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Abstract: One of the major challenges in forensic genetics is being able to detect very small amounts
of DNA. Massively parallel sequencing (MPS) enables sensitive detection; however, genotype errors
may exist and could interfere with the interpretation. Common errors in MPS-based analysis are
often induced during PCR or sequencing. Unique molecular indices (UMIs) are short random
nucleotide sequences ligated to each template molecule prior to amplification. Applying UMIs
can improve the limit of detection by enabling accurate counting of initial template molecules and
removal of erroneous data. In this study, we applied the FORCE panel, which includes ~5500 SNPs,
with a QIAseq Targeted DNA Custom Panel (Qiagen), including UMIs. Our main objective was
to investigate whether UMIs can enhance the sensitivity and accuracy of forensic genotyping and
to evaluate the overall assay performance. We analyzed the data both with and without the UMI
information, and the results showed that both genotype accuracy and sensitivity were improved
when applying UMIs. The results showed very high genotype accuracies (>99%) for both reference
DNA and challenging samples, down to 125 pg. To conclude, we show successful assay performance
for several forensic applications and improvements in forensic genotyping when applying UMIs.

Keywords: forensic genetics; unique molecular indices; UMI; massively parallel sequencing; single
nucleotide polymorphism; kinship

1. Introduction

One of the key challenges within forensic genetics is to increase sensitivity, enabling
detection of the smallest possible amounts of DNA. However, several analysis techniques
include a certain level of interfering noise, which could hinder the interpretation. To
increase the sensitivity, one approach would be to develop techniques that can distinguish
true signals from noise; more specifically, from a forensic genetic perspective, to distinguish
true alleles from false variants. Massively parallel sequencing (MPS) is one technique that
has revolutionized the field of forensic genetics and has been shown to be a powerful
method for forensic DNA analysis [1–4]. However, technical artefacts exist, and when
analyzing samples with low template DNA, distinguishing between true and false alleles
can be difficult. One of the most common error types is caused during the PCR amplification
process. Stutter artifacts are well known when analyzing traditional short tandem repeat
(STR) markers. These are caused by strand slippage of the DNA polymerase during
the amplification process [5]. The stutter phenomenon is not an issue when analyzing
single nucleotide polymorphisms (SNPs) due to the lack of repetitive regions in SNP
loci. However, there are other amplification issues, such as polymerase base substitution
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errors [6], which could result in erroneous PCR products. A misincorporated base early in
the cycling process could result in incorrect genotype interpretation. In addition, the risk
of amplification errors increases when analyzing low copy numbers of DNA, mainly due
to stochastic effects [7]. Another source of error originates from the sequencing process,
where base substitutions can occur [8,9].

Unique Molecular Indices (UMIs), also known as unique molecular identifiers or
molecular barcodes, were initially introduced as a tool to count the absolute number of
molecules [10–14] and were later applied to the field of medical genetics for sensitive
detection of cell-free DNA [15–19]. For instance, early detection of circulating tumor DNA
is an important strategy for detecting tumor development, determining treatment and
monitoring drug response by quantitative measures of circulating cell-free tumor DNA [20].
A UMI is a short random nucleotide sequence, commonly 8–12 base pairs long. These
random sequences can either be incorporated into the sample during an initial PCR [18] or
enzymatically ligated prior to amplification [15]. Addition of the UMI sequences enables
bioinformatic detection of the original template molecules. Since all reads have a UMI
attached, one can distinguish reads that result from PCR amplification (i.e., having the
same UMI sequence) and reads that represent the original template molecules (i.e., having
unique UMI sequences). Errors resulting from both amplification and sequencing can be
present in the final reads; however, by counting the number of unique UMIs instead of
all reads, the error rates could be reduced. From all reads with the same UMI sequence, a
consensus read (or UMI read) is created. If a variant is presented only in some of the reads
carrying the same UMI, this variant will be filtered out and considered as a false variant. A
variant is considered to be true if most of the reads carrying the same UMI have the variant
present, and the specific read number threshold can be user defined. One commercially
available kit that has incorporated UMI technology is the QIAseq Targeted DNA Custom
Panel (Qiagen, Hilden, Germany). This assay is a multiplexed PCR based on a single
primer extension technology. The QIAseq kit was primarily developed and evaluated for
the detection of circulating DNA with high amounts of DNA (>10 ng) available [15,21,22].
Even though UMIs have mainly been used in medical applications, the UMI principle
could be applied within forensics as well. A sensitive and accurate detection of low-level
DNA variants could potentially be a successful technological improvement for the field of
forensic genetics. At present, and as far as we know, only a few studies applying UMI from
a forensic perspective have been conducted [23–25].

The rapid technological advancements of MPS and increased knowledge about the
human genome have enabled additional forensic applications of DNA, such as DNA
intelligence. For instance, DNA can be used as an investigative lead to narrow down the
list of suspects. The prediction of human appearance, such as eye, hair, and skin color, from
DNA has been well described [26] as has the prediction of biogeographical ancestry [27].
A more recent adoption in the field is investigative genetic genealogy (IGG), which has
generated crucial investigative leads for the identification of unknown perpetrators in
a number of criminal cases [28,29] as well as the identification of human remains [30].
An extended DNA profile is required for the IGG method, which preferably consists of
hundreds of thousands of SNPs which, for instance, can be generated via high-density
SNP microarrays or whole genome sequencing assays. The high-density SNP profile
can then be uploaded to a public genealogy database to trace biological relatives to the
unknown by matching segments of shared DNA [31–33]. Subsequently, the traditional
genealogy investigation hopefully results in a candidate suspect, and traditional forensic
methods, such as STR typing, are used to either confirm or reject the candidate. The use
of STR markers as a confirmation method is feasible as long as the quality of the sample
is high enough to enable generation of a sufficiently informative STR profile; however,
some forensic casework samples can be heavily degraded, such as old bone samples.
The STR typing can, in such cases, result in partial DNA profiles and, in the worst case
scenario, insufficient information for identification. Furthermore, if the reference sample
is a distant relative, mainly in cases of identifications of historical human remains, the
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STR markers can be too few to generate a sufficiently high support for any of the tested
hypotheses. Due to these limitations in STR typing, a SNP-based approach could be a more
appropriate alternative. Recently, extensive marker panels with thousands of SNPs have
been developed for forensic applications [34–38].

