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Abstract: Plants have acquired sets of highly regulated and complex signaling pathways to respond
to unfavorable environmental conditions during evolution. Calcium signaling, as a vital mechanism,
enables plants to respond to external stimuli, including abiotic and biotic stresses, and coordinate
the basic processes of growth and development. In the present study, two calcium sensor families,
CBL and CIPK, were investigated in a halophyte plant, Aeluropus littoralis, with a comprehensive
analysis. Here, six AlCBL genes, and twenty AlCIPK genes were studied. The analysis of the gene
structure and conserved motifs, as well as physicochemical properties, showed that these genes
are highly conserved during evolution. The expression levels of AlCBL genes and AlCIPK genes
were evaluated under salt stress in leaf and root tissue. Based on the real-time RT-PCR results, the
AlCIPK gene family had a higher variation in mRNA abundance than the AlCBL gene family. AlCIPK
genes were found to have a higher abundance in leaves than in roots. The results suggest that the
correlation between AlCBL genes and AlCIPK is tissue-specific, and different correlations can be
expected in leaves and roots. Based on these correlations, AlCIPK3.1–AlCBL4.1 and AlCIPK1.2–
AlCBL4.4 can be co-expressed in the root tissue, while AlCBL10 has the potential to be co-expressed
with AlCIPK5, AlCIPK26, and AlCIPK12.3 in the leaf tissue. Our findings reveal valuable information
on the structure and function of calcium sensor families in A. littoralis, a halophyte plant, that can be
used in future research on the biological function of CBLs and CIPKs on salt stress resistance.
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1. Introduction

In sessile organisms such as plants, perception and signaling of environmental stimuli
are necessary for survival and growth regulation. Calcium (Ca2+) is one of the signal
transduction components that acts as a second messenger in all eukaryotes [1–3]. Ca2+ is
stored in organelles such as vacuoles, mitochondria, and endoplasmic reticulum, where
abiotic stresses such as salt, cold, and drought cause a rapid increase in Ca2+ concentration
in the cytosol [3–6]. However, biotic stresses, pH dynamics, and phytohormones also can
affect Ca2+ concentration [7–10]. In addition, pollen tube development and guard cell
regulation are also associated with changes in Ca2+ concentration [8]. Calcium sensors
or calcium-binding proteins recognize the modification in Ca2+ concentrations in plant
cells, and downstream pathways are induced by affecting the phosphorylation status
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of calcium sensors and activating protein kinases [11,12]. Calmodulin (CaM), calcium-
dependent protein kinases (CDPKs), and calcineurin B-like proteins (CBLs) are part of the
known calcium sensors in plants [13]. CBLs are plant-specific sensors that, after sensing a
specific calcium signature, can physically interact with a group of protein kinases, CBL-
interacting protein kinases (CIPKs), to activate downstream signaling components [14–16].
CBL proteins share a common helix–loop–helix structural motif (the EF-hand composition),
which acts as a Ca2+-binding region [17]. Moreover, it seems that the EF-hand composition
could affect the affinity rate of calcium ions [17].

