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Abstract: Bile acids (BAs) are amphiphilic steroidal molecules generated from cholesterol in the
liver and facilitate the digestion and absorption of fat-soluble substances in the gut. Some BAs in
the intestine are modified by the gut microbiota. Because BAs are modified in a variety of ways by
different types of bacteria present in the gut microbiota, changes in the gut microbiota can affect
the metabolism of BAs in the host. Although most BAs absorbed from the gut are transferred to the
liver, some are transferred to the systemic circulation. Furthermore, BAs have also been detected
in the brain and are thought to migrate into the brain through the systemic circulation. Although
BAs are known to affect a variety of physiological functions by acting as ligands for various nuclear
and cell-surface receptors, BAs have also been found to act on mitochondria and autophagy in the
cell. This review focuses on the BAs modified by the gut microbiota and their roles in intracellular
organelles and neurodegenerative diseases.

Keywords: bile acids; mitochondria; autophagy; Alzheimer’s disease; Parkinson’s disease; Huntington’s
disease; neurodegeneration; neurodegenerative disease

1. Introduction

Bile acids (BAs) are important amphiphilic steroidal molecules generated from choles-
terol in the liver and are important components of bile. BAs that are produced by de
novo synthesis in the liver are called primary BAs. BAs move from the liver to the gall-
bladder and are secreted from the gallbladder into the small intestine in response to food
intake. Because BAs are amphiphilic, they can function as surfactants to form micelles
with cholesterol, lipids, and lipophilic vitamins in the intestine, facilitating the digestion
and absorption of these fat-soluble substances [1,2]. Most of the BAs that are involved in
facilitating fat digestion and absorption are absorbed before passing through the ileum [3].
However, some BAs that are not taken up by the intestine are transferred to the colon.
During their transit to the colon, BAs undergo various modifications by the gut microbiota
and microbiota-modified bile acids are called secondary BAs [4]. Because BAs are modified
in a variety of ways by different types of bacteria present in the gut microbiota, changes in
the gut microbiota can affect the metabolism of BAs in the host [5,6]. Some of the modified
BAs are then absorbed. The absorbed BAs in the gut are then transported to the liver
via the portal vein. This circulation of BAs between the liver and the intestine is called
enterohepatic circulation. However, the BAs that are not absorbed in the gut are ultimately
egested in the feces. Therefore, BAs play a role in the excretion of cholesterol. Furthermore,
although most BAs absorbed from the gut are transferred to the liver, some are transferred
to the systemic circulation [6,7] (Figure 1).
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merized by intestinal bacteria and converted to ursodeoxycholic acid (UDCA). Approximately 95% 

of the BAs in the gut are absorbed and transferred to the liver, while the remaining BAs are excreted 

in the feces. Some of the BAs reabsorbed from the gut are effluxed into the systemic circulation. 

BAs have also been found in the brain and are thought to migrate into the brain 

through the systemic circulation. Thus, there is a possible link between BA and neurolog-

ical function and neurological disease [8,9]. Not only do BAs affect a variety of physiolog-
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Figure 1. Modification of bile acids by the gut microbiome. Cholesterol is converted in the liver to
cholic acid (CA) or chenodeoxycholic acid (CDCA), and these bile acids are then con-jugated with
glycine or taurine (G/T). Conjugated CA and CDCA are transferred to the gallbladder and secreted
from the gallbladder into the intestine upon food intake. Conjugated BA is deconjugated by intestinal
bacterial bile salt hydrolases (BSHs), and CA and CDCA are further dehydrogenated to deoxycholic
acid (DCA) and lithocholic acid (LCA), respectively. CDCA is also dehydrogenated and epimerized
by intestinal bacteria and converted to ursodeoxycholic acid (UDCA). Approximately 95% of the BAs
in the gut are absorbed and transferred to the liver, while the remaining BAs are excreted in the feces.
Some of the BAs reabsorbed from the gut are effluxed into the systemic circulation.

BAs have also been found in the brain and are thought to migrate into the brain through
the systemic circulation. Thus, there is a possible link between BA and neurological function
and neurological disease [8,9]. Not only do BAs affect a variety of physiological functions
by acting as ligands for various nuclear and cell-surface receptors [6], but BAs also affect
mitochondria [10–12] and autophagy [13–15]. This review focuses on the BAs modified by
the gut microbiota and their functions in intracellular organelles and neurodegenerative
diseases.