The FORensic Capture Enrichment (FORCE) panel [34] is an extensive all-in-one SNP
marker set for different forensic applications. The panel consists of carefully selected SNP
markers, including ancestry, phenotype, identity, and kinship informative markers, as well
as X- and Y-chromosomal SNPs. This panel can be applied with different enrichment and
sequencing methods based on different chemistries. A hybridization capture technique
(myBaits, Arbor Biosciences, Ann Arbor, MI, USA) was used and evaluated in the initial
FORCE publication [34]. The main aim of this study is to investigate the potential of UMIs
in forensic genetics by applying the UMI technology together with the FORCE panel. We
assessed the impact of incorporating UMIs on the genotype accuracy and sensitivity by
evaluating the observed genotypes with and without considering the UMIs. Additionally,
we evaluated the overall FORCE QIAseq assay performance by analyzing different sample
types of forensic relevance, such as mock case, degraded and DNA mixture samples.
Furthermore, we investigated the potential of this panel for casework-like applications such
as kinship analysis, forensic DNA phenotyping and biogeographical ancestry predictions.

2. Materials and Methods
2.1. The FORCE Panel

The FORCE panel can be adopted with several enrichment and sequencing strategies.
In this study, all samples were analyzed with a QIAseq Targeted DNA Custom Panel
(Qiagen) [39] comprising the FORCE SNPs. All DNA libraries were sequenced on a MiSeq
FGx instrument (Verogen, San Diego, CA, USA). For this FORCE QIAseq assay, 5507 SNPs
were selected.

2.2. Sample Selection

All samples were handled and analyzed in accordance with the ethical approval by
the Swedish Ethical Review Authority (Dnr 2022-06781-01).

2.2.1. Reference Samples

Repeatability, sensitivity and genotype accuracy were investigated based on three
different reference samples. Two of the samples (NA12877 and NA12878) were provided
by the Coriell Institute for Medical Research (Camden, NJ, USA), and one was 2800M
(Promega, Madison, WI, USA). All three samples were analyzed with 20 ng of DNA as
input. NA12877 and 2800M were analyzed in duplicate. The five samples were pooled and
sequenced together. A dilution series of NA12877 was prepared with the following input
amounts of DNA: 10 ng, 1 ng, 0.5 ng, 0.25 ng, 0.125 ng, 0.06 ng, 0.03 ng and 0.015 ng. All
eight samples in the dilution series were sequenced together.

2.2.2. Mixture Samples

The two Coriell samples, NA12877 and NA12878, were mixed in four different ratios,
1:1, 1:10, 1:50 and 1:100, with NA12878 as the major contributor. All mixtures were analyzed
in duplicate, with 10 ng DNA as input amount. The ability to detect a mixture was
evaluated by investigating the allele read frequency (ARF) distribution and by calculating
the heterozygosity rate [40]. The ARF for each locus was calculated by dividing the read
depth of the allele with the most reads with the total number of reads. Density plots of the
ARF values for both mixture and single-source samples were plotted in R [41] to illustrate
the distribution. Additionally, we evaluated the ability to extract the genotypes from
one unknown individual in the mixture, assuming genotypes from the other individuals
were known. This could represent a true case with a DNA mixture of victim (known
genotypes) and perpetrator (unknown genotypes). This was done for the 1:1 mixture,
with a quantitative approach [31], by removing the read counts for the known contributor,
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assuming 50% contribution. The remaining reads were used to determine the genotypes
of the unknown contributor. For those reads, we applied a coverage threshold of 10×
and an allelic balance threshold for homozygotes of ≥0.90 and for heterozygotes of ≤0.55
for the genotype calling. Subsequently, call rate and accuracy for the extracted genotypes
were calculated.

2.2.3. Mock Case Samples

One female saliva sample was extracted with a Chelex-based extraction method [42].
Two different amounts of DNA (1 ng and 10 ng) were treated with two known PCR
inhibitors, soil (humic substances) and moist snuff, which represent two known inhibitors
in Swedish forensic casework samples. The soil solution was prepared by mixing soil
with nuclease-free water (20% w/w) and shake-incubated for one hour [43]. Subsequently,
5 µL of the soil solution was added to the initial library preparation step, together with
1 ng and 10 ng DNA. Moist snuff solution was prepared by leaching snuff bags in 1 mL
nuclease-free water to extract the inhibitors [43]. Then, 0.6 µL of the supernatant was
added to the initial library preparation step, with 1 ng and 10 ng DNA as input. The saliva
samples were also analyzed without any inhibitor for comparison. The 10 ng untreated
sample was further used as reference when conducting genotype concordance tests with
the inhibitor-spiked samples.

2.2.4. Bone and Tissue Samples

Eight human skeletal bone samples were selected and extracted with two different
extraction methods: a PrepFiler BTA method with Automate Express (Thermo Fisher
Scientific, Waltham, MA, USA) and a phenol/chloroform-based extraction assay [44]. Addi-
tionally, four human tissue samples were selected and extracted with a phenol-chloroform
based extraction method [44]. All bone and tissue samples had previously been analyzed
in case work, generating complete STR profiles. All samples were diluted to 1 ng prior
to analysis. Six of the bone samples had previously been analyzed with a forensically
validated in-house SNP panel [45] consisting of 131 SNPs overlapping with the FORCE
panel. Furthermore, six bone samples had been analyzed with the ForenSeq DNA Signature
Prep kit [46] with 167 overlapping SNPs. Thus, concordance rates were calculated between
FORCE QIAseq genotypes and the two additional panels.