In the plant model system Arabidopsis, diverse roles were reported for CBLs: The
cbl1 mutant is very sensitive to abiotic stresses such as drought, extreme salinity, and
hyperosmotic stress. Likewise, the CBL9 gene is involved in ABA signal transduction and
stress-induced ABA biosynthesis pathways [18]. In addition, it was reported that CBL9 and
CBL1 participate in pollen germination and flower fertilization [19]. Furthermore, it was
stated that CBL1 is involved in response to aluminum stress [20] and cold stress [21,22].
Moreover, CBL7 is associated with Arabidopsis responses to alkaline stress [23]. Interestingly,
it was reported that CBLs, such as CBL3 and CBL4, could modulate the potassium channel
and affect potassium homeostasis [21,24]. It has also been found that the expression patterns
of the CBL genes are dependent on tissues and developmental stages and the type of stress.
For example, CBL1 expression is not affected by the external application of abscisic acid
(ABA) but is induced in response to environmental stresses such as salt, cold, drought, and
wounding [25]. While CBL2 and CBL3 do not respond to abiotic stress stimuli, they are
transcriptionally induced by light stress [26]. CIPK genes also have differential expression
patterns. For example, CIPK9 transcriptional regulation is more induced in response to ABA
treatment and is mainly activated in shoot tissues [27]. In addition, CIPK genes in Medicago
truncatula, including MtCIPK2, MtCIPK17, and MtCIPK18, were found to be upregulated
in response to salinity, PEG, and ABA treatments [28]. Recently, it has been reported that
a CIPK gene from chrysanthemum, CmCIPK8, could affect the expression patterns of ion
transport-related genes and may enhance tolerance to salinity [29]. Moreover, CIPK10 in
potatoes (StCIPK10) could increase tolerance to osmotic and drought stress by affecting the
content of osmoregulation substances [30]. Additionally, it was reported that StCIPK10
can interact with several StCBLs, including StCBL4, StCBL8, StCBL1, StCBL6, StCBL12,
and StCBL11 [30]. In β vulgaris, it was described that BvCIPKs are upregulated in response
to NaCl treatment [31]. In Saccharum spontaneum, CIPK genes were shown to respond to
abiotic stresses such as cold and water stress and ABA treatment [32]. Overall, it seems
that cell signaling networks linked with CBL–CIPK play critical roles in response to abiotic
stresses [33–35].

A. littoralis as a halophyte model can grow under high salt concentrations [36,37].
Identifying the genes related to tolerance in plants such as A. littoralis, a valuable germplasm,
and determining their function can provide a better understanding of tolerance mechanisms
in plants [38]. According to the mentioned materials above, the genes of CBL and CIPK
families play a key role in responding to environmental stresses and regulating downstream
signaling pathways, but these gene families have not been identified and investigated in
A. littoralis. Here, we identified the members of CBL and CIPK families and analyzed their
structure and evolution as well as their regulatory systems. In addition, the expression
profiles of AlCBL and AlCIPK genes were evaluated under salinity in the root and leaf
tissues of A. littoralis.

2. Materials and Methods
2.1. Identification of CBL and CIPK Family Genes in A. littoralis

In this study, the putative protein sequences of CBL and CIPK in rice were retrieved
from the RGAP database (http://rice.plantbiology.msu.edu/, accessed on 25 December
2022) and for Arabidopsis thaliana from the TAIR database (https://www.arabidopsis.org/,
accessed on 25 December 2022). Sequences were used as queries in blastp and tblastn
tools, E-value < 1 × 10−10, to identify members of CBL and CIPK gene families from
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the transcriptome platform e!DAL of A. littoralis [39]. The presence of PKinase and NAF
domains in CIPK proteins, as well as EF-hand domains in CBL proteins, was tested and
confirmed using the CDD database [40], SMART [41], and InterPro Scan [42]. The confirmed
protein sequences were renamed based on their orthologs in Arabidopsis. Further AlCBL
and AlCIPK proteins were analyzed using the ExPASy online database ProtParam tool [43]
to predict their physiochemical properties, including molecular weight (MW), GRAVY, and
isoelectric point (pI).

2.2. Phylogenetic Analysis and Classification of AlCBL and AlCIPK Gene Families

To investigate the evolutionary relationships in calcium sensor gene families, the
protein sequences of AlCBL and AlCIPK families, along with their orthologs in Arabidopsis
and rice, were analyzed. First, the sequences were aligned using the ClustalW tool [44],
and then a phylogenetic tree was drawn with the IQ tree software [45] using the maximum
likelihood (ML) method with 1000 bootstrap replications. Finally, the tree file was restored
and upgraded in the iTOL database [46].