2. BAs and Gut Microbiota
2.1. Bile Acid Modification by the Gut Microbiota

BAs are biosynthesized from cholesterol in the liver, and the biosynthesis of BAs is
conducted via using the classical (or neutral) or alternative (or acidic) pathway, using
more than 16 enzymes [16–19]. In the classical pathway, cholesterol is converted to 7α-
hydroxycholesterol with cytochrome P450 (CYP) 7A1 (CYP7A1), and 7α-hydroxycholestero
is then converted to 7α-hydroxy-4-cholesten-3-one. Cholic acid (CA) is biosynthesized from
7α-hydroxy-4-cholesten-3-one, involving CYP8B1, and chenodeoxycholic acid (CDCA) is
biosynthesized from 7α-hydroxy-4-cholesten-3-one, involving CYP27A1. In the alternative
pathway, cholesterol is metabolized to (25R)-26-hydroxycholesterol by CYP27A1, and this is
then converted to CDCA by CYP7B1. Bile acid-CoA: amino acid N-acyltransferase (BAAT)
conjugates CA and CDCA with glycine or taurine [20]. After the conjugation of glycine or
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taurine to BAs, these BAs are sent to and stored in the gallbladder. BAs are discharged into
the small intestine through the stimulation of food intake [1].

In the intestine, bile salt hydrolase (BSH) deconjugates conjugated BAs. Various gut
bacteria have been shown to exhibit BSH activity [21,22]. Most of these bacteria, such
as Lactobacillus, Bifidobacterium, Enterococcus, Clostridium, and Bacteroides spp., are found
in the ileum and colon [23–26]. After deconjugation, the 7α-hydroxy group is removed
from CA and CDCA, leading to a yield of deoxycholic acid (DCA) and lithocholic acid
(LCA), respectively. A few bacteria among Clostridium spp. have been identified as capable
of eliminating the 7α-hydroxy group. The α-dehydroxylation of the CA and CDCA is
carried out by enzymes that are encoded in the bile acid-inducible (bai) operon. In addition,
CDCA is converted to ursodeoxycholic acid (UDCA) by 7α-hydroxysteroid dehydrogenase
(7α-HSDH) and 7β-HSDH. In addition, DCA and LCA are converted to iso-DCA and
iso-LCA by HSDHs, respectively [27].

2.2. Analysis of the Composition of the Gut Microbiota and Bacterial Species with Enzymes That
Modify BAs

The composition of gut microbiota and BAs is affected by diet, age, sex, antibiotics,
and disease [7,28–30]. BAs and gut microbiota affect each other [5,6]. BAs are modified
by gut bacteria through a variety of enzymatic reactions. Thus, the diversity of gut bac-
teria involved in the modification of bile acids has implications for host physiology and
pathophysiology. Bacteria harboring BSH have been reported to be widely distributed
across bacterial phyla and approximately 26% of bacteria strains in the Human Microbiome
Project [31]. However, bacteria capable of conducting 7-α-dehydroxylation is limited to
Clostridium spp. [27,32,33]. Furthermore, changes in the levels of microorganisms in gut
microbiota are associated with neurodegenerative diseases, including Alzheimer’s disease
and Parkinson’s disease [34,35]. The relationship between gut microbiota and various
diseases is currently being studied using multi-omics analysis, including metagenomics,
metatranscriptomics, metaproteomics, and metabolomics [36]. There are two major types
of metagenomic analyses that comprehensively analyze microbial communities using next-
generation sequencers: 16S rRNA gene sequencing and shotgun metagenomic sequencing;
these identify microorganisms and evaluate diversity and abundance [37]. 16S rRNA gene
sequencing is the most widely used method of analyzing gut microbiota, and it is rela-
tively inexpensive and simple to perform. In the 16S rRNA gene sequencing metagenomic
analysis, after PCR amplification is conducted to target the 16S rRNA genes, the amplified
PCR products are comprehensively sequenced using next-generation sequencing (NGS)
to identify the diversity of gut microbiota and the types and composition ratios of its
constituent bacteria. In shotgun metagenomic sequencing, DNA is randomly split into
fragments, which are then sequenced by NGS. The sequenced DNA is linked using bioin-
formatics, resulting in the identification of species, strains, and functional genes [38,39].
These metagenomic analyses have revealed the association between changes in the com-
position of the gut microbiota and neurodegenerative diseases; furthermore, but their
means, the association between changes in bacterial species with enzymes that modify
BAs and neurodegenerative diseases are also being elucidated [34,35]. In patients with
Alzheimer’s disease, Bacteroidetes is positively correlated with Alzheimer’s disease, while
Firmicutes and Bifidobacterium are negatively correlated with Alzheimer’s disease [40–42].
In patients with Parkinson’s disease, Akkermansia is positively correlated with Parkinson’s
disease, while Lactobacillus is negatively correlated with Parkinson’s disease [43–45]. In
patients with Huntington’s disease, Intestinimonas, Bilophila, Lactobacillus, Oscillibacter, Gem-
miger, and Dialister are positively correlated with Huntington’s disease [46] and Firmicutes,
Lachnospiraceae, and Akkermansiaceae are negatively correlated with Huntington’s disease
gene expansion carriers [47]. Furthermore, a recent study using shotgun metagenomic
sequencing of Alzheimer’s disease patients has shown that Bacteroides spp., Alistipes spp.,
Odoribacter spp., and Barnesiella spp. increased and Lachnoclostridium spp. decreased in
patients with Alzheimer’s disease [42]. Moreover, a recent study using shotgun metage-
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nomic sequencing of Parkinson’s disease patients has shown that eighty-four species were
associated with Parkinson’s disease, with 55 species more and 29 species less exist in
Parkinson’s disease compared to healthy subjects. In addition, 34 genera more and 1 genus
less present in Parkinson’s disease compared to healthy controls [48].

