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Abstract: Background: Observational research implies a negative effect of having children on wellbe-
ing. Objectives: To provide Mendelian randomisation evidence of the effect of having children on
parental wellbeing. Design: Two-sample Mendelian randomisation. Setting: Non-clinical European
ancestry participants. Participants: We used the UK Biobank (460,654 male and female European
ancestry participants) as a source of genotype-exposure associations, the Social Science Genetics
Consortia (SSGAC) (298,420 male and female European ancestry participants), and the Within-Family
Consortia (effective sample of 22,656 male and female European ancestry participants) as sources
of genotype-outcome associations. Interventions: The lifetime effect of an increase in the genetic
liability to having children. Primary and secondary outcome measures: The primary analysis was
an inverse variance weighed analysis of subjective wellbeing measured in the 2016 SSGAC Genome
Wide Association Study (GWAS). Secondary outcomes included pleiotropy robust estimators applied
in the SSGAC and an analysis using the Within-Family consortia GWAS. Results: We did not find
strong evidence of a negative (standard deviation) change in wellbeing (β = 0.153 (95% CI: −0.210 to
0.516) per child parented. Secondary outcomes were generally slightly deflated (e.g., −0.049 [95% CI:
−0.533 to 0.435] for the Within-Family Consortia and 0.090 [95% CI: −0.167 to 0.347] for weighted
median), implying the presence of some residual confounding and pleiotropy. Conclusions: Contrary
to the existing literature, our results are not compatible with a measurable negative effect of number
of children on the average wellbeing of a parent over their life course. However, we were unable to
explore non-linearities, interactions, or time-varying effects.

Keywords: Mendelian randomisation; wellbeing; family size

1. Introduction

A well-replicated [1–8] but contested [9–14] finding in the observational quantitative
social science literature is a negative association between having children and subjective
wellbeing in English-speaking countries. Although many studies have failed to replicate
the finding in non-English-speaking countries [15–17], others have [18,19]. For example,
Novoa and colleagues found a negative association between having children and subjective
wellbeing in Chile [20]. Matters are further complicated by non-linearities depending on
the age at which wellbeing is assessed in the parents. According to some of the studies,
having children is not negatively associated with wellbeing when measured in geriatric
populations, especially for those with a lower socioeconomic position (SEP), despite a
negative association when measured in younger age groups [18,20–23]. This is possibly
because of the increased social support that children can provide to their parents in old
age [2,14,21,22].
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Because these findings come from mostly cross-sectional studies, they should be
treated with caution. For example, most of the studies cited above adjusted for only a few
potential confounding variables (e.g., age, sex, and socio-economic position), if any, raising
a question of residual confounding. Indeed, Deaton and Stone found that the choice of
covariates adjusted for could produce radically different conclusions [15]. There will also
likely be underlying psychological differences between adults who choose to have children
and those who choose not to have children. Since the examined studies did not adjust for
these variables, if these psychological differences also directly influence wellbeing, then
they would be an additional source of unmeasured confounding. Relatedly, because most
of the literature is derived from correlational surveys, these studies cannot ascertain the
direction of effect [6]. Finally, cross-sectional studies cannot determine if the apparent
change in effect with age is a cohort effect instead, although the corroboration of this
finding by some prospective studies makes this less plausible [8]. As observational studies,
these cohort studies are likely to still suffer from residual confounding.

Because of the higher risk of bias in traditional observational studies, it is becoming
increasingly common in social epidemiology and econometrics to triangulate evidence from
conventional observational studies with quasi-experimental designs [24]. One such design
is Mendelian randomisation (MR) [25–27]. In a randomised controlled trial, participants
are randomised to an intervention or control arm and followed up for a certain period.
Because genetic variants are inherited at random, comparing the outcome status of an
individual with and without a causal variant for the exposure is essentially analogous to a
clinical trial [28]. In addition, because our genotype is fixed at conception, MR estimates
are robust to reverse causation. This also means that any effect estimate derived from MR
studies should be interpreted as the lifetime effect of the exposure. Applications of MR
have traditionally focused on biomedical exposures where the analogy between MR and
randomised controlled trials for a pharmacological intervention is strong because most
drugs target proteins, which are the proximal product of genes [29].

