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Abstract: According to the established classical view, satellite DNAs are defined as abundant non-

coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. 

Advances in sequencing methodologies and development of specialized bioinformatics tools 

enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome 

and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. 

Supported by various non-model species included in recent studies, the pa�erns of satellite DNAs 

and satellitomes as a whole showed much more diversity and complexity than initially thought. 

Differences are not only in number and abundance of satellite DNAs but also in their distribution 

across the genome, array length, interspersion pa�erns, association with transposable elements, 

localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic 

organizational features of satellite DNAs and satellitomes across different animal and plant species 

in order to summarize organizational forms and evolutionary processes that may lead to 

satellitomes’ diversity and revisit some basic notions regarding repetitive DNA landscapes in 

genomes. 
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1. Introduction 

Eukaryotic genomes are highly enriched with non-protein-coding repetitive 

sequences, which form the largest but still the least understood component of genomic 

DNA. Two main classes have been traditionally considered, repetitive sequences 

organized as tandem repeats and those interspersed throughout the genome [1,2]. 

Because of difficulties in sequencing and assembly, they are often known as the “dark 

ma�er of genomes”, which, in outputs of genome projects, became represented more 

accurately only after the advent of long-range sequencing and introduction of specialized 

bioinformatics tools [3–6]. 

Satellite DNA (SatDNA) sequences, in the traditional view, appear as megabase-long 

arrays of many thousands of highly similar head-to-tail tandemly repeated units 

(monomers) localized in heterochromatic chromosomal segments [7–10]. They were 

discovered in experiments of density gradient centrifugation in which an accompanying 

“satellite” band appeared due to differences in nucleotide composition with regard to the 

bulk genomic DNA [11,12]. This generic name continued to be used, irrespective of the 

method of detection or characteristics of sequences repeated in tandem [8,10]. The other 

class is made up of interspersed repeats formed as a result of transposition processes, 

introducing transposable elements (TEs) into new locations, changing, in this process, 

genome structure, adaptability and evolution [13–16]. Both satDNAs and TEs are 

considered crucial builders of every eukaryotic genome and drivers of evolution [1,2,17–

20].  
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It is, thus, more and more evident that a complete understanding of every eukaryotic 

genome is possible with only a detailed insight into its repetitive fraction. This is not an 

easy task, and, in general, we are still far from full comprehension regarding repetitive 

DNA genomics and their diversity (for example, [21]). Nevertheless, the burst of 

methodological approaches in recent years significantly accelerated the accumulation of 

previously inaccessible data, broadened the number of a�ended species and detected 

repetitive DNA families, changing the views and established concepts (reviewed in 

[6,8,10,18,22,23]). The result are satellitomes and repeatomes, defined as collections of all 

satDNAs and repetitive DNAs, respectively [24,25]. Furthermore, the third-generation 

sequencing pipelines produce several hundred kb-long high-quality reads, including 

satDNAs [4,26]. While short-read-based approaches are limited in assessing the exact 

arrangement of repeats in the genome, the later methodology forwarded chromosome-

level assemblies and enabled detailed insights into large repetitive regions (for example, 

[27–34]).  

A growing number of studied species and data accumulated on the genomics scale 

emphasized extreme variations in the general architecture of satDNAs, not only in the 

number and abundance of families but also in their genomic distribution, 

heterochromatin/euchromatin localization, array length and association with TEs. 

Differences indicate conceptual specificities in repetitive DNA organization, in particular, 

taxonomic groups and the need to expand the number of model systems [10]. In the 

present review, we compare data in the light of different organizational forms of satDNAs 

and repetitive DNAs, in general, in an a�empt to summarize conceptual differences in 

repetitive DNA landscapes and evolutionary processes that may cause their diversity. 

2. Functional Importance of Satellite DNAs and Partnership with TEs  

Data accumulated in the last few decades significantly changed the classical notion 

about satDNA sequences as a non-functional ballast deposited in heterochromatin to 

significant contributors in defining chromosomal architecture, function and evolution 

[18,23,35–37]. They are the most frequent DNA components in centromeres and contribute 

to the essential process of assembly of centromeric chromatin [33,38,39]. SatDNAs are 

involved in meiotic drive and segregation of chromosomes [40,41], and their evolution can 

trigger reproductive isolation and speciation [42]. Pericentromeric satDNAs also 

contribute to higher-level organization of nucleus and in preserving genome integrity [43]. 

Not only as a structural genomic component but also long-time neglected transcription of 

satDNAs showed its functional importance, such as in the formation and maintenance of 

heterochromatin itself, in defining centromere identity and preserving genome stability 

(reviewed in [5,37,44]). Misregulation of satDNA expression can lead to various 

abnormalities in the genomic architecture, chromosome segregation and gametogenesis. 

Changes in copy number of satDNAs and their transcription rates may be associated with 

stress, environmental adaptations and pathological states, such as oncogenic 

transformation [18,45–51].  

An increasing number of reports show that satDNAs and TEs are tightly connected 

in many different ways, and TEs, in general, were proposed to facilitate the dispersal of 

satDNA repeats (reviewed in [17,20,52,53]). Tandemization of TEs or their parts can be 

accomplished through different mechanisms, resulting in arrays of repeats characteristic 

for a satDNA [54]. Of particular interest are Helitrons and related DNA transposons, 

widespread in plants and animals, which use rolling-circle replication in their spread 

[55,56]. These elements can incorporate variable numbers of tandem repeats (usually up 

to 10) as their central structural components that can be found also as standalone, as 

typical satDNA arrays [57–62]. Rolling-circle replication, therefore, stands out as an 

efficient way to distribute and amplify tandem repeats throughout the genome [63,64]. 