3. BAs as Regulatory Modulators
3.1. BAs as Regulatory Molecules of Nuclear and Cell-Surface Receptors

BAs are signaling molecules that bind to nuclear and cell-surface receptors, such as
the farnesoid X receptor (FXR), a receptor for primary bile acids [49–51] and Takeda G
protein receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1 and a
receptor for secondary bile acids [50–52]. Among the nuclear receptors, BAs act as ligands
for FXR, the constitutive androstane receptor, pregnane X receptor, vitamin D receptor,
liver X receptor, glucocorticoid receptor, and retinoid-related orphan receptor γT. Moreover,
BAs act as ligands for the cell-surface receptors TGR5, sphingosine-1-phosphate receptor 2,
and the M2 and M3 muscarinic receptors. These receptors are expressed in various organs,
including the brain [53–58]. Therefore, BAs play diverse physiological roles through the
affect they have on these various receptors [7,59,60].

3.2. BAs as Regulatory Molecules of Intracellular Organelle

Mitochondrial and/or autophagic dysfunction affects neurodegenerative diseases,
including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease [61–63].

Mitochondria are intracellular organelles that have a double membrane consisting
of an inner and outer membranes and function in the process of cellular ATP synthesis.
They are involved in diverse and varied cellular functions, including apoptosis, regulation
of intracellular calcium concentration, and metabolism of glucose, fatty acids, and amino
acids [64]. Mitochondria maintain a functional population by repeating fusion and fission
to eliminate dysfunctional mitochondria, and mitochondrial dysfunction is involved in
various types of diseases [65,66]. The equilibrium between fission and fusion plays a crucial
role in mitochondrial quality control. The fusion of mitochondria causes an exchange of mi-
tochondrial DNA (mtDNA) and metabolites between damaged and healthy mitochondria
to avoid the accumulation of damaged substances into one mitochondrion. Mitochondrial
fusion undergoes when the outer mitochondrial membranes (OMM) of two mitochondria
fuse with each other and with the inner mitochondrial membranes. Mitofusin (MFN) plays
a crucial role in the fusion of the outer membrane. In addition, optic atrophy 1 (OPA1)
plays a crucial role in the fusion of the inner membrane [67–69]. MFN is a dynamin-like
GTPase and consists of two isoforms, namely, MFN1 and MFN2. Although both isoforms
have important roles to play in the tethering and fusion of OMMs, the tethering activities of
MFN1 are higher than those of MFN2. Therefore, MFN1 is the main tethering isoform for
the fusion of OMMs [70,71]. MFN2 is located on the mitochondria-associated endoplasmic
reticulum (ER) membrane (MAM), and it connects mitochondria to the ER, bringing Ca2+