2.2.5. Kinship Samples

Kinship-based assessment was performed based on blood samples from two different
families with known relations, each consisting of the two parents and their three children,
giving a total of 10 samples. DNA was extracted, and 1 ng of DNA was used for the library
preparation. Based on the observed DNA data from the kinship informative SNPs (max
3935 SNPs), consistency with Mendelian inheritance patterns was verified, and likelihood
ratio (LR) calculations were performed in Familias [47]. Allele frequencies from the SweGen
project [48], consisting of allele frequencies of a Swedish population, were used for the LR
calculations. Paternity tests for each of the children were calculated in both trio (including
known mother, alleged father and child) and duo cases (including alleged father and child).
Additionally, maternity tests in duo cases (alleged mother and child) were also performed
for all children.

To further examine the informativeness in paternity duo cases, 1000 simulations
were performed in Familias with the following hypotheses: H1: The alleged father is
the biological father of the child; H2: The alleged father is unrelated to the child. The
number of genetic inconsistencies were counted when hypothesis H2 was simulated as the
true hypothesis.

To assess the informative power of the panel for more distant relationships, ranging
from second to fifth degree relatives, simulations were performed 1000 times for each of
the following hypotheses. The simulations were performed in ILIR [49] based on allele
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frequencies from a Swedish population generated from the SweGen project [48]. Genetic
linkage was accounted for using genetic position information from a Rutgers map [50].

• 2nd degree relation: Half siblings (H1) versus unrelated (H2)
• 3rd degree relation: First cousins (H1) versus unrelated (H2)
• 4th degree relation: First cousins once removed (H1) versus unrelated (H2)
• 5th degree relation: Second cousins (H1) versus unrelated (H2)

2.2.6. Phenotype and Ancestry Predictions

Phenotype and ancestry predictions were performed for two individuals (blood sam-
ples) based on the phenotype and ancestry informative SNP markers. Eye, hair and skin
color predictions were done with the HIrisPlex-S web tool [51–53], and FORCE QIAseq gen-
erated genotypes were converted to HIrisPlex-S compatible nomenclature. The results were
compared with self-reported eye, hair and skin color information for the tested individuals.
Biogeographical ancestry predictions were performed using FamLink2 [54,55] with a naïve
Bayes–based approach. Reference samples comprised allele frequencies for the autosomal
SNPs from seven meta populations (African, American, East Asian, European, Middle
Eastern, Oceanic and South Asian). The self-reported ancestry for the two individuals was
reported as country of origin for their grandparents. See Supplementary Table S1.

2.3. Library Preparation

The library preparation was performed with the QIAseq Targeted DNA Custom Panel
(Qiagen), consisting of the FORCE SNPs. All samples were analyzed according to the man-
ufacturer’s recommendations specified in the protocol [39]. All samples were quantified
prior to library preparation using the Qubit 2.0 fluorometer (Thermo Fisher Scientific).
The initial step of the library preparation was a multienzymatic reaction consisting of
fragmentation, end-repair and A-addition. This was immediately followed by an adaptor
ligation step, which included ligation of both the sample-specific index and the UMIs.
The adapter-ligated DNA were then cleaned twice with QIAseq magnetic beads. Target
enrichment was then performed using single primer extension of the specific targets in a
PCR reaction, according to the protocol of 6 cycles of 15 s at 98 ◦C and 15 min at 65 ◦C.
The target enrichment was followed by a second QIAseq magnetic bead-based clean-up
and a universal PCR, including ligation of the second sample specific index. The cycling
conditions followed the manufacturer’s protocol, and the number of cycles was set to 19.
The second PCR was followed by a final QIAseq magnetic bead-based clean-up. The final
libraries were then quantified using the Qubit 2.0 fluorometer. The DNA integrity was
checked using the High Sensitivity DNA kit on the 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). The samples were diluted to 4 nM based on the quantification
and fragment size distribution of the samples. Samples were then pooled, denatured and
further diluted to 10 pM, which was loaded onto the MiSeq FGx (Verogen) instrument. Ad-
ditionally, a QIAseq A Read 1 Custom Primer I was loaded according to the manufacturer’s
protocol, and a paired-end 2 × 151 bp sequencing was selected. The number of samples
pooled for sequencing varied from three to eight per sequencing; this is described in more
detail in Supplementary Table S2.

2.4. Bioinformatic Analysis with UMI

The bioinformatic workflow was built in the CLC Genomics Workbench V.21.0.3
(Qiagen). All thresholds and settings were set to default. The resulting FASTQ files from
the MiSeq FGx were imported into CLC, and the initial step was the Remove and annotate
with unique molecular indices tool. The UMI sequences, together with the common sequence,
were removed to improve the efficiency and accuracy of the read mapping. The reads
were then annotated with the UMI information for further analysis. This was followed
by a read mapping with hg19 as the reference genome with the Map reads to reference tool.
All the mapped reads that also belonged to the same UMI were annotated with a UMI
group ID with the Calculate Unique Molecular Index Groups tool. Based on these groups, a



Genes 2023, 14, 818 6 of 19

single consensus read was created (UMI read) using the Create UMI reads from grouped reads
tool. These UMI reads were then aligned to the same position as the original read. This
was followed by Remove ligation artifacts to reduce erroneous reads that originated from
the adaptor ligation step. Next, the InDels and structural variants tool was used to identify
structural variants, relying on information from unaligned ends. This information was
then used for a second alignment, the Local realignment, which is used to improve the initial
read mapping. Identify known mutations from read mapping was used to identify the reads
at the specific SNP positions. The final step was then to annotate the identified variants
with the UMI information by using the tool Annotate variants with UMI info. Final genotype
calling was performed in Microsoft Excel with a defined coverage threshold at 10×. The
ARF threshold for homozygotes was set to ≥0.95, and for heterozygotes to ≤0.80. The
quality score threshold was set to ≥15.