Scalvenzi and Pollet [65] proposed a model of possible directions in the life of the TE-

incorporated tandem repeats. They suggested that satDNA sequences can be captured by 

a TE, followed by amplification of tandem repeats within. The transposition of elements 
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containing tandem repeats continues; however, as the number of repeats within the TE is 

increasing, the transposition rate of the TE is decreasing. In parallel, with the growing 

number of monomers and the expansion of tandem repeats, recombination rates start to 

increase. Consequently, TE-incorporated tandem repeats can give rise to the classical 

satDNA arrays, which are further spread and maintained by unequal crossover and other 

mechanisms of nonreciprocal transfer [8,9,66].  

The number of tandemly repeated monomers within TEs is highly variable and, for 

example, can reach ~90 in Helitrons of the Pacific oyster Crassostrea gigas [62]. It must be 

noted that such hybrid structures, when abundant, can be serious obstacles in 

classifications of repetitive sequences and the cause of a large fraction of unclassified or 

misclassified repeats in screening genome project outputs, or in analyses based on short 

NGS reads [67]. Such classification problems could be resolved by manual adjustments, 

assignments on segments obtained by third-generation sequencing, and by constant 

improvements in bioinformatics tools and databases (for example, [4,6]). 

3. Diversity, Homogeneity and Evolution of satDNAs 

SatDNAs represent an extremely diverse group of sequences, as probably almost any 

genomic segment can be amplified into arrays of tandem repeats. They differ in nucleotide 

sequence, AT content, DNA structural features (such as sequence-induced DNA curvature 

and dyad structures), monomer length and complexity, copy number, array length, 

epigenetic modifications, chromatin state and chromosomal distribution. The various 

features of satDNA monomer sequences, their epigenetic modifications and interactions 

with protein components in chromatin have been extensively reviewed [8,23,66,68].  

Two major common characteristics of sequences repeated in tandem are low 

sequence variability in repeat units and extreme variability in copy numbers [7–

9,22,23,66,69]. According to the concept of concerted evolution, monomers in arrays of 

satDNA evolve together, and low sequence variability is maintained among them. This is 

because mutations occurring in monomers are homogenized (spread or eliminated) 

within arrays and in the genome by diverse mechanisms of non-reciprocal sequence 

exchanges (unequal crossover, gene conversion, mechanisms related to transposition and 

similar) and fixed among reproductively linked individuals [70–73]. The process, known 

as molecular drive, is assumed to be stochastic in nature [74–76]. Consequently, while 

homogeneity of satDNA is preserved within species, its DNA sequence in separated 

groups of individuals should diverge rapidly, as different mutations are homogenized 

and fixed in monomers of each group, forming species-specific variants. Depending on 

the rate, such gradual accumulation of divergences in satDNA sequences can mirror 

phylogeny at different levels [9,77–79].  

Another model proposes that mutations accumulate among monomers of satDNA, 

slowing down and ultimately disabling mechanisms of sequence homogenization, 

leading to divergent (non-concerted) evolution until the deterioration of arrays as 

repetitive structures. This assumption has been integrated into the life cycle model of 

satDNA evolution [80], proposing also that in the same time, some divergent monomer 

(or an unrelated sequence) can be amplified and form a novel (sub)family of highly 

homogeneous tandem repeats. In support, computational models and experimental 

analyses revealed that homogenization mechanisms are less efficient at array ends, and 

that diverged monomers at array ends can be a source of new satDNAs [70,81,82]. Recent 

high-throughput comparative analysis of grasshopper satellitomes is in agreement with 

the idea about cycles of occasional amplification of a monomer variant into new 

homogeneous satDNA arrays, followed by an increase in sequence variability among 

monomers. According to this concept, younger satDNAs are more homogeneous, 

showing leptokurtic distribution of monomer sequence variability compared to the 

consensus sequence [83].  
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4. Genomic Content or How Many satDNAs Are in the Genome 

Even early studies anticipated that more than one or even many satDNAs, extremely 

different in copy number, usually exist in the genome. Some satDNAs can build 30% or 

even more genomic DNA while, in the same time, the genome can hold far less abundant 

tandem repeats, even <0.1%, easily overlooked with early methodologies [8,66,84]. The 

same mechanisms of non-reciprocal exchanges leading to concerted evolution are 

responsible for extensive copy number alterations in arrays of sequences repeated in 

tandem, abruptly changing their genomic content. Consequently, in the process of 

speciation, one highly abundant satDNA can contract to low copies, while some low-copy 

satDNA can expand and become a major satDNA. A set of satDNAs inherited from a 

common ancestor is the basis of the library model [85]. According to this scenario, copy-

number changes alone can be sufficient to explain the rapid evolution of the satDNA 

landscape and replacement of most abundant satDNA(s) in some species. In this regard, 

the basic question to be addressed is to characterize the entire satellitome, i.e., to answer 

how many satDNAs are in the genome and what are their basic features. 

Although different approaches exist [6], the recent widely used strategy in detecting 

the entirety of repetitive DNAs is by clustering next-generation sequencing (NGS) short 

reads obtained at low genome coverage in order to detect only sequences represented in 

multiple copies, without the need for the genome assembly. Repetitive sequences are 

further classified based on graphical constructs, which reveal characteristic circular-

shaped forms for clusters of sequences repeated in tandem, classified as satDNAs [24,86–

90]. The above-mentioned approaches are used to define satellitomes and repeatomes in 

an exponentially growing number of studies, oriented to plant and animal species (Table 

1), making an extremely valuable contribution towards the comprehension of the 

repetitive genome landscapes and their evolution. In experimental verification of the 

obtained results, fluorescence in situ hybridization (FISH) of prophase/metaphase 

chromosomes and/or chromatin fibers is a valuable method of choice to explore the 

distribution of satDNA repeats that are sufficiently abundant and/or clustered above the 

detection threshold (for example, [91,92]). Of growing relevance, in particular, is the 

availability to study genomic distribution of satDNAs in silico on advanced genome 

assemblies (for example, in [62]).  