influx from the ER to the mitochondria [72,73]. Mitochondrial fission tends to isolate dam-
aged DNA and metabolites in mitochondria. Dynamin-related protein 1 (DRP1) is the major
regulator of mitochondrial fission. DRP1 forms a ring-like structure composed of multimer
at mitochondrial fission sites of the OMM and causes the constriction and scission of mito-
chondria. The activity of DRP1 is controlled by post-translational modifications, such as
phosphorylation, ubiquitination, sumoylation, S-nitrosylation, and O-GlcNAcylation [74].
Glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA),
and taurochenodeoxycholic acid (TCDCA) are abundant in the mitochondria of the liver of
healthy subjects [75]. However, most BAs are toxic to mitochondria at high concentrations
and can lead to a decrease in mitochondrial membrane potential [11,76,77]. By contrast, tau-
roursodeoxycholic acid (TUDCA) enhances mitochondrial biogenesis and protects against
mitochondrial dysfunction [11,12]. Moreover, peroxisome proliferator-activated receptor γ
coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A are
related to mitochondrial biogenesis [65,78]. TGR5 activation induces these molecules and
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promotes the functional gain and biogenesis of mitochondria [79]. Therefore, drugs that
activate TGR5, including BA, may be potential therapeutic agents for neurodegenerative
diseases. It has been recently reported that DCA, CDCA, and their taurine conjugates acti-
vate MFN2 by binding directly to MFN2, promoting mitochondria-to-mitochondria fusion
and mitochondria-to-ER fusion in THP-1 cells that are differentiating into macrophages [10]
(Figure 2). DCA and CDCA at physiological conditions (5 µM) promote the fusion between
mitochondria, resulting in an increase in the generation of ATP. By contrast, DCA and
CDCA with cholestatic conditions (100 µM) enhance the fusion between the mitochon-
dria and the ER, leading to Ca2+ influx from the ER to the mitochondria, the activation
of NLRP3 inflammasome and pyroptosis, and innate immunity. Furthermore, CA and
UDCA antagonize the effects of DCA and CDCA on the GTPase activity of MFN2. The
areas where mitochondria and ER contact are called mitochondria-associated membranes
or mitochondria-associated ER membranes (MAMs) and an association between MAMs
and neurodegenerative diseases has been indicated [80,81]. MAMs are initiation sites of
autophagosome formation [82,83]. In addition, knockdown of MFN2 evokes impaired
autophagy [84,85]. By contrast, overexpression of MFN2 leads to the induction of au-
tophagy [85]. In addition, it is critical to maintain a balance between mitochondrial fusion
and fission to support both mitochondrial and cellular function, and mitochondrial struc-
tural changes are associated with neurodegenerative diseases. Because MFN2 plays a
crucial role in controlling mitochondrial structure, MFN2 is related to neurodegenerative
diseases [86].

Autophagosomes have an important role in autophagy. Autophagy is a major intracel-
lular degradation process in which autophagosomes sequester cytoplasmic components
such as damaged proteins and intracellular organelles and then fuse with lysosomes to
degrade those cytoplasmic components. The intracellular organelles in which autophago-
somes and lysosomes are fused together are called autolysosomes [87]. The mechanistic (or
mammalian) target of rapamycin complex 1 (mTORC1) is the key regulator of the initiation
phase of autophagy, although numerous other molecules, such as microtubule-associated
protein 1 light chain 3 (LC3), are also involved in autophagy. The inhibition of mTORC1
leads to the activation of the Unc-51-like kinase 1/2 (ULK1/2), resulting in the conjuga-
tion of phosphatidylethanolamine to LC3 and the formation of autophagosomes [61,88].
The formation of an autolysosome in autophagosome-lysosome fusion is conducted by
soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) [89,90],
Rab7 [91,92], UV radiation resistance-associated gene protein (UVRAG) [93], the homotypic
fusion and protein sorting (HOPS) complex [94], and LC3s [95,96]. DCA induces autophagy
in the human esophageal epithelial cell line [14], and UDCA also induces autophagy in the
human liver [15]. By contrast, GCDCA inhibits autophagy by suppressing transcription
factor E3 (TFE3) in the human liver cell line [97]. Moreover, CA, CDCA, and TCA interfere
with the formation of autolysosomes in hepatocytes and the liver [13,15]. The activation
of FXR, a receptor for primary bile acids, leads to the inhibition of autophagy [98,99]. By
contrast, the activation of TGR5, a receptor for secondary BAs, leads to the activation
of autophagy [100] (Figure 2). The activation of TGR5 leads to the activation of cAMP-
response element binding protein (CREB). CREB promotes autophagy and upregulates
autophagy-related genes such as Atg7, Ulk1, and Tfeb, while FXR represses autophagy
and the expression of these genes by binding to CREB [98]. Furthermore, CREB-regulated
transcription coactivator 1 induces autophagy-related genes by binding to CREB in neurons
in competition with FXR [101].
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Figure 2. The effects of bile acids (BAs) on mitochondria and autophagy. The effects of BAs on
mitochondria: DCA, CDCA, and their taurine conjugates activate MFN2 by binding directly to MFN2,
promoting mitochondria-to-mitochondria fusion and mitochondria-to-ER fusion. These BAs, at
normal concentration, promote the fusion between mitochondria, leading to the generation of ATP.
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By contrast, these BAs, at high concentration, promote the fusion between the mitochondria and
the ER, leading to Ca2+ influx from the ER to the mitochondria. The effects of BAs on autophagy:
secondary BAs (DCA and UDCA) induce autophagy and primary bile acids (CA, CDCA, and TCA)
inhibit autophagy by preventing the formation of autolysosomes. In addition, the activation of TGR5,
a receptor for secondary bile acids, leads to the activation of autophagy. By contrast, the activation of
FXR, a receptor for primary bile acids, leads to the inhibition of autophagy.

