 1.768 1.765 0.738 0.740 0.738 0.743 0.747 0.743
(0.498) (0.498) (0.498) (0.332) (0.333) (0.332) (0.211) (0.211) (0.211) (0.204) (0.204) (0.204)

0.2 1.399 1.399 1.399 1.573 1.576 1.573 0.630 0.635 0.630 1.336 1.337 1.336
(0.247) (0.247) (0.247) (0.342) (0.342) (0.342) (0.215) (0.216) (0.215) (0.273) (0.273) (0.273)

0.2 0 2.050 2.050 2.050 1.800 1.799 1.796 0.760 0.763 0.760 0.732 0.735 0.732
(0.529) (0.529) (0.529) (0.341) (0.341) (0.341) (0.212) (0.211) (0.212) (0.211) (0.210) (0.211)

0.2 1.413 1.414 1.413 1.611 1.615 1.611 0.634 0.639 0.634 1.353 1.354 1.353
(0.256) (0.256) (0.256) (0.342) (0.343) (0.342) (0.213) (0.213) (0.213) (0.271) (0.271) (0.271)

0.4 0 2.051 2.052 2.051 1.810 1.813 1.811 0.752 0.756 0.752 0.755 0.758 0.755
(0.508) (0.508) (0.508) (0.353) (0.353) (0.353) (0.220) (0.219) (0.220) (0.214) (0.213) (0.214)

0.2 1.400 1.400 1.400 1.626 1.629 1.626 0.633 0.638 0.633 1.357 1.358 1.357
(0.244) (0.244) (0.244) (0.350) (0.350) (0.350) (0.213) (0.214) (0.213) (0.272) (0.272) (0.272)

7 0 0 2.944 2.944 2.944 2.600 2.599 2.596 1.079 1.084 1.079 1.071 1.074 1.071
(0.735) (0.735) (0.735) (0.491) (0.490) (0.491) (0.300) (0.299) (0.300) (0.299) (0.297) (0.299)

0.2 2.034 2.035 2.034 2.276 2.281 2.276 0.916 0.923 0.916 1.963 1.964 1.963
(0.352) (0.352) (0.352) (0.488) (0.489) (0.488) (0.317) (0.319) (0.317) (0.414) (0.414) (0.414)

0.2 0 2.987 2.988 2.987 2.630 2.633 2.630 1.099 1.102 1.099 1.078 1.081 1.078
(0.738) (0.739) (0.738) (0.501) (0.501) (0.501) (0.319) (0.318) (0.319) (0.306) (0.304) (0.306)

0.2 2.049 2.050 2.049 2.333 2.338 2.333 0.922 0.928 0.922 1.980 1.982 1.980
(0.362) (0.362) (0.362) (0.490) (0.490) (0.490) (0.308) (0.308) (0.308) (0.402) (0.402) (0.402)
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Table 4. Cont.

Associated Variants
Proportion c Negative Effect

Proportion r2
Common Variants Low-Frequency Variants Rare Variants Mix Variants

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.4 0 2.954 2.955 2.954 2.640 2.643 2.640 1.093 1.096 1.093 1.107 1.110 1.107
(0.749) (0.749) (0.749) (0.500) (0.500) (0.500) (0.320) (0.320) (0.320) (0.320) (0.318) (0.320)

0.2 2.053 2.054 2.053 2.365 2.369 2.365 0.928 0.936 0.928 1.987 1.988 1.987
(0.356) (0.355) (0.356) (0.511) (0.511) (0.511) (0.315) (0.316) (0.315) (0.420) (0.420) (0.420)

Note: The average PMSE value is shown above each data unit, and the standard deviation of PMSE is shown in parentheses below. r2 represents the measure of linkage disequilibrium,
r2 equals to 0 means there is linkage equilibrium between SNP.
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3.3. The Type I Error Rate