2.5. Bioinformatic Analysis without UMI

One approach to evaluate the power of UMI is to analyze the same sequencing data
without taking the UMI information into consideration. We analyzed the same sequencing
data by counting the total number of reads, including the PCR duplicates, which is the
traditional bioinformatic workflow when evaluating MPS data, thus ignoring the UMI
information. This was done in CLC Genomics Workbench V.21.0.3 by importing the same
FASTQ files as above. The first step was to use the Remove and annotate UMI information
tool to remove the UMI and thereby improve the read mapping. Secondly, the reads were
mapped to the reference genome (hg19) with the Map reads to reference reads tool. This
was followed by the InDels and structural variants tool to identify structural insertions and
deletions from the mapping. Next, a Local Realignment was performed to further improve
the read mapping, and finally the Identify known mutations from read mapping was used to
identify the reads at each specific locus. The resulting read counts were then analyzed in
Microsoft Excel for genotype calling. This approach was applied to the dilution series of
the Coriell sample NA12877.

The ARF and quality score thresholds for the non-UMI data were the same as for the
UMI approach above. However, the coverage thresholds for the non-UMI data varied and
were set with two different approaches. Firstly, the coverage for the UMI data was set to
10×, and the non-UMI data coverage was set so that the call rates between the two data
sets were similar (i.e., increasing the coverage threshold for the non-UMI data). From this,
error rates were compared between the UMI and non-UMI data. Secondly, the coverage for
the non-UMI data was adjusted so that the error rates were similar with and without UMI
information. From this approach, the call rates between the UMI and non-UMI data sets
were compared. The hypothesis was that the use of UMI increases sensitivity and genotype
accuracy. This implies that if the call rates are similar, the error rates would be lower in the
UMI data. In addition, if the error rates between the two data sets are similar, the call rate
would be higher in the UMI data.

3. Results

In total, 5507 SNPs were selected to be included in the panel. Six markers were
excluded during the primer design. One reason for exclusion was that the genome context
close to the SNP region was not unique. The erroneous region could be amplified and,
subsequently, false variants could be detected since the reads could map in multiple places
in the genome. Another reason was that the genome context close to the SNP had either
an abnormally high or low GC % content or extremely repetitive regions, resulting in
difficulties in designing specific and efficient primers. Therefore, the primer design resulted
in primers for 5501 SNPs. Most of the SNPs had two primers covering the SNP region,
which would reduce the impact of population-specific nucleotide polymorphism in the
primer site. A distribution of the distance from primer to SNP is illustrated as a histogram
in Supplementary Figure S1. Additionally, four SNP markers were excluded, since no read
data was observed at these sites for any of the analyzed samples. Thus, 5497 SNPs markers
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were further evaluated. See Supplementary Table S3 for a detailed description of all the
included SNPs. In total, 58 samples were analyzed on 15 sequencing runs. Supplementary
Table S2 shows the DNA input amount, average coverage and FASTQ file sizes for all
samples. Additionally, sequencing quality metrics are presented.

3.1. The Effect of Applying UMIs

Nine samples with various concentrations of NA12877 were bioinformatically ana-
lyzed both with and without taking the UMI information into account. We applied two
different approaches to evaluate the data by defining different coverage thresholds, since
the number of reads varies when counting UMI reads compared to counting all reads. When
applying a threshold resulting in similar call rates between the two datasets, the genotype
accuracy increased when taking the UMIs into account. This is illustrated in Figure 1A.
The genotype accuracy was similar down to 500 pg, though it was always slightly higher
with UMI. For 250 pg and lower, the difference is visually notable. A pairwise t-test showed
that the difference was statistically significant (p < 0.05). The other approach was to set a
threshold that resulted in similar error rates and then compare the call rates (Figure 1B).
With the same genotype accuracy for the two data sets, the call rates were always higher
when taking UMIs into account, especially for the lower DNA amounts. The difference
was statistically significant (p < 0.047), applying a pairwise t-test. The 1 ng sample without
UMI did not reach the same high genotype accuracy as for the data with UMI information,
regardless of coverage threshold. We decided to plot equal call rates even though the
genotype accuracy was slightly lower for the non-UMI data.
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Figure 1. The effect on genotype accuracy (A) and call rate (B) for different amounts of DNA when
applying unique molecular indices (UMIs) (green) compared to without taking the UMI information
into account (blue). (A) Genotype accuracy when both data sets have similar call rates. The genotype
accuracy was significantly higher (p < 0.05) for the UMI data, especially for 0.25 ng and lower.
(B) Call rates when both datasets have similar genotype accuracy. The call rate was significantly
(p < 0.047) higher for the UMI data, as visually notable for 0.25 ng and lower.

3.2. General Assay Performance
3.2.1. Genotype Accuracy and Repeatability

The Coriell sample NA12877 was analyzed in duplicate (labeled NA12877-1 and
NA12877-2), with 20 ng of DNA as input. The genotype accuracy was assessed by compar-
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ing the generated genotypes for each of the duplicate samples with previously published
genotypes for NA12877. In the first sample (NA12877-1), complete genotype accuracy was
seen for the 5490 called SNPs. Seven markers (0.13%) (rs7537605, rs1710456, rs4092077,
rs1428142, rs367600495, rs576471146 and rs169250) were not typed due to imbalance in
both heterozygote and homozygote genotypes. For the replicate sample (NA12877-2), six
markers (0.11%) (rs1710456, rs4092077, rs1428142, rs710160, rs367600495 and rs169250)
resulted in no calls due to the same reason. One discordant genotype (0.02%) was observed
in the NA21877-2 sample as an allele drop-out in marker rs7537605. The same marker was
inconclusive in the NA12877-1 sample due to imbalance. The number of called genotypes
in both replicates were 5489 (99.8%), and complete concordance between the samples
was observed.

The NA12878 reference is a female sample; therefore, 4610 markers were evaluated
(excluding the Y-SNPs). Complete genotype accuracy was found in the 4601 called markers.
Nine SNPs (0.20%) were not typed (rs4027132, rs4092077, rs1428142, rs1029047, rs1223550,
rs7117433, rs1126809, rs10892689 and rs710160) due to imbalances.