2.3. Motif Analysis and Gene Structure of AlCBLs and AlCIPKs

Ten conserved motifs of AlCBL and AlCIPK protein sequences were predicted using
the MEME motif finder [47] based on its default setting. In addition, the gene structure
of AlCBL and AlCIPK genes was illustrated based on exon and intron distribution using
TBtools [48].

2.4. Promoter Analysis of AlCBLs and AlCIPKs

In the current study, the upstream region, 1500 bp, of AlCBL and AlCIPK genes was ana-
lyzed using the PlantCARE tool (https://bioinformatics.psb.ugent.be/webtools/plantcare/
html/, accessed on 25 December 2022) to identify the putative cis-regulatory elements.

2.5. Plant Materials’ Growth Conditions and Salt Treatments

The cultivation of A. littoralis seeds was carried out at a temperature of 25 ± 3 and a
photoperiod of 16 h of light and 8 h of darkness. Then, the cloned samples were transferred
to Hoagland’s solution, and after two months, salt stress treatment was started. In order
to apply salinity stress, sodium chloride was gradually added; specifically, 100 mM salt
was added to the solution every 3 days until the final concentration reached 600 mM. The
sampling of leaf and root tissues was carried out in the time series of 0 (as a control sample),
3, 12, and 24 h after the application of salt stress. The collected samples were kept in a freezer
at −80 for the next steps. All experiments were performed in three biological replications.

2.6. RNA Extraction and cDNA Synthesis

The extraction of total RNA from leaf and root tissues was carried out using a Trizol
Kit (Threezol, Riragene). To remove genomic DNA from RNA, DNase I treatment (DNase I
RNase-free, Thermo Scientific, Waltham, MA, USA) was applied. Finally, cDNA was syn-
thesized using a RevertAid First-Strand cDNA Synthesis Kit (Thermo Scientific, Waltham,
MA, USA) based on the company’s instructions and diluted four times.

2.7. Real-Time PCR

In the present study, the levels of mRNA abundance from six AlCBL and twelve
AlCIPK genes were investigated in two tissues, roots and leaves, under salinity and normal
conditions. Genes were selected based on phylogenetic analysis. The primers of candidate
genes were designed using AlleleID [49] (Tables S1 and S2). The Maxima SYBR Green/ROX
qPCR Master Mix (Thermo Scientific) was used to evaluate the relative expression based
on the manufacturer’s instructions, with a Bio-Rad CFX96 machine. The temperature
cycle was performed in two stages according to the manufacturer’s instructions: 10 min
activation stage at 95 ◦C, 40 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min. In the current
study, three reference genes, namely AlUBQ, AlRPS3, and AlRPS3, were used for each
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tissue. The geometric mean of these genes was used to normalize the data. Finally, the
relative expression levels of each target gene were calculated using the 2−∆∆CT method [50].

3. Results
3.1. Physicochemical Properties of AlCBLs and AlCIPKs

In the present study, six AlCBL genes and twenty AlCIPK genes were identified
in the genome of A. littoralis. The evaluation of the physicochemical characteristics of
CBL proteins revealed variable molecular weight in the range of 18.70 (AlCBL4.4) to
34.67 kDa (AlCBL10), and all AlCBLs were predicted as acidophilic proteins, pI less than
5.5 (Table 1). Furthermore, all AlCBLs (except for AlCBL10 protein) had negative GRAVY
values, revealing that most AlCBLs have hydrophilic properties. In general, in terms of
physicochemical characteristics, the AlCBL10 protein was different from other members of
the AlCBL gene family, which can be more considered in molecular functional research.
According to the genes’ physicochemical characteristics, AlCIPK family members showed
more diversity than AlCBLs. Molecular weight in AlCIPKs ranged from 42.04 (AlCIPK10.6)
to 58.97 kDa (AlCIPK10.1), and pI varied from 6.21 (AlCIPK21) to 9.28 (AlCIPK10.2).

Table 1. Physicochemical properties of identified AlCBL and AlCIPK encoded proteins from A. littoralis.