Table 1. Examples of diversity in number and genome abundances of satDNAs across a spectrum 

of animal and plant species. 

species 
Number of 

satDNAs 

% of the 

Genome 

Most Abundant 

satDNA (%) 
Reference 

animals 

Abracris flavolineata 53 4.52 1.73 [93] 

Astyanax lacustris 33 - 0.001 [94] 

Astyanax paranae 45 8.39 6.30 [95] 

Characidium gomesi 59 3.98 0.58 [96] 

Choloepus didactylus 2 13.62 13 [97] 

Choloepus hoffmanni 2 2.83 2.6 [97] 

Chorthippus parallelus 110 - 1 [98] 

Colossoma macropomum 46 <1 0.013 [99] 

Crassostrea gigas 52 6.33 1.29 [62] 

Cydalima perspectalis 1 0.14 0.14 [92] 

Diatraea postlineella 2 0.06 0.04 [92] 

Diatraea saccharalis 14 0.215 0.057 [100] 

Eneoptera surinamensis 45 14 1.41 [101] 

Eumigus monticola 27 1.91 0.55 [102] 

Gryllus assimilis 13 4 1.35 [103] 
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Hippodamia variegata 30 14.93 9.37 [104] 

Locusta migratoria 62 2.39 0.98 [24] 

Megaleporinus elongatus 140 ~5 0.48 [105] 

Megaleporinus macrocephalus 164 13.47 2.78 [106] 

Melipona quadrifasciata 13 2.83 0.94 [107] 

Melipona scutellaris 13 38.4 38.2 [107] 

Meloidogyne arenaria 81 5.07 0.31 [108] 

Meloidogyne floridensis 38 1.55 0.14 [108] 

Meloidogyne incognita 56 3.52 0.24 [108] 

Meloidogyne javanica 73 4.27 0.21 [108] 

Oedaleus decorus 58 2.53 0.62 [83] 

Ostrinia nubilalis 4 0.27 0.15 [92] 

Piaractus mesopotamicus 30 <1 0.009 [99] 

Pontastacus leptodactylus 258 27.57 10.91 [109] 

Proceratophrys boiei 28 15.87 8.0 [110] 

Psalidodon bockmanni 50 - 0.016 [94] 

Psalidodon fasciatus 57 - 0.091 [94] 

Pyrgomorpha conica  76 9.4 5.66 [111] 

Rhammatocerus brasiliensis 12 1.49 0.76 [112] 

Rhodnius prolixus  39 8 2.13 [113] 

Rhynchophorus ferrugineus 112 25 20.4 [114] 

Ronderosia bergii 53 2.44 0.43 [115] 

Schistocerca rubiginosa 9 2.17 0.73 [112] 

Spodoptera frugiperda 7 0.65 0.23 [116] 

Talpa aquitania 15 1.24 0.55 [117] 

Triatoma delpontei 160 18.15 53.92 [118] 

Triatoma infestans 42 25 10.04 [119] 

Trigona hyalinata 8 16.56 13.77 [120] 

Vandiemenella viatica 129 - 1.48 [121] 

Xyleus discoideus angulatus 18 2.32 0.62 [112] 

plants 

Aegilops crassa 19 - 0.95 [122] 

Deschampsia antarctica 20 2.07 0.21 [123] 

Deschampsia cespitosa 27 2.85 0.69 [123] 

Deschampsia sukatschewii 21 1.61 0.22 [123] 

Larix decidua 5 3.2 1.28 [124] 

Larix kaempferi 4 2.0 0.81 [124] 

Olea europaea cuspidata 11 50.43 22.95 [125] 

Olea europaea europaea 11 23.89 7.89 [125] 

Olea europaea guanchica 11 23.35 9.23 [125] 

Olea exasperata 11 26.43 15.74 [125] 

Olea paniculata 11 1.93 0.79 [125] 

Passiflora cincinnata 2 - 0.10 [126] 

Passiflora edulis 2 0.22 0.16 [127] 

Passiflora organensis 37 - 3.50 [126] 

Passiflora quadrangularis 6 - 0.13 [126] 

Thinopyrum bessarabicum 12 - 1.39 [122] 

Vandenboschia speciosa 11 0.43 0.08 [128] 

Vicia faba 23 - 2.72 [129] 
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The total number of satDNAs in the genome, the satellitome, varies significantly 

among species (Table 1). For example, the satellitome characterization disclosed only one 

satDNA in the moth Cydalima perspectalis, with an abundance of 0.14% [92]. On the other 

side, among grasshopper insects, 129 satDNAs were detected in the morabine 

grasshopper [121], while 62 are present in the migratory locust [24]. The ladybird beetle 

Hippodamia variegata (Coleoptera, Coccinellidae) hosts 30 satDNAs that build 15% of its 

genome [104]. The kissing bug Rhodnius prolixus, the principal vector of the Chagas 

disease, hosts 39 satDNAs that build 8% of the genome [113]. In vertebrates, 164 satDNAs 

were detected in the fish Megaleporinus microcephalus, the most abundant constituting 

2.78% of the genome [106], while in the fish Astyanax lacustris, none of the 33 detected 

satDNAs exceeded 0.002% [94]. The same NGS-based clustering approach revealed the 

largest number of satDNAs, 258, which compose ~28% of the genome of the freshwater 

crab Pontastacus leptodactylus, although 240 out of them were further classified as 

minisatellites according to their short repeat unit length [109]. The Triatoma delpontei 

satellitome includes 160 satellite DNA families, which, together, constitute significant 

parts of the insect genome (more than 50%), with the most abundant satDNAs’ 

contribution being ~18% [118]. The most extensively studied animal genus from the 

satellitome aspect is Drosophila, where 58 species have been inspected and numerous 

satDNAs characterized (Table 2, [130,131]).  