We set five sample sizes of 500, 1000, 1500, 2000 and 2500, each sample size is simulated
10,000 times. Simulated traits are generated by model y = µ + ε, where µ = 1, ε ∼ N(0, 1).
The significance levels are 0.05, 0.01, 0.001 and 0.0001. Table 5 summarizes the type I
error rates of OLS, Smooth and SFDAT under the linkage equilibrium and disequilibrium
simulation. It can be seen from Table 5 that Smooth and SFDAT controlled type I error
rates correctly across all sample sizes and all significance levels. While the type I error
rates of OLS is severely inflated, which means the use of OLS for gene association analysis
produces false positives that can lead to false associations. Note that the SFDAT method
will appear conservative when the sample size and significance level are relatively small,
but as the two increase, the SFDAT method also reaches a sufficient level of significance.
Relative to linkage equilibrium, the type I error rates of the three models under linkage
disequilibrium increase in smaller sample sizes (500, 1000, 1500) and decrease in larger
sample sizes (2000, 2500).

Table 5. Type I error rates of association analysis of simulated quantitative trait of SFDAT, OLS and
Smooth based on 1000 simulated replicates for linkage equilibrium and linkage equilibrium.

Sample Size Significant Level α
Linkage Equilibrium Linkage Disequilibrium

SFDAT OLS Smooth SFDAT OLS Smooth

500 0.05 0.0457 0.0492 0.0457 0.0420 0.0468 0.0420
0.01 0.0088 0.0098 0.0088 0.0085 0.0095 0.0085
0.001 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

0.0001 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000
1000 0.05 0.0481 0.0524 0.0487 0.0476 0.0524 0.0484

0.01 0.0088 0.0100 0.0089 0.0093 0.0113 0.0094
0.001 0.0009 0.0012 0.0009 0.0011 0.0012 0.0011

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
1500 0.05 0.0453 0.0502 0.0471 0.0421 0.0478 0.0439

0.01 0.0115 0.0126 0.0118 0.0089 0.0106 0.0091
0.001 0.0018 0.0020 0.0018 0.0008 0.0012 0.0008

0.0001 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000
2000 0.05 0.0403 0.0477 0.0442 0.0435 0.0479 0.0435

0.01 0.0085 0.0101 0.0090 0.0072 0.0080 0.0072
0.001 0.0009 0.0011 0.0010 0.0008 0.0009 0.0008

0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000
2500 0.05 0.0364 0.0486 0.0449 0.0366 0.0506 0.0475

0.01 0.0079 0.0112 0.0101 0.0074 0.0100 0.0089
0.001 0.0014 0.0014 0.0014 0.0007 0.0009 0.0007

0.0001 0.0003 0.0004 0.0004 0.0000 0.0000 0.0000

Combining Figures 2 and 3 and Tables 1–5, SFDAT has a competitive performance
to the OLS and Smooth in terms of location of non-causal SNP regions and identification
of causal SNPs regions, as well as power, the type I error rates and other indicators. It is
appreciable that OLS has relatively higher power, but its ISE0, the standard deviation of
ISE0 and type I error rates are larger than those of Smooth and SFDAT methods, which
declares that there may be a false correlation in the association analysis using OSL method,
and the zero effect may be recognized as a non-zero effect. In addition, although Smooth
has a similar performance to SFDAT in power, ISE1 and PMSE, it does not have the
capacity to shrink sparse regions, which leads to noise fluctuations in the application of real
data usually and further causes false association. Therefore, if we consider the SFDAT’s
performance of the power, type I error rates and combine its performance of other indicators
(the CSR, DL, ISE0, ISE1 and PMSE), the SFDAT method would be an excellent method
which has extraordinarily high power and has a marvelous ability to reduce false positives.
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4. Application to O. sativa Data Set

We apply SFDAT to the data set of 413 diverse rice (O. sativa) varieties from 82 coun-
tries [39] to demonstrate the applicability of SFDAT based on the above simulation. This
data set broadly includes six categories of phenotype: plant morphology-related traits;
yield-related traits; seed and grain morphology-related traits; stress-related phenotypes;
cooking, eating and nutritional-quality-related traits; and plant-development-related traits.
Almost all phenotypes were measured in the field at Stuttgart, Arkansas, the measuring
times were repeated two times each year during the growing season (May–October) in 2006
and 2007. For details of experimental design, see Zhao [39].