Family Gene ID Gene Name Length (aa) Intron Number MW (kDa) pI GRAVY

CBL

Alg14121 AlCBL2 226 7 25.87 4.98 −0.219
Alg15558 AlCBL4.1 214 7 24.35 4.71 −0.196
Alg11525 AlCBL4.2 213 7 24.33 4.94 −0.259
Alg8494 AlCBL4.3 217 7 24.88 5.19 −0.299

Alg13204 AlCBL4. 4 166 5 18.70 4.78 −0.341
Alg5886 AlCBL10 303 8 34.67 5.28 0.133

CIPK

Alg4127 AlCIPK1.1 473 12 53.48 6.52 0.372
Alg7902 AlCIPK1.2 454 11 50.69 6.62 −0.320
Alg7566 AlCIPK3.1 442 13 50.76 7.64 −0.460

Alg12052 ALCIPK3.2 448 13 50.63 8.23 −0.407
Alg15044 AlCIPK4 427 0 46.34 8.59 −0.115
Alg5583 AlCIPK5 450 0 48.19 - 0.054

Alg12300 AlCIPK10.1 523 0 58.97 9.03 0.401
Alg9524 ALCIPK10.2 438 0 49.72 9.28 −0.260
Alg4701 AlCIPK10.3 421 0 47.98 9.03 0.400
Alg3308 AlCIPK10.4 478 0 54.66 9.13 0.514

Alg13906 AlCIPK10.5 410 1 45.99 8.93 −0.307
ALg9805 AlCIPK10.6 383 1 42.04 8.99 0.480
Alg2698 AlCIPK11 433 0 47.40 8.95 −0.151
Alg8115 AlCIPK12.1 516 0 57.36 8.64 −0.341

Alg10559 AlCIPK12.2 515 0 57.47 8.06 −0.374
Alg11449 AlCIPK12.3 490 0 54.06 8.84 −0.254
Alg11347 AlCIPK20 456 0 51.64 9.08 −0.422
Alg8711 AlCIPK21 430 13 48.54 6.21 −0.303
Alg1003 AlCIPK23 449 13 50.51 9.16 −0.371
Alg7179 AllCIPK26 448 13 50.44 8.41 −0.395

3.2. Phylogenetic Analysis of AlCBLs

AlCBL proteins, along with their orthologs in rice and Arabidopsis, were subjected to
phylogenetic analysis. The results disclosed that CBL proteins could be classified into four
main groups (Figure 1). None of the AlCBLs could be identified in group I. AlLAC4.1,
AlLAC4.2, AlLAC4.3, and AlLAC4.4 were located in group II, AlLAC10 in group III, and
AlLAC2 in group IV. In addition, AlCBLs and rice CBLs showed more similarity to each
other than Arabidopsis CBLs. Overall, our results revealed that the diversity in the CBL
family occurred after the splitting of monocots and dicots.
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likelihood (ML) method with 1000 bootstrap replications.

3.3. Phylogenetic Analysis of AlCIPKs

To determine the evolutionary origin of AlCIPKs, the phylogenetic tree of AlCIPKs
with their orthologs in Arabidopsis (26 CIPK proteins) and rice (33 CIPK proteins) was
drawn based on protein sequences (Figure 2). The results revealed that CIPKs could be
separated into four main groups. The highest number of CIPKs was found in group III,
and the lowest number was observed in group IV. Similar to AlCBLs, AlCIPKs also showed
a close relationship with rice CIPKs. In addition, it can be concluded that the expansion of
the CIPK family probably occurred after the derivation of monocots and dicots.