Table 2. Genome contributions of satDNAs detected in the species of the Drosophila genus. 

Species 
Number of 

satDNAs 
% of the Genome 

Most Abundant 

satDNA (%) 
Reference 

Drosophila affinis 4 2.07 0.911 

[130] 

Drosophila albomicans  6 38.8 36.946 

Drosophila americana 8 19.75 9.501 

Drosophila ananassae 6 3.68 1.41 

Drosophila arizonae 2 0.54 0.348 

Drosophila biarmipes 7 1.27 0.31 

Drosophila bipectinata 7 4.72 1.31 

Drosophila burlai 5 3.12 1.86 

Drosophila busckii 5 1.1 0.503 

Drosophila buzzatii 2 1.9 1.71 

Drosophila elegans 6 4.01 1.39 

Drosophila erecta 3 1.62 1.138 

Drosophila eugracilis 3 10.89 5.691 

Drosophila ficusphila 2 1.76 1.682 

Drosophila hydei 5 2.16 0.733 

Drosophila kikkawai 3 4.85 2.493 

Drosophila leontia 6 1.81 1.34 

Drosophila malerkotliana 6 6.04 2.40 

Drosophila mauritiana 7 4.86 3.58 

Drosophila melanogaster 5 6.6 1.75 

Drosophila mojavensis baja 2 1.76 1.06 

Drosophila mojavensis wrigley 2 2.49 1.63 

Drosophila montana 6 27.41 19.70 

Drosophila nasuta  7 33.93 32.68 

Drosophila novamexicana 7 6.82 3.03 

Drosophila orena 3 12.31 10.40 

Drosophila persimilis 4 5.87 5.20 

Drosophila pseudoobscura 4 5.48 1.93 
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Drosophila rhopaloa 3 4.67 4.34 

Drosophila santomea 7 2.7 1.82 

Drosophila sechellia 7 7.72 6.04 

Drosophila seriema 4 2.9 1.93 

Drosophila simulans 8 4.53 3.18 

Drosophila subobscura 6 1.4 0.72 

Drosophila takahashii 5 3.95 0.98 

Drosophila teissieri 4 2.09 0.57 

Drosophila virilis 7 21.63 15.9 

Drosophila yakuba 5 2.83 1.18 

Drosophila asahinai 3 6.87 6.30 

[131] 

Drosophila auraria 2 4.72 4.69 

Drosophila bakoue 9 1.88 0.36 

Drosophila birchii 8 5.01 3.23 

Drosophila bocki 7 1.89 0.41 

Drosophila bunnanda 14 15.69 5.98 

Drosophila burlai 7 7.67 3.12 

Drosophila jambulina 6 12.24 5.87 

Drosophila kanapiae 4 1.98 0.78 

Drosophila lacteicornis 3 7.20 6.62 

Drosophila leontia 4 1.99 0.90 

Drosophila mayri 13 17.77 9.54 

Drosophila nikananu 3 8.33 2.80 

Drosophila pectinifera 10 21.65 15.56 

Drosophila punjabiensis 6 2.12 0.94 

Drosophila rufa 3 5.78 5.46 

Drosophila seguyi 12 10.73 4.58 

Drosophila serrata 6 14.50 10.46 

Drosophila tani 4 5.99 4.57 

Drosophila triauraria 3 5.70 5.43 

Drosophila truncata 5 8.92 4.17 

Drosophila vulcana 3 5.97 5.59 

Drosophila watanabei 3 1.40 0.74 

There is also a great variety of tandem repeats present in plant species. Among them, 

91 distinct repeat units grouped as 11 satDNA families compose about 24% of the olive 

genome [125]. About 25 satDNAs were detected in the satellitomes of the three grass 

species of the genus Deschampsia [123]. In the field bean Vicia faba, the NGS sequences and 

graph-based classification revealed 23 novel satDNAs; however, they represent as li�le as 

0.008–2.7% of the genome [129]. Similarly, the repeatome as a whole builds about 70% of 

the common oat genome, being mostly composed of TEs (mostly retroelements), while 

satDNAs are only poorly presented, building only about 2% of genomic DNA [132].  

Not only a substantial number of (even low-copy) repetitive sequences can be 

detected by satellitome analysis, as exampled by 164 satDNAs of Megaleporinus 

macrocephalus [106], but such studies can also help in elucidating evolutionary relations 

among repetitive sequences in related species [94,119,121,124,126,133–139]. The use of 

NGS data has also been employed for the studies of evolution of B and sex chromosomes, 

e.g., to characterize the composition and putative ancestry of B chromosomes in 

grasshopper species Rhammatocerus brasiliensis, Schistocerca rubiginosa, Xyleus discoideus 

angulatus, Abracris flavolineata, Eumigus monticola [93,102,112] or in characid fish 

Characidium gomesi [96]. An understanding of karyotype diversification, genome 
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architecture and sex chromosome evolution was forwarded, for example, in Crambidae 

moths [92], Triportheidae fishes [140], grasshopper Ronderosia bergii [115], sugarcane borer 

Diatraea saccharalis [100], etc. Further questions can be addressed in viewing the 

satellitome in relation to the repeatome as a whole, especially in the context of the 

hetero/euchromatin content and distribution. 