4. Microbiota-Modified BAs in Neurodegenerative Diseases

The source of the BAs found in the brain has not been identified, but conjugated
and unconjugated BAs have been found there [102–104]. BAs present in the brain may be
produced there or migrate through the circulatory system. Primary BAs (CA and CDCA)
are also produced by de novo synthesis in the brain. These primary BAs are responsible
for the majority of cholesterol metabolism in the brain. This third pathway in the brain
to produce primary BAs by de novo synthesis is called neural pathway [105]. Because
secondary BAs are generated by the gut microbiota, the secondary BAs detected in the brain
are thought to be transferred from the circulation. Furthermore, because a correlation has
been identified between brain bile acid concentrations and serum bile acid concentrations,
it is now believed that the majority of BAs in the brain migrate through circulation [106,107].
However, because there is neural pathway to BA synthesis, primary BAs produced by de
novo synthesis in the brain may also play a role in the physiological and pathophysiological
condition [105]. BAs are transported from the circulation, either through the blood–brain
barrier (BBB) or through BA transporters [16,108]. Lipophilic BAs can pass through the
BBB through passive diffusion. By contrast, hydrophilic BAs can pass through the BBB
through transporters [109,110]. Therefore, the brain can be influenced by the gut microbiota
via BAs.

4.1. Alzheimer’s Disease

Alzheimer’s disease is a progressive and irreversible neurodegenerative disease char-
acterized by dementia, memory loss, and morphological changes in multiple regions of the
brain. The pathological features of patients with Alzheimer’s disease are the accumulation
of amyloid β peptide and tau protein entanglement in the brain [111]. Amyloid β peptide
is produced from amyloid precursor protein (APP) with β- and γ-secretase [112,113]. The
γ-secretase complex contains presenilin 1 (PS1). Autophagy refers to the process of remov-
ing the accumulation of misfolded proteins, and the suppression of autophagy is connected
with Alzheimer’s disease [114]. Therefore, BAs can affect Alzheimer’s disease by influenc-
ing autophagy. LCA levels in plasma are higher in patients with Alzheimer’s disease. In
addition, LCA levels in plasma increase by approximately 3 fold within 8–9 years from
when healthy subjects develop Alzheimer’s disease [115]. By contrast, the levels of CA in
plasma and the TCA levels in the brain are significantly lower in patients with Alzheimer’s
disease [104]. However, the neuroprotective effect of TUDCA, which is a taurine-conjugated
secondary BA, has been demonstrated in neurodegenerative disease [116]. TUDCA lowers
amyloid β peptides and relieves memory deterioration in APP/PS1 double-knockout mice
used as a model for Alzheimer’s disease [117,118]. The ratios for both unconjugated and
conjugated secondary BAs, including LCA, GCDCA, taurodeoxycholic acid (TDCA), gly-
codeoxycholic acid (GDCA), and UDCA, to CA were higher in the brain of patients with
Alzheimer’s disease [102]. Furthermore, the ratios of DCA, GDCA, TDCA, and glycolitho-
cholic acid. GLCA) were significantly higher in the serum of patients with Alzheimer’s
disease [119]. Therefore, increased secondary BAs may be associated with Alzheimer’s
disease, and the status of the gut microbiome may affect the progression and suppression
of Alzheimer’s disease. In addition, the increase in Lactobacillus, which has BSH that
deconjugates conjugated-BAs, in feces is related to Alzheimer’s disease [120,121].
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4.2. Parkinson’s Disease