3.4. Gene Structure and Conserved Motifs of AlCBLs

AlCBLs with their orthologs in rice (OsCBLs) were analyzed based on their conserved
motifs and domain and gene structure (Figure 3). Ten conserved motifs were recognized
in AlCBLs and OsCBLs; of those, motifs 6 and 9 were not detected in CBLs from group II,
and motif 9 was only observed in OsCBLs from group III (Figure 3a). The calcium-binding
superfamily, namely EF-hand 7, EF-hand 5, and EF-hand 1 domains, were observed in
AlCBLs and OsCBLs, although they differed based on the location and number of domains
(Figure 3b). In addition, two copies of EF-hand 7 and EF-hand 1 domains were found in
AlCBL10 and its ortholog, OsCBL9, suggesting that AlCBL10 probably has more potential
to interact with the downstream elements of involved pathways. In addition, AlCBLs were
different based on their gene structure, and all AlCBLs had a high number of exons/introns
(Figure 3c).
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3.5. Gene Structure and Conserved Motifs of AlCIPKs

To identify conserved motifs and determine the position of these motifs in KINAS and
NAF domains, AlCIPK proteins with their orthologs in rice (OsCIPKs) were analyzed using
the MEME tool (Figure 4a). The results show that the spatial distribution of the motifs in
the investigated proteins is strongly conserved. All ten identified motifs were observed
in AlCIPK3.1, AlCIPK3.2, AlCIPK10.1, AlCIPK10.2, AlCIPK10.4, AlCIPK20, AlCIPK23,
and AlCIPK26 proteins, while motif 10 was not detectable in AlCIPK1.1, AlCIPK12.1,
AlCIPK12.2, and AlCIPK12.3. Motif 5 was not detected in AlCIPK4, motif 4 was not
detected in AlCIPK5, motif 1 was not observed in AlCIPK10.3, and motif 2 was not observed
in AlCIPK10.5. In the AlCIPK1.2 protein, motifs 10 and 3, in the AlCIPK11 protein, motifs
10 and 6, in the AlCIPK10.6 protein, motifs 3 and 8, and in the AlCIPK21 protein, motifs
10 and 4 were not present. These results indicate that the main (conserved) motifs play an
important role in the function of CIPK proteins. Moreover, two KINAS and NAF domains
were identified in AlCIPKs and OsCIPKs (Figure 4b); all the studied proteins showed one
copy of the KINAS and NAF domains. Based on gene structure analysis, 60% of AlCIPK
genes have 1 exon and no intron, about 20% of genes have 14 exons and 13 introns, about
10% of genes have 2 exons and 1 intron, about 5% of genes have 13 exons and 12 introns,
and about 5% of genes have 12 exons and 11 introns (Figure 4c).
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3.6. Promoter Analysis

In the present study, the upstream of AlCIPKs and AlCBLs was screened to identify the
cis-regulatory elements related to stress, hormone, and growth and development (Figure 5).
The most recognized elements were related to common cis-regulatory and elements with
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unknown functions (Figure 5a). In addition, putative cis-regulatory elements related to
transcription factors’ binding site, response to phytohormones, and stresses were observed
in the upstream sites of AlCIPKs and AlCBLs. The cis-regulatory elements involved in
response to ABA hormone were frequently identified in the promoter sites of AlCIPKs
and AlCBLs (Figure 5b). Moreover, the putative cis-regulatory elements related to GA,
auxin, SA, and MeJA hormones were recognized in the upstream sites of AlCIPKs, while in
AlCBLs, regulatory elements responding to GA and MeJA hormones were observed. The
cis-regulatory elements involved in responsive to abiotic stresses, including low temper-
ature, MBS, DRE, and STRE, and biotic stresses, including wound, elicitor, and defense
mechanisms, were identified in the promoter regions of AlCBLs and ALCIPKs (Figure 5c).
In addition, the binding sites of several TFs such as MYB, MYS, and WRKY were observed
in the upstream sites of AlCIPKs and AlCBLs (Figure 5d). In general, AlCIPKs were richer
than AlCBLs based on the number of stress-related cis-elements.
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1500 bp of AlCBL and AlCIPK genes was analyzed using PlantCARE.