MR has been gaining popularity as a method for answering causal questions in
medicine, psychology and the social sciences in recent years [30,31]. The ‘social environ-
ment’, defined as the behaviour (and consequences) of those around us, is a potentially
important cause of ill health and is a psychological mechanism. For example, one person’s
smoking could cause those around them to smoke as well (‘social smoking’). Psychi-
atric genetics and evolutionary theory both suggest that the behaviours of those close
by will associate with that person’s genotype. These are postulated to occur through
gene–environment correlation, which may be active (when someone’s heritable phenotype
influences someone to select into an environment) or evocative (when heritable phenotype
evokes a change in the environment) and through the extended phenotype (when genes
associate with the environment due to the effects of the heritable phenotype) [32,33]. For
example, someone’s genetic predisposition to smoke may associate with their exposure
to passive/environmental tobacco smoke, either by provoking social smoking or by ho-
mophily (the tendency of people to be friends with similar people). However, to the best
of our knowledge, MR has not been used to explore the effects of social environmental
exposures. This is, in part, because it is conceptually less clear as to how the potential effect
of a genetic variant, which robustly increases the probability of a social environmental
exposure—such as a traffic accident—by a very small amount, is genuinely equivalent to an
exposure such as being hit by a lorry. Children, on the other hand, are a part of one’s social
environment, but can plausibly be studied with a genetic design such as MR because having
children is the primary endpoint through which evolution by natural selection occurs, and
hence should be influenced by genetics [34,35]. However, the effects that children have on
their parents after their birth is a social, rather than a direct biological, effect.

Therefore, exploring the effect that children have on their parent’s wellbeing not only
answers a question of societal importance, but can also support the use of leveraging an
active gene–environmental correlation within an MR study design to study the causal effect
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of environmental exposures. We therefore used a two-sample MR to explore the lifetime
effect of having children on wellbeing.

Strengths and limitations of this study

• Mendelian randomisation (MR) is a natural experiment that is theoretically robust for
confounding and reverse causation.

• We were able to use two negative control analyses to explore the robustness of our
study to two potential sources of residual confounding (populations structure and
passive gene–environment correlation).

• We additionally used pleiotropy robust estimates (such as MR-PRESSO, MR-Egger,
weighted median, and weighed mode) to explore if our result was affected by the
direct effects of the genetic variants on the outcome not mediated by the exposure.

• Because we used summary data, we were unable to explore interactions or non-linear,
time-varying, or time sensitive effects.

2. Methods
2.1. Study Design

We performed a two-sample MR analysis to explore the lifetime effect that children
have on parental wellbeing. Specifically, we used the UK Biobank (UKB) as a source
of genetic instruments [36,37], as well as their weights, for the number of children an
individual has, and we used the 2016 Social Science Genetics Consortium (SSGAC) Genome
Wide Association Study (GWAS) meta-analysis of subjective wellbeing as a source of
instrument–outcome associations [38].

2.2. Data Sources
2.2.1. UK Biobank (UKB)

The UKB is a large (~500,000 participants) population cohort study in the UK. Members
of the public between the ages of 38 and 73 and who lived within 22 miles of an assessment
centre were invited to participate from 2006 to 2010. Approximately 9.2 million individuals
were invited to take part, with around 6% participating in the baseline assessment. The
sample was 55% female, and predominantly of European ancestry (96%). The study design,
participants and quality control (QC) methods have been described in full elsewhere [36].
UKB received ethics approval from the North West Multi-Centre Research Ethics Committee
(REC reference 11/NW/0382). All participants provided written informed consent to
participate in the study.

2.2.2. Social Science Genetics Consortia (SSGAC)

Data on subjective wellbeing was extracted from the 2016 SSGAC subjective wellbeing
GWAS (OpenGWAS ID: ieu-a-1009) [38]. This was a meta-analysis of 298,420 individuals
from 59 studies. Samples included men and women, mostly of European descent, living in
Europe, North America, or Australia.

2.2.3. Within Family Consortium (WFC)

Data on wellbeing was also taken from the 2022 Within Family Consortium (WFC)
GWAS (OpenGWAS ID: ieu-b-4851) [39]. This GWAS used the genetic overlap of relatives
to adjust for which SNPs were inherited and therefore fully removed most plausible sources
of confounding, including ancestry and genetic nurture [40]. The consortium combines
data on almost 160,000 pairs of relatives from 17 cohorts. The GWAS itself had an effective
sample size of 22,656 (male and female) individuals of European ancestry. A more detailed
description of the individual cohorts included can be found in the paper’s Supplementary
Materials [39]. To avoid confusion, the WFC does not estimate between-relative effects, but
instead the association between one person’s genotype and another person’s phenotype.
The WFC uses genetic data from biological relatives to then remove biases in population
genetics studies such as assortative mating and population structure.
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2.3. Phenotyping
2.3.1. UKB