Parkinson’s disease is a progressive neurodegenerative disease that manifests itself in
resting tremor, muscle rigidity, bradykinesia, akinesia, and postural reflex disorder [122]. It
results in the loss of dopaminergic neurons in the substantia nigra [123]. The dysfunction
of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and Parkin
is considered a major cause of parkisonisms [124], and this dysfunction results in the im-
pairment of mitophagy, suggesting that the quality control of mitochondria plays an crucial
role in the suppression of Parkinson’s disease [61,125]. BAs are associated with autophagy
and the quality control of mitochondria. Furthermore, plasma levels of CA, DCA, TDCA,
and GDCA in patients with Parkinson’s disease are significantly higher when compared
with healthy subjects [126,127]. However, the plasma levels of GUDCA in patients with
Parkinson’s disease are decreased [128]. Moreover, levels of DCA and LCA are higher in
the appendix and LCA is higher in the ileum of patients with Parkinson’s disease [129].
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone treatment to rodents
are commonly used to model Parkinson’s disease. These chemicals prevent the function
of complex I in mitochondria, causing oxidative stress and mitochondrial damage in neu-
rons, leading to neurotoxicity and parkinsonism [130,131]. TUDCA protects dopaminergic
neurons from MPTP-induced neurotoxicity [132]. It also suppresses MPTP-induced loss
of dopaminergic neurons and mitochondrial membrane potential to improve the motor
symptoms induced by MPTP [133]. Furthermore, rat models of Parkinson’s disease induced
by rotenone show mitochondrial swelling, and the loss of mitochondrial cristae and UDCA
improves these mitochondrial abnormalities [134]. In addition, several reports have indi-
cated that BSH-containing bacteria, such as Lactobacillus, Bifidobacterium, Enterococcus, and
Bacteroides spp., are increased in patients with Parkinson’s disease [34,35]. This indicates a
relationship between unconjugated BAs and Parkinson’s disease.

4.3. Huntington’s Disease

Huntington’s disease is an autosomal-dominant neurodegenerative disease that man-
ifests in cognitive disability, and psychiatric disturbance, and motor dysfunctions [135].
Huntington’s disease is caused by cytosine-adenine-guanine (CAG) expansion which en-
codes a polyglutamine at the N-terminus of huntingtin (HTT) [136]. HTT has a similar
structure to the three autophagy proteins of yeast, Atg11, Atg23, and Vac8 [137,138] and
acts as an autophagy initiator and enhancer [139]. The mutation of HTT leads to a reduction
in mitophagy [140]. BAs are associated with mitophagy. In addition, 3-nitropropionic acid
(3-NP) selectively damages neurons in the striatum and is involved in the development of
Huntington’s disease. 3-NP inhibits succinate dehydrogenase in mitochondria and leads
to the degeneration of the caudate-putamen [141,142]. TUDCA improves 3-NP-induced
neural mitochondrial damage, neural cell death, and sensorimotor deficits [143]. Moreover,
TUDCA ameliorates striatal apoptosis, cerebral and striatal atrophy, and sensorimotor
deficits in R6/2 transgenic mice that carry the human huntingtin gene which has 144 CAG
repeats and are commonly used as a model for Huntington’s disease [144].

5. Concluding Remarks

Primary BAs are synthesized in the liver and these BAs are modified by the involve-
ment of various microorganisms present in the gut microbiota. Therefore, a variety of bile
acids exist in the human body. Bile acids have been shown to exert diverse physiological
effects by binding to various nuclear and cell-surface receptors. Therefore, bile acids have
come to be recognized as signaling molecules. In addition, it has recently been reported
that BAs are present in mitochondria and affect mitochondrial ATP synthesis. Furthermore,
some BAs have been shown to act on mitochondrial fusion as ligands for MFN2, which
is involved in the fusion between mitochondria and between mitochondria and ER. BAs
have also been shown to regulate the progression of autophagy. Although the causes of
neurodegenerative diseases are still incompletely elucidated, mitochondrial and mitophagy
dysfunction in neurons is considered one of the causes of neurodegenerative diseases,
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including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Therefore,
further elucidation of the function of BAs and the gut microbiota which modifies BAs may
lead to new treatments for neurodegenerative diseases.
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