3.7. Expression Profiles of AlCBL Genes in Response to Salinity

The expression levels of AlCBL genes were investigated under salinity in root and leaf
tissues. According to our results, AlCBL2 was not expressed under the tested conditions.
It seems that AlCBL2 is not probably induced in response to salinity stress. After 3 h of
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salinity treatment, AlCBL4.1, AlCBL4.2, and AlCBL4.4 showed an upregulation in root
tissues (Figure 6). Three AlCBL genes, namely AlCBL4.3, AlCBL4.4, and AlCBL10, were
differentially induced after 24 h; all three genes were upregulated in the leaf, while they
were downregulated in the root.
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3.8. Expression Profile of AlCIPK Genes in Response to Salinity

In the root tissue, the expression levels of AlCIPK1.2 (1.96 times), AlCIPK3.1 (4.90 times),
AlCIPK5 (2.32 times), AlCIPK11 (4.21 times), AlCIPK12.1 (2.62 times), and AlCIPK26
(4.63 times) were increased after three hours (h) of applying salt stress (Figure 7). In the leaf
tissue, at 3 h after applying salt stress, AlCIPK11 (4.10 times), AlCIPK1.2 (2.89 times), Al-
CIPK4 (1.82 times), AlCIPK12.3 (1.77 times), AlCIPK5 (1.69 times), AlCIPK10.2 (−2.50 times),
and AlCIPK10.6 (−1.91 times) were more induced. In the root tissue, after 12 h of salinity,
the AlCIPK10.2 gene (−4.46 times) just showed a sharp downregulation, while in the leaf
tissues, AlCIPK4 (3.43 times), AlCIPK10.2 (−6.39 times), AlCIPK11 (3.72 times), AlCIPK1.2
(2.00 times), AlCIPK3.1 (−1.82 times), AlCIPK5 (2.13 times), AlCIPK10.6 (−1.34 times),
AlCIPK12.1 (1.58 times), AlCIPK26 (2.00 times), and AlCIPK12.3 (2.61 times) showed a
significant modification in their expression levels after 12 hr. Interestingly, AlCIPK10.2 was
notably downregulated in both root and leaf tissues. In addition, the expression levels of
AlCIPK4 (3.47 times) and AlCIPK12.3 (3.78 times) were increased in leaf tissue after 24 h.
In total, CIPKs were more expressed in the leaf tissue, while AlCIPK12.3 was expressed
only in the leaf tissue, and AlCIPK1.1 gene expression was observed only in the root tis-
sue. AlCIPK4, AlCIPK5, AlCIPK10.2, AlCIPK10.6, AlCIPK11, and AlCIPK12.3 genes were
significantly expressed in the leaf tissue at all times of stress.
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4. Discussion

Calcium sensors such as calcineurin B-like proteins (CBLs) and CBL-interacting protein
kinases (CIPKs) not only participate in the processes of plant growth and development
but are also involved in stress responses [30]. In the present study, the available genome
of A. littoralis was used as a reference [38] and screened for the respective gene families.
Six AlCBL genes and twenty AlCIPK genes were identified. Due to the importance of
calcium-dependent signaling pathways, CBL and CIPK gene families have been studied
in various plants. Notably, 23 CBLs and 58 CIPK genes were identified from the genome
of Medicago sativa [28], 27 CIPK genes from potato [30], 9 CBLs and 30 CIPK genes from
the pecan genome [51], 10 CBLs and 26 CIPKs from Arabidopsis [17], 7 CBLs and 20 CIPK
genes from bread wheat [52], 7 CBLs and 23 CIPK genes from canola [53], 16 CBLs and
41 CIPK genes from quinoa [35], and 20 CIPK genes from sugar beet [31]. The different
number of members of this gene family suggests that they may have been subjected to
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evolutionary pressures differently in each plant [54,55]. Based on their physicochemical
properties, AlCBL proteins have similar properties, except for the AlCBL10 protein. The
proteins of the AlCIPK family showed more diversity. This result supports the hypothesis
that AlCIPKs are highly diverse due to their involvement in different pathways [56,57].
While AlCIPKs showed a high variation in terms of gene structure, AlCIPKs could be
separated into two groups. This grouping was based on their low intron number (less than
three introns) and high intron number (more than ten introns). Moreover, this feature has
also been reported in previous studies, where CIPKs have been classified into two groups
based on their intron structure [35,58]. It was stated that partial duplication has probably
affected the intron number of gene family members [59]. Moreover, it was reported that
the expression levels of genes can be affected by intron number, and genes with low intron
number could be faster induced [60]. According to phylogenetic analysis, both AlCBL
and AlCIPK families are closely related to their rice orthologs. This finding suggests that
the diversity in these gene families occurred after the derivation of monocots and dicots
species [61,62].