Information on the number of (biological) children (OpenGWAS ID: ieu-b-4760) a
participant had, number of full sisters (UKB ID: 1883, OpenGWAS ID: ukb-b-5593), number
of full brothers (UKB ID: 1873, OpenGWAS ID: ukb-b-4263), general happiness (UKB ID:
20458, OpenGWAS ID: ukb-b-4062), number of older siblings (UKB ID: 5057, OpenGWAS
ID: ukb-b-1997), and hair colour (UKB ID: 1747, Open GWAS IDs: ukb-d-1747_5, ukb-d-
1747_4, ukb-d-1747_3, ukb-d-1747_1, ukb-d-1747_2, ukb-d-1747_6) were collected through a
questionnaire asked either during the initial visit to an assessment centre or, in the case of
general happiness, in an online follow up. Number of biological children was measured by
asking men (UKB ID: 2405) “How many children have you fathered?”, and women (UKB ID:
2734) “How many children have you given birth to? (Please include live births only)”. The
exact questions asked for the other phenotypes are provided in the Supplementary Materials.

2.3.2. SSGAC

This study included measures of life satisfaction, positive affect, or both in the GWAS.
The specific questionnaires used for phenotype subjective wellbeing in each sample are
described the Supplementary Materials [38]. These were standardised for the meta-analysis.
In most of the samples used in the SSGAC GWAS, a 1 to 2 standard deviation change
is equivalent to a 1 unit increase on a 5-level psychometric question. For example, the
23andMe study asked participants to rate from very dissatisfied with their life (score = 0)
to very satisfied with it (score = 5) and had a standard deviation of 1. This means that a one
standard deviation increase would be the same as going from very dissatisfied to somewhat
dissatisfied. Supplementary Tables S1–S3 provide the gene-exposure and gene-outcome
associations used in this study.

2.3.3. WFC

All participating cohorts measured wellbeing using a questionnaire. Wellbeing mea-
sures were standardised prior to the meta-analysis. More details on phenotyping are
provided in the Supplementary Materials of the original paper [39].

2.4. Statistical Analysis
2.4.1. Overview of the Analysis

The primary analysis was an inverse variance weighted meta-analysis of the Wald ratio
using independent genome-wide significant (p < 5 × 10−8) SNPs for number of children
identified in UKB as instruments [37]. The Wald ratios were defined as the variant’s
association with wellbeing divided by the variant’s association with number of children.

We additionally used a number of sensitivity analyses, including (a) five pleiotropy
robust estimators (MR-Egger, MR-RAPS, MR-PRESSO, weighted median, and weighted
mode), (b) two sets of negative controls (hair colour, and number of parental siblings) as a
falsification test for the presence of residual confounders of the instrument–outcome associ-
ation, (c) the Within-Family Consortium (WFC) as a more robust (but less well powered)
outcome GWAS, and (d) a less stringent p-value threshold (p < 5 × 10−6) for selecting SNPs
to increase power. More details can be found in the Supplementary Materials.

2.4.2. Instrument Construction

Genetic instruments were selected using a statistical criterion of having a genome-
wide significant association with the exposure (p < 5 × 10−8). We additionally clumped
the variants using an r2 of 0.001 and KB of 10,000, thereby ensuring that the instruments
were independent of each other. Genetic variants that have their gene–exposure association
estimated in the same dataset used to select instruments can suffer from a bias called
‘Winner’s Curse’. This occurs because variants can meet the statistical criteria due to having
a genuine association or because they, by chance, have an unusually large amount of noise.
This results in variants appearing to have a larger association than they actually do. We



Genes 2023, 14, 716 5 of 17

therefore further filtered these variants using the False discovery rate Inverse Quantile
Transformation (FIQT) winners curse correction developed by the SSGAC [41]. This uses
an analogy between multiple testing and winners curse to apply an easy-to-implement
correction to effect estimates.

We used the TwoSampleMR R package to harmonise the two GWASs. Palindromic
SNPs were only excluded if their allele frequency could not be used to infer which strand
was positive. In cases where SNPs were missing in the outcome dataset, we used TwoSam-
pleMR to automatically impute LD proxy variants, using an r2 of 0.8 from the European
subsample of the 1000 genomes project.