Zhao [39] verified two candidate genes related to Culm habit, D10 and D14. So,
Culm habit and its causal SNP D10 and D14 are chosen for the association analysis test
for displaying the feasibility of SFDAT in the real application. The samples with missing
values were eliminated and matched with the genotype data, the remaining 356 samples
were for follow-up analysis. The genotype data contains a total of 44,100 markers on
12 chromosomes. The missing genotype was estimated, and SNPs with a minimum allele
frequency of less than 0.005 were deleted. Finally, there were 32,185 SNPs left. Each
chromosome is sequentially divided into several gene regions which contains 1000 SNPs,
and merges the set of less than 1000 SNPs in the chromosome with the previous gene region,
24 gene regions are obtained finally. Causal SNP D10 and D14 are located in the 4th and 9th
gene region, respectively. The number of SNPs and the p-value of the association analysis
of each gene region are shown in Table 6. Significant SNP loci have been identified in the
3rd, 4th, 9th and 14th gene regions, which means that SFDAT can detect the gene regions
where causal SNP is located precisely. The calculation of the whole process was taken 37 s
on the Intel Core 2.50 GHz CPU. This result indicates that the genetic region association
analysis method based on the SFDAT method is virtually and computationally feasible.

Table 6. The number of SNPs and the p-value of the association analysis of each gene region of Culm
habit based on SFDAT.

Chromosome Gene Region No. of SNPs
in Test p-Value Chromosome Gene Region No. of SNPs

in Test p-Value

1 1 1000 0.8764 4 13 1422 0.0619
1 2 1000 0.9856 5 14 1000 0.0119
1 3 1000 0.0326 5 15 1569 0.0505
1 4 1000 0.0484 6 16 1000 0.1630
1 5 1706 0.0798 6 17 1846 0.3338
2 6 1000 0.1591 7 18 1792 0.3248
2 7 1000 0.4186 8 19 1957 0.1973
2 8 1500 0.3048 9 20 1682 0.1331
3 9 1000 0.0389 10 21 1484 0.2575
3 10 1000 0.5562 11 22 1000 0.8152
3 11 1963 0.9100 11 23 1453 0.3943
4 12 1000 0.9029 12 24 1811 0.0936

Note: Causal SNP D10 and D14 of the Culm habit are located in the 4th and 9th gene region, respectively.

Then, in order to compare the capability of test in real data application of OLS, Smooth
and SFDAT, the florets per panicle, brown rice seed length and flowering time in Aberdeen
are chosen to be the phenotype for subsequent analysis, SSD1, GS3 and Hd1 are chosen,
respectively, for the candidate SNP of these phenotypes, which had been verified by Zhao,
and the locations on chromosomes of these candidate SNPs were shown in Figure 4. The
phenotypic and genotype data are taken from the same process as above, each phenotype
left 383, 350 and 334 samples for follow-up analysis. We regard a set of 1000 SNPs as
a gene region to be tested. For each candidate SNP, we divide its surrounding region
containing a total of 8000 markers into eight gene regions to be tested and ensure that
these gene regions have no significant SNP associated with phenotype except the candidate
SNP. SSD1, GS3 and Hd1 are, respectively located in the 6th, 4th and 3rd gene regions



Genes 2023, 14, 834 27 of 32

of the eight gene regions to be ested. We perform association analysis on the eight gene
regions to be detected for each candidate SNP. The associated gene regions detected by
OLS, Smooth and SFDAT at different significant levels are shown in Table 7. OLS, Smooth
and SFDAT can detect the gene region of candidate SNP at different significant levels.
However, severe false correlations appear in OLS and Smooth. OLS and Smooth detect
significant SNP loci in the gene regions without candidate SNP, especially in the association
analysis of the eight gene regions of GS3, OLS and Smooth consider that all gene regions
contained significant SNP loci when α is equal to 0.05, 0.01 and 0.001. SFDAT show a robust
ability for accurate positioning. Compare with OLS and Smooth, SFDAT can shrink the
regions without candidate SNP and accurately identify the regions containing candidate
SNP. SFDAT detects some gene regions that do not contain candidate SNPS at some level
of significance, but these gene regions are close to the gene regions where SNP candidates
were located.
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and Hd1 are the candidate SNPs of florets per panicle, brown rice seed length and flowering time at
Aberdeen, respectively.