Halophyte plants have a high potential to grow in substrates with high salinity. There-
fore, these species are of great interest to investigate the mechanisms of tolerance to salinity.
Such mechanisms include the absorption, transport, and homeostasis of ions, osmotic
regulation, and salt removal from leaves [37,38]. Although the cultivation of these plants is
not an easy task, the germplasm of halophyte plants is considered a valuable source for
providing genes resistant to environmental conditions, for the implementation of plant-
breeding programs [63]. In the current study, the expression profiles of AlCBLs and AlCIPKs
were investigated under salt stresses in the roots and leaves of A. littoralis. AlCBLs and
AlCIPKs showed tissue-specific expression patterns. For instance, AlCIPK mRNAs were
more in leaves than in roots, while AlCBL4.3, AlCBL4.4, and AlCBL10 showed upregulation
in roots and downregulation in shoots. This pattern might be related to the presence of
as-1-specific motifs in the promoter region of AlCBL genes. Each of the AlCBL4.3, AlCBL4.1,
and AlCBL2 genes had two as-1 motifs, while six as-1 motifs were observed in AlCBL4.2,
three as-1 motifs were observed in AlCBL4.4, and one as-1 motif was observed in AlCBL10
promoter region.

The results revealed that the co-expression pattern of AlCBL with AlCIPK was tissue-
specific, and different co-expressions were observed in two tissues of leaves and roots.
Based on the expression pattern, AlCIPK3.1–AlCBL4.1 and AlCIPK1.2–AlCBL4.4 genes
can be potentially co-expressed in the root tissue, while in the leaf tissue, the AlCBL10
gene can correlate with AlCIPK5, AlCIPK12.3 and AlCIPK26 genes. A positive correla-
tion was reported between CBLs and CIPKs in response to stresses, such as salinity [64],
drought [65], and disease [58]. In Arabidopsis, the interaction between CBL4 (called SOS3)
and CIPK24 (called SOS2) could active the kinases and +/H+ antiporters called SOS1 and
vacuolar H+-ATPase to increase stress tolerance [53,66,67]. Subsequent research in Arabidop-
sis showed that the AtCBL10 gene also interacts with AtCIPK24. Thus, the CBL10–CIPK24
complex interacts with vacuoles to protect the shoot from damage caused by salt stress [67].
This result suggests that calcium sensors may exhibit very different functions despite high
sequence similarity or close evolutionary relationships.

5. Conclusions

This review is the first comprehensive study of the family of calcium sensors with the
aim of clarifying the evolution, expression patterns, and possible functions of the genes
of this superfamily in A. littoralis in response to salinity stress. These findings provide
information to predict the function of calcium sensor genes in plant tolerance to salinity
stress. Additional studies on the expression of AlCBL and AlCIPK family genes under
different abiotic stresses in future research can be useful in understanding the mechanism
of gene expression adjustments related to the SOS pathway. The AlCIPK genes reported in
this research, while providing preliminary information, provide a basis for identifying the
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functions and mechanisms of the stress response, especially the responses related to the
CBL/CIPK pathway in the A. littoralis plant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030753/s1, Table S1: List of primers of AlCBL genes used in
qPCR analysis; Table S2: List of primers of AlCIPK genes used in qPCR analysis.
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