Control sample 2800M was analyzed in duplicate, and the genotypes were compared.
Complete concordance was seen for the 5487 SNPs that were called in both replicates. Eight
markers (0.15%) (rs4092077, rs1428142, rs1029047, rs200332530, rs372687543, rs367600495,
rs9785702 and rs2032672) were not called in both duplicates due to imbalance. Additionally,
rs576471146 was inconclusive in one of the duplicates, and rs710160 was inconclusive in
the other duplicate. We also compared the FORCE genotypes of 2800M with previously
published genotypes from the ForenSeq DNA Signature prep kit [46]. Out of the 169
SNPs analyzed in both assays, complete concordance was seen in both replicates. FORCE
genotypes generated with the myBaits assay for 2800M were previously published in [34].
A total of 5386 markers overlapped with the two duplicate samples, and discordance was
noticed in three markers (rs7537605, rs169250 and rs9785659).

In total, 19 markers (0.35%) were found to be either inconclusive, due to imbalance,
or discordant based on the initial analysis of the three high-quantity reference DNA sam-
ples, totaling five samples, including the replicates. Table 1 summarizes all these SNPs,
and detailed read data is presented in Supplementary Table S4. Possible reasons for the
imbalances and discordances were found for 10 of the markers by examining the regions
in the Integrative Genomics Viewer (IGV) software version 2.7.2 [56]. For instance, seven
SNPs had polynucleotide stretches close to the SNP site, one locus had a SNP variant in
the covering primer region and one SNP mapped to multiple places in the genome. See
Supplementary Figure S2 for a detailed description of the observations in IGV.

Table 1. The 19 markers found to be either inconclusive or discordant in at least one of the five
analyzed reference DNA samples, including the type of SNP and observations from analysis in IGV.

rsID Type of SNP 1 Inconclusive in
Number of Samples

Discordant in Number
of Samples Observation from Analysis in IGV 2

s1428142 Kinship 5 0 Complex polynucleotide region

rs4092077 Kinship 5 0 Imbalance in reference BAM file

rs367600495 Y-SNP 4 0 Complex polynucleotide region

rs1029047 iiSNP 3 0 Complex polynucleotide region

rs710160 Kinship 3 0 Complex polynucleotide region

rs169250 Kinship 2 2 Complex polynucleotide region

rs1710456 Kinship 2 0 Non-specific read mapping

rs200332530 Y-SNP 2 0 -

rs2032672 Y-SNP 2 0 -

rs372687543 Y-SNP 2 0 -
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Table 1. Cont.

rsID Type of SNP 1 Inconclusive in
Number of Samples

Discordant in Number
of Samples Observation from Analysis in IGV 2

rs576471146 Y-SNP 2 0 Complex polynucleotide region

rs7537605 Kinship 2 2 SNP in primer site

rs9785702 Y-SNP 2 0 -

rs10892689 Kinship 1 0 Complex polynucleotide region

rs1126809 piSNP 1 0 -

rs1223550 Kinship 1 0 -

rs4027132 Kinship 1 0 -

rs7117433 Kinship 1 0 -

rs9785659 Y-SNP 0 2 -
1 Kinship-informative, Y-chromosome-informative (Y-SNP), identity-informative (iiSNP) and phenotype-
informative (piSNP) SNP. 2 Observation from analysis in integrative genomics viewer (IGV) for possible reasons
for the poor performance.

3.2.2. Sensitivity

The investigation of sensitivity was performed based on the dilution series of NA12877
with the following input amounts of DNA: 20 ng, 10 ng, 1 ng, 0.5 ng, 0.25 ng, 0.125 ng, 0.06 ng,
0.03 ng and 0.015 ng. The call rate was greater than 97% down to 1 ng (Figure 2A). Genotype
accuracy greater than 99.9% for the 5497 SNP markers was seen down to 500 pg of DNA
input (Figure 2B). In total, four markers were causing the discordances in the samples down
to 500 pg, and all of them belonged to the problematic SNPs identified in Section 3.2.1. Thus,
if excluding these poorly performing SNPs, complete genotype accuracy was seen down to
500 pg. In addition, genotype accuracy larger than 99% was seen down to 125 pg. Lower
amounts of DNA resulted in lower call rates (less than 40%) and, subsequently, the genotype
accuracy dropped from 96% at 60 pg to 82% at 15 pg. A substantial majority of the observed
discordances from 250 pg and lower were allele drop-outs. One approach to improve the
call rates would be to adjust the ARF thresholds to be more non-conservative. We decreased
the homozygous ARF value to 0.9 and increased the heterozygous ARF value to 0.85, which
resulted in improved call rates. However, a slightly negative effect on the genotype accuracy
was observed (Supplementary Figures S3 and S4).
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Figure 2. The call rate and genotype accuracy for different amounts of DNA for the NA12877 sample,
illustrated as bar plots. (A) Call rate, with the number of called SNPs highlighted in text above each
bar. (B) Genotype accuracy for each sample. The concordance is presented in green and in text. The
discordant SNPs are divided into allele drop-ins (red) and allele drop-outs (blue).
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3.3. Performance with Casework-Relevant Samples
3.3.1. Mixture Detection and Deconvolution

Two-person mixtures were analyzed in four different ratios; 1:1, 1:10, 1:50 and 1:100.
The aims of the mixture analysis were to firstly detect the mixture, by distinguishing it from
a single-source sample, and secondly perform accurate genotype calling for one unknown
contributor. Allele read frequencies (ARFs) were calculated for each SNP marker. Differ-
ences in the ARF distribution were used to distinguish the mixtures from single-source
samples. Figure 3 displays density plots of the 1:1 and 1:10 mixtures together with an
ARF distribution for a single-source sample as reference. The 1:1 mixture could clearly be
separated from a single-source sample based on the ARF distribution. A more homogenous
distribution was seen in the 1:10 mixture compared to a single-source sample. However,
a difference was observed, especially as a shift to the left of the ARF distribution for the
homozygotes. The two additional mixtures (1:50 and 1:100) could not be distinguished
from a single-source sample based on the ARF values (Supplementary Figure S5). Fur-
thermore, an increased heterozygosity rate indicates the presence of a DNA mixture [37].
The heterozygosity rates for two single-source samples and for the mixture samples are
illustrated in Supplementary Figure S6 together with the theoretical heterozygosity rate for
the investigated mixture. The 1:1 and 1:10 mixture could be detected based on an increased
heterozygosity rate. However, the 1:50 and 1:100 mixture could not be detected.
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Figure 3. The allele read frequency (ARF) distributions for two different ratios of DNA mixtures,
illustrated as a density plot. (A) ARF values in two 1:1 mixture samples (red and green) together with
a single-source sample (blue). The figure clearly illustrates differences in ARF distribution between
the single-source and mixture samples. (B) ARF distribution of two 1:10 mixture samples (purple
and magenta) together with a single-source sample (yellow); a small shift in the ARF distribution can
be seen. There is an overlap in the ARF distribution between the mixture and single-source samples,
and the overlap of the colors results in a light-brown color.