MR assumes that the causal pathways go from the genetic variant to the exposure to
the outcome. However, when selecting genetic instruments using a data-driven method, as
we did, it is possible to select some SNPs wherein the causal path is from the variant to the
outcome to the exposure. When the exposure and outcome GWASs are of similar power,
one should expect SNPs to explain a larger proportion of the variance in the more proximal
GWAS than the more distal one. Steiger filtering, which we applied, uses this logic as a
method of removing SNPs that are more proximal to the outcome than the exposure.

2.4.3. Statistical Methods

The primary MR estimator in this study was the Wald ratio. This is defined by the
variant–outcome association divided by the variant–exposure association. Because both
the variant–exposure and variant–outcome associations were derived from linear models,
MR analysis also assumed a linear model.

We then used six methods of meta-analysing for the MR estimates of each SNP:
IVW, MR-Egger, weighted median, weighted mode, MR-RAPS, and MR-PRESSO. The
IVW estimate will return the true effect if all the IV assumptions are valid. The other
five ‘pleiotropy robust’ methods can return the true effect if some of the instruments are
invalid, but they have reduced power. Specifically, the weighted mode assumes that
the modal effect size is a valid estimate of the true effect size, while weighted median
assumes that at least half of the SNPs are valid. IVW can be thought of as a regression of
the variant–outcome association on the variant–exposure association, with the intercept
fixed at zero [42]. MR-Egger extends this model to allow for a non-zero intercept. If we
assume that the variant–exposure effect size is independent of the size of any bias (such
as a pleiotropic effect), then the biasing pathways should impact the intercept but not
the slope. This assumption is called the INSIDE assumption. Additionally, MR-Egger
assumes that there is no measurement error in the exposure GWAS (called the NOME
assumption) [43,44]. MR-RAPS assumes that pleiotropic SNPs are outliers (modelled by
a random effects parameter with a mean of zero) and therefore down weights them in a
random effect meta-analysis. We implemented MR-RAPS using a square error loss function,
accounting for overdispersion (i.e., systematic pleiotropy) [45]. MR-RAPS is robust to
both balanced pleiotropy in non-outlier SNPs and weak instrument bias. MR-PRESSO
first runs a global test for pleiotropy, and then tests for outliers. It then excludes outliers
before running a meta-analysis and testing for a difference between the MR estimates with
and without the outliers. MR-PRESSO assumes INSIDE and that >50% of SNPs are valid
instruments [46].

2.4.4. Assumptions of the Analysis

Two-sample MR is an extension of MR to a summary data setting. MR is itself an
extension of Instrumental Variables (IV) analysis for genetics. IV makes three assumptions:
(1) relevance—that the variant is robustly associated with the exposure, (2) independence—
that there are no variant–outcome confounders, (3) exclusion restriction—that the variant
causes the outcome only through the exposure. For the point estimate to be interpretable,
IV analysis additionally has to make an identification assumption. Here, we make the
NO Simultaneous Heterogeneity (NOSH) assumption [47]. This assumption is valid if the
causes of heterogeneity in the variant–exposure association are not the same as the causes
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in the variant–outcome associations, or if either of these associations are homogeneous.
Finally, two-sample MR makes two additional assumptions: (1) That the GWASs come
from homogeneous populations. This is required for the MR estimate to be meaningful.
(2) That there is no sample overlap. The effect of the second assumption is to make weak
instrument bias deflationary [48–50].

Because two-sample MR uses summary data from previously conducted GWASs, if
these studies assume, as they typically do, a linear effect, then it is not possible to explore
non-linearity using summary data. Traditional IV estimators, such as the Wald ratio used
in the two-sample MR, can still provide a valid estimate of the average causal effect in the
presence of non-linearities [51].

2.4.5. Assessment of Assumptions

Weak instrument bias is inversely proportional to the F-statistic of the variant–exposure
association, with a common threshold of ten being required. We therefore calculated the
mean F-statistic for the variant–exposure association, as well as the F-statistic for each SNP.
MR assumes that there are no confounders of the variant–outcome association.

Although the other assumptions made in an MR analysis are not provable, it is
possible to run falsification tests on many of them. To ensure that population structure
was controlled for, we checked that the GWASs either used BOLT-LMM, which adjusts
the GWAS for the entire genetic relationship matrix [52], or adjusted for the principal
components of the genetic relationship matrix. LD score regression (LDSC) can be used to
explore the residual population structure in GWASs that do not use linear mixed models
such as BOLT-LMM. Specifically, if the LDSC intercept is very different from one, this
implies the presence of a residual population structure [53]. We also ran a set of sensitivity
analyses, described below, as falsification tests for residual gene–outcome confounders.