Even this brief overview shows that the two simple characteristics, number of 

satDNAs in the satellitome and the total genomic fraction they occupy, are independent 

and highly variable, depending on various parameters establishing principles that 

determine organizational pa�erns of repetitive DNAs in the specific species or the 

taxonomic group.  

5. Comparative Satellitome Analysis: Satellitome and the Library Hypothesis 

The satDNA library hypothesis [85] has been proven in the past in many plant and 

animal species using experimental approaches, mostly based on PCR detection of the low-

copy representatives of the highly abundant satDNA from one species in the related taxa 

[141–146], etc. Novel technologies enable in-depth inspection of this hypothesis using in 

silico analyses on sets of related species. For example, the analysis of 35 satDNAs in three 

species of fish from the genus Astyanax (A. paranae, A. fasciatus and A. bockmanni) revealed 

that most of the satDNAs are shared between them, and that they present very similar 

pa�erns of chromosomal distribution [95]. Combined low-coverage sequencing and FISH 

mapping showed that three satDNA families, shared by 10 grasshopper species of the 

genus Schistocerca as part of the satDNA library, follow species phylogeny both in copy 

number and sequence divergences [147]. In continuation, Pita et al. [119] compared the 

repetitive genome fraction between Andean and non-Andean lineages of Triatoma 

infestans, characterizing 42 satellite DNA families, 34 present in both lineages, conserved 

in DNA sequences, but with different amounts present in each lineage. According to the 

satelitome composition and pa�erns of chromosomal distribution of satDNAs, Amosova 

et al. [123] confirmed that genomes of the grass Deschampsia sukatschewii and D. cespitosa 

were more closely related in comparison to D. antarctica. Similarly, satellitome analysis on 

Aquitanian mole Talpa aquitania and further extension on related species showed that most 

of the satDNA families are present in the genomes of the other Talpa species analyzed, 

while only some in the genomes of other more distant Talpidae [117]. Following that, 

comparative analysis of morabine grasshopper genomes revealed that 102 out of 129 

satDNA families were shared among the four inspected chromosomal races of the species 

Vandiemenella viatica, and 50 of the shared satDNA families underwent differential 

proliferation since the recent diversification of the V. viatica species complex [121]. In 

continuation, comparative analysis of the satellitome of the grasshoppers from the 

Oedipodinae subfamily (Locusta migratoria and Oedaleus decorus) showed that the 41 

satDNA families (20 in L. migratoria and 21 in O. decorus) belong to 12 ortholog groups and 

represent the ancestral library. The authors speculate that the remaining 84 families (36 of 

L. migratoria and 37 of O. decorus) could represent either remnant satDNAs conserved in 

only one species or satDNAs arisen de novo during the separate evolution of these species 

[83]. Following that, evolution of the satellitome following interspecies hybridization of 

the holocentric root-knot nematodes Meloidogyne spp. suggests that the formation of each 

allopolyploid is accompanied by the addition of a new set of satDNAs, with 39 satDNAs 

being common for all analyzed species and representing the basic set, characteristic for 

the 2n genome [108]. Anjos et al. [148] noticed intergenomic variation in the abundance of 

the satDNA shared between the two Mahanarva holocentric insects. This also suggests that 

the variation in the satDNA amount between species is generally not influenced by the 

chromosomal architecture (monocentric or holocentric), as will be discussed below. 

Another example shows that centromere-specific satDNA of the holocentric plant genus 

Rhynchospora has species-specific marks that follow phylogeny in agreement with the 

predictions of concerted evolution, remaining in the same time among them as 

components in the library of tandem repeats [149].  
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Aforementioned examples, and many others, show that comparative analysis of 

satellitomes is opening novel prospects and inputs into satDNA library research. 

However, it has to be taken into account that the library can be constituted by a subset of 

sequences detected in the satellitomes, as a certain satellitome may also incorporate a 

varying number of additional, species-specific satDNAs. 

6. SatDNA Defying Predictions of the Library Model and the Concerted Evolution  

The aforementioned high-throughput studies of repetitive sequences, at the same 

time, enable re-evaluation of already existing ideas about satDNA evolution. Belyayev et 

al. [150] pointed out that the satDNA library hypothesis does not address several 

important questions: how novel satDNAs emerge, how libraries form and survive 

speciation-related repeatome purification and subsequent concerted evolution and the 

phenomena of the periodic appearance of novel satDNAs from TEs. In this interpretation, 

cases of long-term conservation of satellitome elements during evolution would be in 

accordance with the satDNA library hypothesis, while cases of elimination and/or the 

emergence of new satDNAs would oppose it [150].  

In addition, satDNAs were found not to be limited only to closely related species, 

highlighting the question of their long-term DNA sequence preservation, and of 

persistence of each of them and of the whole sets in the evolutionary distant taxa (e.g., 

[151–153]). On the one hand, this would potentially broaden the library concept to 

distantly related species and presume long-term preservation of widespread satDNA 

sequences derived from the common ancestor, while, on the other hand, the close 

connection of some of these sequences with TEs affects the conclusions related to their 

ancestry based only on vertical inheritance and opens the possibility of their horizontal 

transfer [10]. Such TE-derived or TE-propagated satDNA families may appear in the 

satellitome in a great number of highly similar copies, creating an illusion of family 

conservation and/or (artificially) increase the similarity among satellitomes of different 

species. As such data refute the library hypothesis, Belyayev et al. [150] suggested that it 

would be more suitable to consider “the library of the mechanisms of origin” instead of 

“the common satDNA library”. 