We performed a mixture deconvolution test for the 1:1 mixture. We assumed a 50%
contribution and removed reads that theoretically originated from the known contributor.
The remaining UMI reads were used for genotype calling, and the call rates were 59.4%
and 82.0% respectively for the duplicates. The genotype accuracy of the called genotypes
for the duplicates was 99.2% and 99.9%, respectively, when applying adjusted ARF thresh-
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olds (homozygous ≥ 0.90 and heterozygous ≤ 0.55). The discordances were caused by
allele drop-ins.

3.3.2. Mock Case Samples

One female saliva sample was analyzed with two different input amounts of DNA,
10 ng and 1 ng. The sample was analyzed with and without the addition of two inhibitors,
soil and snuff. The untreated 10 ng sample was used as reference, and concordances
were investigated between the inhibitor-spiked samples. Six out of 4610 markers were
not called due to imbalance in the 10 ng reference sample; three of those markers were
identified as problematic in Section 3.2.1. Complete concordance was seen in both inhibitor-
treated samples with 10 ng of DNA. With the 1 ng samples, the call rate dropped to
93%, 90% and 90% for the reference, soil and snuff samples, respectively. The number
of discordances were 6 (0.13%), 7 (0.15%) and 14 (0.30%) for the reference, soil and snuff
samples, respectively. All discordances were caused by allele drop-outs. The results are
summarized in Supplementary Table S5.

3.3.3. Bone and Tissue Samples

DNA from eight bone samples and four tissue samples was analyzed, with 1 ng as
input. The call rates ranged from 88% to 99% (Supplementary Figure S7). Six of the bone
samples were previously analyzed with a forensically validated in-house SNP panel [45]
with 131 SNPs. Complete genotype concordance was seen for all the overlapping SNPs.
Additionally, six bone samples were analyzed with the ForenSeq DNA Signature Prep kit
(Verogen), and complete genotype concordance with overlapping SNPs (max 167 SNPs)
was observed; see Supplementary Table S6.

3.4. Forensic Casework Applications
3.4.1. Kinship Analysis

Likelihood ratio (LR) calculations and Mendelian inheritance pattern analyses were
performed in the two families with known relations, based on the DNA data from the
kinship informative SNPs. Paternity tests were performed in both duo and trio cases, and
maternity tests were performed as duos. The compared hypotheses were that each parent
is a parent of the child (H1) versus that the parent and child are unrelated (H2). The LR
ranged from 6 × 10263 to 2 × 10291 for the duo cases. The LRs in the trio cases were all above
10300. See Supplementary Table S7 for details. One genetic inconsistency (0.002%) was
observed between the mother and one child in one of the families, and thus no LR could be
calculated without accounting for genotype errors or mutations in the statistical calculation.
SNP marker rs7537605 was typed as homozygous AA in the mother and homozygous GG
in the child. This marker was found to be problematic in several of the reference DNA
samples (Table 1); if excluding this marker, the LR was calculated to 7 × 10285.

Based on allele frequencies for the FORCE kinship informative SNPs from the SweGen
project, 1000 simulations were performed in Familias, with the hypothesis that an alleged
father is father to the child (H1) versus that the alleged father is unrelated to the child (H2).
The number of genetic inconsistencies when the alternative hypothesis (H2) is true was, on
average, 411 and is illustrated in Figure 4. The lowest number of genetic inconsistencies
was 344 and was observed in one simulation.

Additionally, 1000 simulations were performed in ILIR [49] for evaluating the power
of the panel in more distant relationships. The tested hypotheses were two individuals
being half siblings, first cousins, first cousins once removed, and second cousins, all
with unrelated as the alternative hypothesis. Figure 5 displays a density plot with LRs
for each hypothesis. The tested and alternative hypotheses are well separated for the
second to fourth degree of relation. For second cousins, the majority of the LRs were still
informative; however, some overlap of the LR distribution curves exists. These findings
are in concordance with previous results based on allele frequencies from a European
population [34].
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Figure 4. A density plot of the number of genetic inconsistencies from 1000 simulations of a paternity
duo case, where the alleged father is unrelated to the child. On average, 411 genetic inconsistencies
were observed in the simulations.
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Figure 5. Results from pairwise kinship simulations are illustrated as density plots with four different
kinships, all with unrelated as the alternative hypothesis. (A) Half siblings (2nd degree); (B) first
cousins (3rd degree); (C) first cousins once removed (4th degree); (D) second cousins (5th degree). The
dashed line represents the strict definition of likelihood ratio (LR), where LR > 1 represents data in
favor of the true relation, and LR < 1 represents data in favor of the hypothesis that tested individuals
are unrelated. The different hypotheses are well separated in (A,B). The two hypotheses in (C)
can also be separated quite well. The majority of the simulated cases in (D) can also be separated,
although there are some overlaps of the distribution curves.



Genes 2023, 14, 818 13 of 19

3.4.2. Phenotype and Ancestry Predictions

Supplementary Table S1 summarizes the phenotype and ancestry predictions for the
two samples based on the observed genotypes. All included phenotype and ancestry
informative markers were called (44 and 255 SNPs, respectively) in both samples. All
predictions were consistent with the self-reported data, except for one sample where the
self-reported eye color was intermediate, and the most probable predicted eye color was
blue (prediction probability 0.93).