Table 7. The gene regions of candidate SNP identified by SFDAT, OLS and Smooth at different
significant levels.

Traits Florets Per Panicle Brown Rice Seed Length Flowering Time at Aberdeen

Significant
Level α

SSD1 GS3 Hd1

SFDAT OLS Smooth SFDAT OLS Smooth SFDAT OLS Smooth

0.05 4,7 1,2,3,4,5,7,8 1,2,3,4,5,7,8 4,6,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 3,4,5 3,4,5,7 3,4,5
0.01 4,7 1,3,4,5,7,8 1,3,4,5,7,8 6,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 3,4 3,4,5 3,4,5
0.001 4 1,3,4,7,8 1,3,4,7,8 6,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 3 3,4,5 3

Note: SSD1 is the candidate SNP of Florets per panicle which locate in gene region 4; GS3 is the candidate SNP of
Brown rice seed length which locate in gene region 6; Hd1 is the candidate SNP of Flowering time at Aberdeen
which were located in gene region 3.



Genes 2023, 14, 834 28 of 32

5. Discussion

GWAS is a new strategy that uses millions of SNPs in the genome as molecular genetic
markers to conduct genome-wide comparative analysis or association analysis, and to find
out the genetic variation that affects complex traits through comparison. In 2005, Science
magazine reported the first age-related GWAS study of macular degeneration [40]. For
more than a decade, research on genome-wide association analysis has grown rapidly, but
most methods are aimed at common variants. In recent years, more and more scholars
have begun to pay attention to the study of rare variants. With the development of a
new generation of high-throughput sequencing technology, TB or even more sequence
data will be generated every day, and the data will be gradually changed from discrete to
dense. We can regard it as continuous data, and thus functional data analysis methods have
emerged. It can be seen from the above analysis that it can analyze both common and rare
variants [26]. In recent years, more and more articles on functional data analysis have been
published in genome-wide association analysis [26,31,32,41–44]. The association analysis
method based on the functional linear regression model can not only estimate the additive
and dominant effects of genes, but also estimate the epistasis effects of genes [31,32],
and extended to the study of dynamic development and multiple traits, Li [45] proposed
a longitudinal functional data association test (LFDAT) based on the function–function
regression model, which can provide a feasible method for studying the formation and
expression of longitudinal traits. Li [46] put forward an integrative functional linear model
for GWAS with multiple traits, which effectively accommodates the high dimensionality
of SNPs and correlation among multiple traits. However, current analysis methods can
develop only based on SNP gene region, it is impossible to further study whether SNP
inside gene regions are associated with phenotypic traits.

In practice, gene loci are linkage disequilibrium with each other. The simulation results
of this paper also show that most of the indictors under the linkage disequilibrium are
better than that based on the linkage equilibrium, especially since the power of linkage
disequilibrium is much higher than that of linkage equilibrium. Therefore, there is a con-
siderable gap between the simulation results with a measure of 0.2 linkage disequilibrium
and linkage equilibrium, so this paper does not further explore the simulation of linkage
disequilibrium with a higher measure.