Concerning the long-term preservation of satDNA sequences, monomers of some 

satDNAs remain species-indistinctive in the phylogenetic analysis, even after tens or 

hundreds of My after speciation, as shown in many groups of plant and animal species 

(for example [103,145,147,151–157]). The lack of homogenized, species-diagnostic satDNA 

monomer changes can also be interpreted as an effect of non-concerted evolution, in 

which sequence variability in satDNA monomers accumulates but mutations do not 

spread among them because homogenization/fixation are too slow or disabled, as in 

organisms that reproduce parthenogenetically [158,159]. Our understanding of the causes 

of this unexpected sequence preservation is still only partial. According to another 

hypothesis, entire satDNA monomers or their segments can evolve under constraints, 

thus preserving the once established variability profile of satDNA monomers 

[9,23,33,66,68,78]. Eventually, as mentioned above, it cannot be completely excluded that 

the effect of satDNAs preserved among distantly related species is a consequence of 

horizontal transfer (also see in [10,152]).  

Studying satDNAs in plants of the genus Chenopodium showed that non-concerted 

evolution may result in transformation of the entire satellitome by producing the novel 

sets of satDNAs in the conversion cycles, thus enabling genomes in which sequence 

homogenization is suppressed to become a significant source of diversity [160], as 

anticipated also by Nijman and Lenstra [80]. On the contrary, Smalec et al. [161] reported 

a satDNA, which maintains conserved sequence and homogenized tandem repeat 

structure, which results in common, abundant and large blocks of chromatin, homologous 

among chromosomes within one species and among diverged species, defying, in this 

way, the molecular drive. They suggest that homogenous heterochromatin may be 

evolutionarily beneficial in this case by allowing for both intrachromosomal 
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rearrangements and retention of polymorphic variations, contributing to the extremely 

wide range of ecological adaptations observed for rodents of the Peromyscus genus.  

Thus, depending on sequence dynamics in a particular organism or a group of 

organisms, quite different evolutionary scenarios may occur (Figure 1), ultimately 

defining the overall satDNA landscape. 

 

Figure 1. Schematic presentation of different mechanisms and major principles 

governing/influencing satDNA evolution. 

7. (Slow but Steady) Heterochromatin Mining 

Constitutive heterochromatin, as initially defined by Hei� [162], is a chromatin form 

that remains highly condensed throughout the cell cycle. It is cytologically visible as dense 

bands on pericentric, telomeric and less frequently on intercalary positions of 

chromosomes or as chromocenters in interphase nuclei. The DNA sequences dominantly 

present in constitutive heterochromatin are repetitive, mostly satDNAs. Complex 

interactions of satDNAs and their transcripts with specific protein components, in 

combination with unique epigenetic modifications, define specificities in heterochromatin 

structure and function, such as tightly packed nucleosomes, generally repressive effects 

on gene expression or the role in maintening the cohesion of sister chromatids 

[23,163,164]. 

Despite its functional importance, the content and chromosomal localization of 

constitutive heterochromatin are highly variable among species, some being 

heterochromatin-rich and some heterochromatin-poor. For instance, in humans and 

Drosophila, heterochromatin builds 45% and 30% of chromosomes, respectively, while it 

can form 80% of chromosomes in some plants [16]. The Pacific oyster Crassostrea gigas has 

extremely scarce heterochromatin, notable only on two pairs of chromosomes, in the 

pericentromeric region of one pair and subtelomeric of another [165]. On the other hand, 
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in the oyster Crassostrea angulata, with the possibility of cross-hybridization with C. gigas, 

heterochromatin is abundant and localized at pericentromeric, telomeric and intercalary 

positions on most of the chromosomes [166]. Similarly, two congeneric species of Melipona 

bees differ significantly in abundance and distribution of heterochromatin on their 

chromosomes, the difference being, in this case, assigned mostly to the expansion of one 

satDNA and one TE of those shared among species [107]. At the individual level, 

heteromorphism of heterochromatin is observed, for instance, as diverse numbers and 

sizes of C-bands in meiotic bivalents of Heteropteran insects of the genus Holhymenia 

[91,167].  

Since the introduction of FISH protocols [168], this methodology has been widely 

used to map DNA sequences on chromosomes. As the signal of highly abundant satDNAs 

is often strong and coincident with heterochromatic chromosomal segments, it is not 

surprising that satDNAs are traditionally considered as sequences inevitably associated 

with heterochromatin, organized as Mb-long arrays of thousands of monomers [7,169]. 

However, detailed studies of satDNA organization pa�erns in different species showed 

that this definition is too narrow (reviewed in [8,10]). For example, satDNAs were 

detected in euchromatin of Drosophila chromosomes, where they are present as dispersed 

short arrays of repeats highly abundant in the heterochromatin of the same chromosome 

[170,171]. Mapping of satDNAs identified in the satellitome of the grasshopper Locusta 

migratoria revealed arrays of monomers dispersed along the chromosomes as clusters 

large enough to be detected by FISH but also as short segments detectable only by 

bioinformatics analyses of the sequenced genomic DNA. The authors concluded that 

every satDNA exists in both forms, leading to the suggestion that all genomic sequences 

repeated in tandem should be considered as satDNAs, regardless of the monomer size 

and array length, chromatin state or chromosomal localization, as they all follow similar 

rules [24].  

In addition to “classical” satDNAs, heterochromatin often accumulates diverse TEs. 