Horizontal pleiotropy occurs when a genetic variant associates with two phenotypes
for independent reasons. This can cause a violation of the exclusion restriction assumption.
However, if horizontal pleiotropy is present, the exact pathway should be different for each
variant. It has therefore been argued that, if it occurs, it should create heterogeneity in the
MR estimates, and its presence can therefore be tested using a heterogeneity statistic. The
presence of horizontal pleiotropy was also visually explored using a funnel plot.

The NOME assumption can be tested by checking that the I2 statistic for the gene-
exposure association is greater than 90% [43]. Since this is a measure of the variability in
the variant–exposure association, we will refer to it as the I2

GX statistic for clarity.
We checked sample overlap by checking which samples were reported as being

included in each of the GWAS consortia in the respective publications. Two-sample MR
studies generally validate the assumption that samples are drawn from the same population
by checking that the studies are demographically similar [50]. However, in situations
where their instrument–exposure or instrument–outcome association has been measured
in both the exposure and outcome samples, it can be possible to validate this assumption
quantitively. One would expect to find only chance differences in estimates drawn from
the same population [54,55]. Therefore, on top of comparing demographic information
and because information on happiness from the UKB was used in the SSGAC GWAS,
we checked that the average-difference SNP estimates from the UKB compared to the
SSGAC and WFC were approximately zero. Because the differences in the precision of the
measure of wellbeing between the UKB and SSGAC could introduce heterogeneity into the
estimation of the difference in SNP effects, we chose a random-effects meta-analysis as the
primary estimator.

2.5. Sensitivity and Additional Analyses
2.5.1. Negative Controls

We used two sets of negative control outcomes to explore two potential sources
of confounding. Firstly, hair colour is known to vary by ancestry in the UK/European
population, but prima facie should not have a direct causal relationship with the number of
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children we have [56]. It can therefore be used as a negative control outcome for population
structure (see Figure 1 for a visual representation). Secondly, wellbeing may be affected
by our developmental environment. However, the number of children we have is affected
by our parental genotype (through inheritance). The parental genotype will also influence
our developmental environment because of the effects that the parental genotype will have
on the parental phenotype and therefore on the developmental environment (i.e., through
genetic nurture, see Figure 2 for a visual representation). To test if genetic nurture is a
residual confounder, we used the number of siblings as a negative control outcome. The
number of siblings an individual has is caused by parental genotype but is unlikely to
be caused by the number of children that the individual has. Therefore, the most likely
explanation of an MR association with number of siblings is residual confounding due to
genetic nurture. We ran the negative controls only using an IVW estimator because it is the
most efficient estimator and thus the most likely to detect an association if there is one. In
addition, we wanted an estimator which was not robust to pleiotropy because a pleiotropic
association between the genetic instrument and the negative control outcomes (i.e., which
is not mediated by number of children) is still evidence of an association between the
instrument and a confounder of the instrument–outcome association, and hence a violation
of the independence assumption.
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Figure 1. Directed acyclic graph for the hair colour negative control outcome. Hair colour is
hypothesised to be associated with population structure, but to not have a direct causal link to either
the genetic instruments or wellbeing. Therefore, any association between the genetic instruments and
hair colour will be due to a residual confounding effect of population structure.

2.5.2. WFC GWAS

Family data has been proposed as a way of eliminating the risk of confounding in
MR studies [40]. Potential violations of the independence assumption, such as population
structure and genetic nurture, occur because the distribution of SNPs in a population GWAS
is only approximately random. By conditioning on the parental genotype, however, the back
door path used by these biases is blocked. Although these GWASs are less biased, the use of
non-independent observations means that they need much larger samples than a population
GWAS to achieve the same level of power. We therefore used the WFC GWAS of well-being
as an additional sensitivity analysis to explore the robustness to potential confounders.
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Figure 2. Directed acyclic graph for the number of siblings negative control outcome. The parental
genotype determines not only their children’s genotype, but also, via the parental phenotype, the
environment in which the children grew up. If someone’s childhood environment influences their
wellbeing later in life, then the parental genotype would confound any association between an
individual’s genetic instruments and wellbeing. Because, in the UK, parents typically stop having
new children before their children start having children, it unlikely that a child having children will
influence his or her parents to have more children. Hence, the number of siblings an individual has
should not be caused by an individual’s genetic liability to having children, but will be influenced by
the parental liability to having children. Therefore, any association between an individual’s genetic
liability to having children and the number of siblings they have would be an indicator of residual
confounding due to the parental genotype.