4. Discussion

In this study, we evaluated the FORCE panel, which includes ~5500 SNPs, with a
QIAseq Targeted DNA Custom Panel (Qiagen), including UMIs. One of the main aims of
this study was to explore the power of UMIs in MPS-based genotyping from a forensic
genetic perspective. We approached this by analyzing the same raw sequencing data with
two different bioinformatic workflows, with and without taking the UMI information into
account. We showed that the call rate increased with the UMIs while maintaining the same
genotype accuracy. The differences were mainly observed for the lower amounts of DNA,
from 0.250 ng, where approximately twice as many genotypes were called. Likewise, the
genotype accuracy increased with the UMI information when the call rates were similar in
the two data sets. The positive effect on the genotype accuracy was also mainly observed for
the lower amounts of DNA. Woerner and Crysup et al. [23,25] previously applied UMIs in a
forensic context, focusing on STRs. Consistent with our findings, their results demonstrated
that incorporating UMI reads led to improved genotype calling. Additionally, they showed
that implementing a machine learning approach for the genotype calling further enhanced
the potential power of UMIs. Instead of applying thresholds based on only counting the
number of UMI reads, additional parameters were analyzed with the machine learning
approach, for instance, the number of reads per UMI read and accounting for possible
PCR or sequencing errors in the UMI sequence. Further optimizations and analyses of
our bioinformatic workflow would be necessary to evaluate if a similar positive effect on
genotype calling could be observed in our data as well.

The call rates for the five reference DNA samples in the initial analysis were very
high (>99.8%); most importantly, the genotype accuracy was >99.9% for all samples. The
investigation of sensitivity showed that the call rate started to drop around 1 ng of DNA
(97.25% call rate). Although, since the total number of SNPs in this panel is high (~5500),
even a low call rate at 60% still represents >3200 SNPs, which, depending on the context,
still could be sufficiently informative in many forensic investigations. The concordance
of the called genotypes remained very high, greater than 99.9%, down to 500 pg DNA.
Furthermore, complete accuracy for the observed genotypes down to 500 pg could be
achieved if excluding four of the problematic SNPs (rs4092077, rs1428142, rs7537605 and
rs1710456) identified in Section 3.2.1. Similar performance regarding genotype call rate
and accuracy was shown by Peck et al. [37] in their validation study of the ForenSeq
Kintelligence kit (Verogen), which also is an extensive SNP panel based on multiplex PCR
technology. However, we observed a slightly improved genotype accuracy, which could
potentially be an effect of the use of UMIs in our data.

Overall, the assay showed good tolerance for challenging forensic samples, including
degraded bone and tissue samples as well as inhibitor-spiked samples. The same type of
inhibitors were evaluated in another MPS-based SNP assay, and our results are in consensus
with previously published data [57]. It is notable that this assay is more sensitive to the
amount of DNA rather than the tested inhibitors, since genotype dropouts increased due
to lower amounts of DNA rather than the presence of inhibitors.

A detailed investigation of the problematic SNPs in IGV identified potential complex
regions in 10 markers ( Supplementary Figure S2). Seven of the SNPs were located close
to a complex polynucleotide region, thus causing difficulties in sequencing or alignment
of the reads [8,58]. We observed that some of the problematic SNPs had a considerably
high number of “other” nucleotide reads (i.e., not A, C, G or T) ( Supplementary Table S4).
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This can occur if two different nucleotides are detected on the read 1 (R1) and read 2 (R2)
SNP sites. Differences in R1 and R2 could be caused by these polynucleotide regions,
thus explaining the observed errors. These 10 problematic SNPs could be excluded in
future FORCE panel designs. We could not find any potential reason for the remaining
nine problematic markers. However, these were only identified in one sample (or in both
replicates of one sample). Three of the 19 identified markers (rs169250, rs1428142 and
rs1223550) had previously been reported as poorly performing SNPs in [34]. However,
some problematic SNPs identified in this study displayed good performance with the
FORCE MyBaits assay, and vice versa. The performance of the SNPs is therefore assay-
dependent and should be evaluated separately for each enrichment strategy.

Although the overall call rate is relatively high, at least for DNA quantities down to
1 ng, there can be specific needs to increase the call rate even further. One approach to
increase the call rate would be to adjust the ARF thresholds to allow more genotypes to be
called. We show in Supplementary Figures S3 and S4 that a more liberal ARF threshold
increases the call rates. However, this has a slightly negative effect on the genotype accuracy,
since a more generous threshold allows skewed alleles to be typed, which could increase
the error rate. It is therefore important that each laboratory defines their needs regarding
call rates versus accuracies during internal validation. Furthermore, it is also possible to
set specific thresholds for specific types of markers, and the laboratory should consider
the application of the data when defining the optimal threshold. For instance, a slightly
higher error rate could be acceptable in DNA intelligence applications compared to direct
matching or kinship inference.

Following library preparation, an unexpected 200 bp PCR product was observed in
fragment analysis in all DNA libraries with less than 20 ng input DNA. The expected DNA
library fragments ranged from 300–600 bp. Supplementary Figure S8 illustrates Bioanalyzer
figures of three DNA libraries. This unwanted PCR product could be caused by adapter
dimer formation. Too low amounts of DNA would cause the adapters to form dimers
instead of binding to the DNA fragments; the number of dimers increased with decreased
DNA, as expected. Furthermore, the number of undetermined reads (reads that cannot
be assigned to a specific sample) correlated with the number of dimers, implying that the
dimers consist of flow cell-compatible adaptor sequences. We noticed that a vast majority
of the undetermined reads consisted of a specific DNA sequence originating from read 2
(AACTCCATCAATCAGGTCAGTTTCTCACTTTCAAAACGCAATACTGTACATT) with a
specific adaptor sequence (CCAGTCGT). Truelsen et al. [24] noticed a similar phenomenon
with dimers for low template DNA samples. They diluted the adaptor indices to adjust the
number of adaptors when analyzing low levels of DNA, which successfully decreased the
adaptor dimers. However, we applied the same approach and performed a 10-fold dilution
of the adaptors without any notable decrease in adaptor dimers. Possibly, additional
dilutions could be required, although a too-extensive dilution could have a negative effect
by reducing the number of adaptor-ligated reads. Another approach to reduce the adaptor
dimer is to repeat the final magnetic bead-based clean-up (Supplementary Figure S8).
However, it is quite labor intensive if several clean-ups are required. The QIAseq assay was
primarily developed for non-forensic applications, and several studies, with access to high
amounts of DNA, have shown successful results [15,21,22]. Still, forensic samples can often
have much lower quantities of DNA, and a general assay optimization for low level DNA
could be preferable.