Some TEs are carrying incorporated tandem repeats, and satDNA arrays can be 

interrupted with non-repetitive DNA sequences including genes, all in various 

proportions and interspersion pa�erns, depending on the species [5,8,16,39]. For example, 

multiple insertions of TEs into satDNA arrays can be found [172], satDNA repeats can be 

formed by tandem amplification of a TE or any of its parts [173–177] or by expansion from 

short internal arrays found within TEs [30,178,179]. SatDNAs in heterochromatin can also 

intermingle, such as two satDNAs in large domains of pericentromeric heterochromatin 

of the beetle Tribolium madens, that build about 30% of the genome but are arranged in 

relatively short (up to 70 kb) alternating arrays [180]. By conventional sequencing and 

mapping, it is particularly difficult to determine the detailed composition, interruption 

pa�erns and overall length of long continuous satDNA arrays, because of the prior 

discussed difficulties in sequencing and assembly. In recent years, the introduction of 

third-generation sequencing opened the possibility to generate ultra-long reads of 

genomic DNA, including long segments built of repetitive sequences. Supported by 

adequate bioinformatics tools, this methodology is a key step forward in deciphering the 

details of repetitive DNA composition in the previously hardly accessible “dark ma�er of 

the genome” [4,6,26]. In some cases, heterochromatin, indeed, dominates Mb-long, only 

occasionally interrupted, arrays of satDNAs, for instance, in humans [29] or in plants [30]. 

On the contrary, frequent interruption of satDNA arrays by retrotransposon element has 

been documented in the heterochromatin of end-to-end assembled maize chromosomes 

[181]. Long-read sequencing technologies supported by assembly-free methods revealed, 

in the grass pea Lathyrus sativus, only 2 out of 11 major satDNAs in the typical form of 

long arrays associated with centromeric chromatin or subtelomeric heterochromatin, 

while the rest represent amplified tandem repeats of a retrotransposon origin 

accumulated in the (peri)centromeric regions [30]. Further on, a detailed view on the 

organization pa�ern of DNA sequences in dispersed heterochromatic bands of the 

holocentric plant Cuscuta europea showed a complex arrangement of up to 10 kb-long 
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arrays of a highly amplified satDNA and other repetitive elements [31]. In Chorthippus 

parallelus, the high number of tandem repeats with sequence homology to TEs exist, and 

the authors suggest that some of them might actually be tandem repeat-carrying TEs and 

that their interspersed distribution could be the reason for the inability for visualization 

by FISH [98]. Short arrays of satellite repeats are characteristic for the oyster Crassostrea 

gigas, dominantly located within the TEs of the Helitron superfamily [61]. In addition, TEs 

themselves can be abundant components accumulated in heterochromatin, as in 

Drosophila (reviewed in [16,147]). Further, as evidenced by high-throughput next-

generation sequencing of H3K9me3/2-associated sequences, heterochromatin of the 

Pacific oyster C. gigas, [182] or Beta vulgaris [183] is dominantly composed of various TEs. 

However, the relationship between the heterochromatin size and the composition and 

content of repetitive sequences in a genome is complex, and in this moment, it is only 

partially understood.  

8. In and Out of Heterochromatin 

Although our comprehension about genome-wide dispersal of satDNAs is still 

limited to a small number of species, it seems that such distribution can be a rule rather 

than an exception. The existence of dispersed monomers and/or short arrays is predicted 

as an intermediate stage in the hypothesis about the onset of large heterochromatin-

associated arrays [24,65]. However, when analyzing “out of heterochromatin” copies, it is 

difficult to predict the direction of the spread of satDNA monomers as many factors are 

probably involved in the generation of this pa�ern (i.e., dominantly localized and 

sporadically dispersed). In the case of human alpha satDNA, major clusters, located in the 

pericentromeric regions, were indicated as sources of euchromatic copies, and the 

suggested spread is thought to be driven by a rolling-circle mechanism [184]. In the red-

flour beetle Tribolium castaneum, >30% of the genome is composed of a satDNA family 

localized by FISH in large blocks of pericentromeric heterochromatin [185]. However, a 

small fraction of monomers of this and of several other heterochromatin-residing 

satDNAs could be detected within the assembled euchromatic genome fraction, often in 

the relative vicinity of genes ([186], Figure 2a). It was postulated that euchromatic copies 

of pericentromeric satDNAs in T. castaneum are functionally significant in modulating 

chromatin and the expression of nearby genes under stress conditions [46]. Similarly, 

euchromatic copies of Drosophila melanogaster 1.688 satDNA are mostly positioned in the 

vicinity of genes as short arrays, mostly of up to six repeats, and have a probable role in 

the regulation of gene expression [171]. 
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Figure 2. Two significantly different pa�erns of satDNA organization at the genome level. (a) 

satDNAs occupying large pericentromeric, subtelomeric and interstitial blocks of heterochromatin, 

with sporadic short arrays or single monomers situated in the euchromatin. (b) satDNAs organized 

in short arrays, highly dispersed throughout the chromosomes without any significant clustering, 

frequently found associated with TEs or their parts or short arrays of other satDNAs. 

Opposing the established paradigm of clustering in heterochromatin, some satDNA 

families of the red-flour beetle T. castaneum were detected only on the euchromatic 

chromosomal segments, although their presence in heterochromatin could not be 

completely excluded [187]. Similarly, several satDNA families were detected on the 

euchromatic regions of the autosomes and the X chromosome of the hemipteran insect 

Triatoma infestans [119]. The complex genomic distribution of satDNAs is described in the 

red palm weevil, Rhynchophorus ferrugineus (Coleoptera), a rapidly spreading invasive 

species causing severe damage to palm trees. Its satellitome builds 25% of the genome, 

and abundant families were found to be dominantly deposited in euchromatin, although 

they are also distributed in the pericentromeric heterochromatin of all chromosomes or 

on specific chromosomes only. Interestingly, the copy number of some satDNA families 

is increased in populations that invaded new habitats most recently [114]. 