2.5.3. Less stringent SNP Selection

Power in two-sample MR studies is a function of instrument strength, the precision
of the outcome GWAS, and the number of instruments. Since we are limited to using
pre-collected data, the outcome GWAS’s precision cannot be varied. However, a p-value
threshold of 5 × 10−6 equates to an F-statistic of approximately 10 and should therefore not
lead to weak instruments, but because it is 100-fold larger, it should increase the number
of SNPs used in the analysis. We therefore also used SNPs with an indicative association
(p < 5 × 10−6) with the exposure to explore how sensitive the primary analysis was to a
potentially better-powered set of instruments.

2.5.4. Leave-One-Out Analysis

We additionally used a ‘leave-one-out’ analysis and the MR-PRESSO outlier test,
as part of our MR-PRESSO analysis, to explore if any of the variants were outliers and
had a disproportionate effect on the overall IVW estimate. The ‘leave-one-out’ sensitivity
analysis works by excluding each SNP in turn and running the IVW analysis without
the excluded SNP. We then visually inspected the leave-one-out plot for indication that a
single SNP had a disproportionate effect on the MR results. The MR-PRESSO outlier test
explores whether the observed values are different from the expected values based on a
regression model of the variant–outcome associations on the variant–exposure associations.
Additional information, including details on genotyping, instrument construction, and MR
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estimators, can be found in the Supplementary Materials. This manuscript conforms to the
STROBE-MR guidelines [57].

2.5.5. Bidirectional Analysis

In addition to the analyses planed in our protocol, we included a bidirectional analysis
in order to explore the possibility that reverse causation might explain the observational
results. Specifically, we selected variants associated with well-being in the SSGAC GWAS
at a 5 × 10−6 p-value threshold, and we used the FIQT Winner’s Curse correction. After
harmonizing the UKB number of children GWAS with these variants, we applied Steiger
filtering and estimated the MR estimates using MR-RAPS with overdispersion and a Huber
loss function. This estimator was chosen because it is reasonably robust to both weak
instrument bias and pleiotropy.

3. Results
3.1. Descriptive Data
3.1.1. Number of Participants and SNPs in Each Stage

The UKB exposure GWAS had information from over 460,000 participants on almost
10 million SNPs. The primary outcome analysis used information on six of these SNPs,
which were significant genome-wide for number of children from 298,420 participants from
the SSGAC. This was increased to 50 SNPs by using a 5 × 10−6 p-value threshold. The WFC
outcome data used information on eight genome-wide significant SNPs with an effective
sample size of 22,656 participants (Figure 3).
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Figure 3. Flow chart of SNPs and participants.

3.1.2. Two-Sample MR Specific Assumptions

Both outcome samples had some overlap with the UKB. The SSGAC does not state
how many UKB participants were included; however, around 157,000 UKB participants
provided information on the measure of general happiness used by the SSGAC, which
entails a maximum sample overlap of around 53% for the SSGAC and 34% for the UKB. The
UKB also contributed around 4250 sibships to the WFC wellbeing GWAS, which equates to
around 19% of the WFC sample and 2% of the UKB sample.

Because all GWASs were drawn from European populations of both males and females
with some overlapping participants, it seems likely that the samples can all be treated as
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coming from the same population. We also found no evidence of a difference in SNP
effect estimates for the SNP–outcome associations in the UKB and the WFC or the SSGAC
consortium using either a 5 × 10−6 p-value or 5 × 10−8 p-value threshold, which further
supports this conclusion (Supplementary Figures S1–S3) [58].

3.2. Main Results

The primary IVW estimate does not indicates strong evidence of a negative (standard
deviation) change in wellbeing (β = 0.153 (95% CI: 0.210 to 0.516) per child parented
(Figure 4 and Supplementary Figure S4).
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3.3. Assessment of Assumptions
3.3.1. Weak Instrument Bias and NOME

For the primary analysis, the F-statistic was 49, and the I2
GX for the instrument–

exposure association was 98%. These both imply that there would be around a 2% error
in the MR estimates due to weak instrument bias. For the analysis using the WFC, the
F-statistic was 44, and the I2

GX was 98%. For the analysis using a less stringent p-value, the
F-statistic was 25, and the I2

GX was 96%.