We investigated if the low call rate for the 60 pg sample could be caused by the high
amount of dimers, which theoretically would decrease the sequencing capacity. The short
length of the dimers favors them to cluster more efficiently to the flow cell compared to the
intended libraries. Additional magnetic bead-based clean-up was performed five times for
the 60 pg sample to reduce the amount of dimers. This sample was then sequenced alone.
The resulting call rate was, however, not improved. This indicates that the dimer sequences
did not have a negative impact on the number of reads for the 60 pg sample, and the low
call rate could be explained by the low amount of input DNA. However, we still believe
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that the dimer sequences could have a negative effect on the read counts for the intended
libraries for samples with higher DNA amount.

Different strategies can be applied for mixture detection with MPS-based biallelic SNP
assays. Mixtures can be identified by observing variation in the allele read frequency or
by detecting an increase in heterozygotes [40]. We could successfully distinguish mixtures
from single-source samples down to 1:10 mixtures by applying either of the proposed
detection methods. The additional analyzed DNA mixtures (1:50 and 1:100) could not be
visually distinguished from single-source samples; however, improved depth of coverage
could potentially enable more sensitive mixture detection. Previous studies of MPS-based
assays have shown similar detection limits [37,40]. However, the heterozygosity rate could
not be used to distinguish the ratio of the mixture, i.e., differentiate a 1:1 mixture from
a 1:10 mixture. The ARF distribution plot, illustrated in Figure 3, elegantly separates
the two different mixture ratios. This could be important for downstream analysis and
mixture deconvolution. Furthermore, we applied a quantitative model, described in [31],
to deconvolute the mixture by extracting reads contributed by a known donor. If, based on
the ARF distribution, we assume that the mixture is 1:1, we would extract 50% of the reads.
The resulting reads should, theoretically, originate from the unknown donor. We observed
that we needed to adjust the thresholds to be more conservative for mixture deconvolution
compared to single-source genotype calling. The accuracy of the deconvoluted genotypes
was >99.2% for both replicates. Moreover, the call rate was as low as 59.4% for one of
the duplicate samples. However, due to the high number of SNPs in the FORCE panel,
that proportion of markers still represents more than 3200 SNPs, which likely would be
sufficient for direct human identification or close kinship cases. The results are only based
on one duplicate sample, and further research is required to find optimal strategies for
genotype deconvolution of DNA mixtures from sequencing data.

The 3935 kinship Informative SNPs in the FORCE panel generated considerably high
likelihood ratios for both maternity duos and paternity duos and trios. We observed one
discordant genotype in one of the families with known relations. The discordant SNP
was found to be problematic in several other samples as well and could, preferably, be
excluded in future panel designs. Even though we analyzed biallelic SNPs, which are less
informative per marker compared to common forensic STR markers, the average number
of genetic inconsistencies in a paternity duo case with an unrelated alleged father was 400.
This means that we, on average, observed one genetic inconsistency in every 10th kinship
SNP. Furthermore, the simulation results of more distant relations presented in this paper
showed great potential for predicting relations from second to fifth degree based on allele
frequencies of a Swedish population. Our results are consistent with simulation results
based on European allele frequencies [34], which was expected.

The phenotype and ancestry informative markers have previously been identified
and found to be informative [53,59,60]. We have shown that all these markers could
be successfully recovered with this assay. The predictions were consistent with the self-
reported phenotypes and ancestries, except for one eye color prediction. However, the
prediction of intermediate eye color has previously been shown to be difficult [51], and the
aim of this study was not to evaluate the prediction power but rather to show that we can
analyze the phenotype and ancestry informative SNP markers with the FORCE QIAseq
assay including UMIs.

5. Conclusions

This study aimed to evaluate the power of unique molecular indices (UMI) in forensic
genetic applications and to show the utility of the FORCE panel with a QIAseq Targeted
DNA Custom Panel. We showed that both sensitivity and genotype accuracy were im-
proved when taking UMIs into account. The differences were mainly observed for low
amounts of DNA. In total, 5497 SNP markers were analyzed, and both very high call rate
(>99.8%) and genotype accuracy (>99.9%) were seen for high quality reference samples.
Additionally, the assay showed good tolerance for challenging forensic samples, such as
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bone and tissue samples, as well as inhibitor-spiked samples. A few SNPs displayed poor
performance, and we suggest that some of these should be excluded in future designs of
the panel. Based on analysis of the dilution series, the call rate started to drop from 1 ng
of DNA input (call rate 97.25%). However, complete genotype accuracy was observed
down to 500 pg DNA when excluding the four problematic SNPs. DNA mixtures could be
detected down to 1:10 mixtures using ARF distributions or heterozygosity rates, and we
successfully deconvoluted a 1:1 mixture with >99.2% genotype accuracy for the observed
genotypes. Extremely high likelihood ratios (in the range of 6 × 10263) were observed
for maternity and paternity tests with known relation. In addition, simulations showed
that second to fifth degree relationships could be predicted with strong statistical power,
applying the kinship informative SNPs. Additionally, phenotype and ancestry informative
SNPs were successfully typed. To summarize, we showed that the QIAseq assay of the
FORCE panel has great potential for various types of forensic applications. Finally, our
results showed an improved genotype accuracy and sensitivity when applying UMIs, and
this technological improvement should be further evaluated and ultimately implemented
by the forensic community.
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