As already commented, short arrays of <10 monomers (sometimes called satDNA-

like) are often dispersed in euchromatin as constitutional components of TEs in diverse 

species (for example, [57,59,60,171,178,179,188,189]). They may represent the sources of 

“classical” satDNA arrays by “filling” the heterochromatic domains, and, at the same 

time, may also be a cause of dispersal of tandem arrays. The extensive association of 

tandem repeats and TEs of the Helitron/Helentron superfamily and shuffling of arrays is 

a probable cause of the exceptional satDNA genomic landscape in the Pacific oyster C. 

gigas [61]. It is characterized by an unusual lack of clustering of relatively short arrays or 

single monomers of all satDNAs. Instead, most of them are uniformly dispersed as TE-

associated or standalone repeats along the entire chromosomal arms of all chromosomes 

([62], Figure 2b). While C. gigas is a species with monocentric chromosomes (localized 

centromere function), such dominantly dispersed organization of satDNA arrays along 

the chromosomes and diversity in heterochromatin—euchromatin localization—are 
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particularly evident in species with holocentric centromeres, either plant or animal. 

Comparisons of high-quality genome assemblies of closely related species with repeat-

based centromeres, the monocentric Juncus effusus and the holocentric beak-sedges 

Rhynchospora spp. showed rebuilding of heterochromatin compartments and 

redistribution of satDNAs, thus changing the genome architecture in transition from 

monocentricity to holocentricity [190]. In the case of Rhynchospora, the holocentromeres 

are mostly composed of short arrays, 20–25 kb, of a satDNA named Tyba, uniformly 

distributed along the chromosomes and specifically co-localizing with the centromere-

determinant protein CenH3 [191]. The authors suggest that the Tyba satDNA family is 

widely distributed and conserved in about 70 examined Rhynchospora species separated 

for about 30 My because of its sequence-dependent role in the centromeric function [149]. 

Some Tyba repeats are found to be linked with a Helitron TE, which probably drives their 

dispersal [190]. Conservation because of the sequence-dependent role in the centromeric 

function was also concluded for the satDNA of the holocentric Meloidogyne root-knot 

nematode species [192].  

Satellitome research revealed the distribution of euchromatin- and heterochromatin-

dominant satDNAs in several other species with holocentric chromosomes. In the two 

evolutionary lineages of the hemipteran insect Triatoma infestans, 7 out of 11 FISH-

localized satDNAs were unexpectedly detected on euchromatic regions of the autosomes 

and the X chromosome. Only one of the euchromatic satDNAs is in its high abundance 

comparable with heterochromatic ones, while the rest are low abundant, and the genomic 

variations between the lineages are mostly due to differences in abundance of satDNAs 

associated with heterochromatin [119]. Widening of the comparative studies by including 

congeneric species T. delpontei indicated a high level of heterochromatin-euchromatin 

satDNA localization shuffling during speciation. While the T. delpontei genome harbors 

numerous satDNAs (160, >50% of the genome), heterochromatin is formed mainly by just 

four. Two of these satDNAs are also present in the heterochromatin of T. infestans, while 

the other two were located in the euchromatin. Vice versa, there were also satDNAs 

located in the euchromatin in T. delpontei that are part of T. infestans heterochromatin. 

Noteworthily, for satDNAs located mainly in the heterochromatin of T. delpontei, less 

intense hybridization signals were also observed in the autosomal euchromatic regions 

[118], organizational pa�ern presented also in Figure 2a. In another holocentric species, 

the kissing bug Rhodnius prolixus, heterochromatic is only the entire Y chromosome, while 

mapped satDNAs revealed dispersed FISH signals in the euchromatin of all 

chromosomes, despite the lack of detectable constitutive heterochromatin [113]. 

Analyses of sequenced genomes and comparative satellitomics established satDNAs 

or satDNA-like tandem repeats as the common euchromatin component. They can exist 

as short arrays sharing the nucleotide sequence with the (major) satDNA(s) located in the 

heterochromatin (Figure 2a) or as tandem repeats dominantly located in euchromatin, as 

exampled by the Pacific oyster C. gigas (Figure 2b). Euchromatin-dominant satDNAs have 

essential structural, organizational and evolutionary features similar to their counterparts 

in heterochromatin. The most significant difference could be in rates of sequence 

homogenization, which is less efficient among distantly located and shorter arrays than 

in clustered and longer ones (reviewed also in [66]), as reported in comparisons of 

euchromatic and heterochromatic arrays of Drosophila melanogaster 1.688 repeats [171] or 

in comparisons of dispersed satDNA arrays in the species of the Hemipteran genus 

Mahanarva [148].  

9. Conclusions 

In conclusion, the advent of novel strategies in the analysis of repetitive DNA 

sequences followed by the burst of studied non-model organisms showed significant 

differences in organizational principles of satDNAs and their localization on the 

chromosomes. Recent studies have shown a large diversity in satellitomes, from only 1 to 

over 200 satDNAs, located not only in heterochromatin but also in euchromatin, 
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regardless of the centromere organization and overall chromosomal architecture. 

Presently, it seems that each of the characteristics related to sequences repeated in tandem 

(their number, abundance, organization, distribution, heterochromatin/euchromatin 

localization) represent features independent of each other. Additionally, comparative 

satellitome studies brought new details, questioning the established views on satDNA 

evolution. However, it is still too early to make some general conclusions, because of 

diversity in the inspected systems, and as detailed studies of satDNA arrays in the genome 

are still scarce and often fragmentary, focused only on some aspects of satDNA 

landscapes. It would also be of use to provide a more comparable view on satellitomes by 

making inputs and outputs of analyses comparable wherever possible (e.g., the genome 

fraction occupied by satDNAs, the detection level, chromosomal mapping, etc.). 

Ultimately, the need to introduce new species as model systems is rising, as significant 

and extremely relevant information arises from different systems and contributes greatly 

to the research area of repetitive DNA biology. 
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