3.3.2. Heterogeneity and Exclusion Restriction Violations

The Cochrane Q statistic for the Wald ratios of the primary analysis was 24.59
(p < 0.001), and the I2

GX for the Wald ratio was 80%. Together with the asymmetric funnel
plot (Supplementary Figure S5) and the MR-PRESSO global test for outliers (p = 0.006),
this implies the presence of some pleiotropic SNPs. However, the Egger intercept was
−0.004 (SE = 0.017, p = 0.815). Similar results were found for the secondary analyses
(Supplementary Table S4).
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3.4. Sensitivity and Additional Analyses
3.4.1. Pleiotropy Robust Estimators

The pleiotropy robust estimates were mostly similar to the IVW estimate, although
generally slightly deflated (Figure 4 and Supplementary Table S4). The exception to this
was the MR-Egger estimate, although the wide 95% confidence interval (which overlaps
with the IVW estimate) implies that this could be due to a lack of precision. In addition,
the MR-RAPS estimate was slightly inflated, probably because RAPS is robust to both
moderate amounts of weak instrument bias and pleiotropy.

3.4.2. Negative Controls

The negative control outcome analysis did not find any evidence of an association of
the instruments with hair colour; however, there was evidence of an association with
two out of three of the sibling questions (p < 0.001 for number of full brothers and
p = 0.005 for number of full sisters), implying the possibility of some residual confounding
(Supplementary Table S5).

3.4.3. WFC Outcome

Consistent with the negative control analysis, the WFC secondary analysis showed
deflated point estimates compared to when using the SSGAC outcome GWAS
(Supplementary Table S3). For example, the IVW estimate was −0.049 (95% CI:
−0.533 to 0.044).

3.4.4. Less Stringent SNP Selection

The standard error of the IVW estimate when using a 5 × 10−6 threshold was
more than three times smaller than when using the more traditional 5 × 10−8 threshold.
Supplementary Table S4 presents the results of this sensitivity analysis for all estimators.
MR-RAPS in particular, as a weak instrument robust estimator, still did not find strong
evidence against the null hypothesis (β = 0.082, SE = 0.054, p = 0.134).

3.4.5. Leave-One-Out Analysis and MR-PRESSO Outlier Test

The MR-PRESSO outlier test for the primary analysis identified rs10270358 and
rs72687493 as outliers. An exploratory search of Phenoscanner showed no phenotypes
associated with rs72687493 but found that rs10270358 is associated with seeing a doctor for
anxiety or depression, as well as chronic disability/infirmity, both of which could reduce
wellbeing [59]. However, these SNPs did not seem to introduce a bias in the leave-one-out
analysis (Supplementary Figure S6), and the outlier test did not detect any outliers in the
secondary analyses.

3.4.6. Bidirectional MR

Our bidirectional analysis found a negative association between wellbeing and number
of children (β = −0.069, 95% CI −0.010 to −0.128), implying that having lower wellbeing
causes people to have more children.

4. Discussion

Contrary to the existing observational literature, our results do not imply that children
have a detrimental effect on parental wellbeing. If we assume the measures of wellbeing in
the SSGAC are on a ratio scale, and that people score the nearest category to what they feel,
then our 95% confidence interval would be compatible with either no effect or as much as a
one-unit increase on this scale for each child someone has (e.g., from neither satisfied nor
dissatisfied to somewhat satisfied), but incompatible with a measurable negative change in
subjective wellbeing.

However, our additional and sensitivity analyses imply that our primary point es-
timate may overestimate the true effect. Our negative control analysis found that our
instrument was associated with the number of siblings, and that the point estimate was
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deflated when using the WFC outcome GWAS, implying the presence of residual confound-
ing due to genetic nurture. Likewise, the heterogeneity statistics implied the presence of
residual confounding, while most pleiotropy robust estimators were again deflated. It is
therefore likely that the true effect, if existent, will be smaller than a measurable change
(i.e., a one-unit increase or decrease in a 5-level psychometric question) in well-being for
every child a parent has.

Our bidirectional analysis indicated that having lower wellbeing causes people to
have more children. This implies that reverse causation could account for some of the
observational findings of a negative association between wellbeing and number of children.
However, because of the small effect size (1 standard deviation decrease in wellbeing
resulting in 0.07 more children), this is unlikely to entirely explain the observed association.