Figure 5 shows the effect of function β̂(t) curve by OLS, Smooth and SFDAT methods.
Firstly, from Figure 5, it can be seen that the effect function of the OLS and Smooth methods
β̂(t) have frequent fluctuations. Compared to the OLS and Smooth methods, the estimated
effect function β̂(t) by the SFDAT method could smooth the effect value which real effect
values are zero to around zero and still retain the non-zero part of the real effect. Combining
the CSR and DL of SFDAT, it shows that the smoothing function can indeed remove some
“noise”, which also explains the reason why false associations are detected by the OLS and
Smooth methods. Secondly, there are similar results for non-zero genetic effects estimated
to use the Smooth and SFDAT methods. This shows that the compression capability of the
SFDAT method can be regarded as the further compression of the effect value close to zero
on the basis of the smooth estimation results, while retaining the non-zero effect. Therefore,
if the compression parameter is small and there are no effect values worth compressing in
the gene region, the estimated effect function of the SFDAT method should be consistent
with that of the Smooth method. It is the reason why the Smooth and SFDAT methods
have similar power, ISE0, ISE1, PMSE and the type I error rate in computer simulations, but
relatively speaking, SFDAT still has a higher accuracy. In addition, in the application of
real data, QTL analysis often takes a lot of time. Therefore, during GWAS, all gene regions
can be quickly scanned through SFDAT to find the gene regions where significant SNP loci
are located, and then QTL analysis can be performed on these gene regions to accurately
locate the positions of significant SNPs, which can save a lot of time and improve efficiency
beyond all doubt.
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It must be pointed out that Luo et al. [26] proposed a functional linear regression
model for QTL association analysis based on next-generation high-throughput sequencing
(NGS), which used the functional linear regression model method (FLM). The smoothed
functional linear model (SFLM) and eight other statistical methods (WSS, VT, RVT1, RVT2,
PCA regression, multiple regression, simple regression and SKAT) were compared in
six cases (uniformity of effects means the same direction; heterogeneity of effects means
different directions; only low-frequency variants; all variants; different proportions of
causal variants; different proportions of variants included). It found that the FLM method
and SFLM method are similar in each case, but they are obviously superior to other methods,
including collapsing-based methods RVT1, RVT2, kernel-based methods SKAT. The FLM
and SFLM proposed by Luo et al. [26] differ from our OLS and Smooth methods in loss
function Loss(β, µ). The first term of loss function Loss(β, µ) for the OLS, Smooth and

SFDAT methods is
n

∑
i=1

[yi − µ−
∫ T

0 Xi(t)β(t)dt]2 divided by the sample size n, the first term

of loss function Loss(β, µ) for the FLM and SFLM methods is not divided by the sample
size n. However, the idea of FLM and SFLM is similar to that of the OLS, Smooth and
SFDAT methods. SFLM and Smooth method are only an adjustment among parameters.
Although the OLS, Smooth and SFDAT methods have not been compared with traditional
methods, the SFDAT method should be a good method according to Luo et al. [26] and
our simulation's results. It should be noted that the SFDAT method is only based on a
single-gene region for a one-by-one search in this paper. In fact, we can extend the method
to multiple-gene regions detection which is our next research direction.

In the application of the functional linear regression model for gene association anal-
ysis, we mainly convert the functional linear regression model into the classical linear
regression model for parameter estimation and statistical tests. However, we know that
gene variants have common variants and rare variants so there are unique methods for rare
variant detection [47]. This is especially true for statistical test problems of functional linear
regression model which has also been proposed by some scholars [48]. Therefore, how
to better perform statistical tests on gene association analysis using the functional linear
regression models remains to be further studied.



Genes 2023, 14, 834 30 of 32

6. Conclusions

In this paper, to address the problem of the sparsity of gene regions in association
analysis, we develop a functional linear model with a SCAD penalty to genome-wide
association analysis and propose a sparse functional data association analysis test (SFDAT)
method. SFDAT can compress unassociated SNP loci in gene regions without reducing
the power too much, and reduces false positives in association analysis. Our simulation
studies and real data analysis also show that SFDAT can detect non-effect SNP loci more
accurately and compress their coefficients to zero compared to OLS and Smooth, while
maintaining higher power and lower false positives. Thus, SFDAT is a powerful tool for
GWAS using next-generation sequencing data.
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