Our study’s results appear to contradict a recent study by Giannelis and colleagues
(2021) [60]. They used observational data from the UKB and two-sample MR (using the UKB
and Psychiatric Genomics Consortium) to explore the effects of cohabitation and having
children on depression. Their headline results appear to imply that children increase the
risk of depression using IVW. Since depression plausibly has a negative effect on wellbeing,
this finding is superficially contradictory to ours [61]. However, none of the directional
pleiotropy robust estimators show deflated estimates, and they do not find evidence of an
effect. Since they use a liberal p-value threshold to select SNPs, this is less likely to represent
low power. Thus, as with our study, it is likely that IVW has overestimated the true effect.

4.1. Pre-Specified Interpretation

In the study protocol, we pre-specified how we would interpret the findings of our
sensitivity analyses. Specifically:

4.1.1. Pleiotropy

Because the indicators for the presence of pleiotropy (such as the I2
GX and Cochrane

Q statistics for the Wald ratio, funnel plot and MR-RAPS) all indicated the presence of
pleiotropy, and because the ‘pleiotropy robust’ estimators generally had deflated estimates
compared to the IVW estimate, it seems likely that the IVW estimates were inflated by
some residual pleiotropy.

4.1.2. Residual Confounding

The association of the instruments with two out of three of the sibling negative controls,
combined with the change in estimate from the WFC GWAS, implies that there was some
inflation due to residual confounding from genetic nurture in the primary IVW estimate.

4.1.3. Low Power

The number of SNPs increased almost nine-fold in this secondary analysis when
compared to the primary one. This resulted in a three-fold decrease in the size of the
standard error (0.185 to 0.053) for the IVW estimate, and implies that there is also a large
amount of residual random error in the estimates. However, the point estimates in this
analysis were generally deflated when compared to the primary analysis. This should be in
part explained by the approximate halving of the F-statistic.

4.2. Generalisability

One possible explanation for the discrepancy between the observational and MR
estimates, other than residual confounding in the observational studies, is that the target
estimates are not directly comparable. If we assume that age does not modify the variant–
exposure association, then MR estimates should be interpreted as the average effect of the
exposure on an outcome over the entire lifetime up to recruitment (typically in their late
50s at recruitment for the UK Biobank, which is the single largest study in the SSGAC) [62].
This means that the transient effects of having children on wellbeing, such as the stress of
looking after a new-born baby, may not be detectable in a typical MR design. Some studies
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found that having children was beneficial to parental wellbeing in old age [18,20–23]. One
possible explanation for the discrepancy between our results and the existing literature’s
results would therefore be that the transient negative effect is counterbalanced by the later
positive ones—resulting in an average effect close to zero. Likewise, there could be effects
in age groups older than those included in our study. Although methods for addressing
time-varying exposures are currently being developed [63], there is still no consensus on
how to best estimate transient effects within an MR framework. We are therefore unable to
empirically explore this interpretation further here. MR still produces a valid test for the
average lifetime effect of exposure to genetically predicted levels of the exposure [64]. We
therefore believe that our results are a valid, if blunt, measure of the total longitudinal effect
up to recruitment. However, further quasi-experimental studies should also be leveraged
to explore short term effects. For example, the short-term effects after birth could in theory
be studied using an interrupted time-series design.

Additionally, our estimates were all drawn from European samples. Because some
of the existing literature had found different effects in predominantly non-European non-
English speaking populations compared to those observed in English-speaking popula-
tions [15–17], our results may not generalise to other populations.

4.3. Strengths and Limitations

This study has several methodological strengths. Firstly, we believe it is the first
study to apply MR to explore the effects of the heritable environment in a setting in which
gene–environment equivalence is plausible. By doing so, we have been able to leverage the
methodological strengths of MR, such as improved robustness to confounding and reverse
causation to explore the effect of having children on wellbeing.

Secondly, this is the first applied study to have implemented the MRSamePopTest
R package, a novel test of the two-sample MR ‘same-population’ assumption described
in detail elsewhere [58]. We are unaware of other existing tests of this assumption and
therefore hope that it will be useful in future applied MR studies.

There are also methodological limitations to this application of two-sample MR. As
already noted, we were unable to explore time-sensitive effects. Relatedly, we were forced
to assume a linear dose–response relationship for the effect of the number of children on
wellbeing. We considered a sensitivity analysis using individual-level data, but we ulti-
mately decided against doing so due to a lack of sufficiently good individual-level data; of
the two available data sources, ALSPAC had detailed phenotyping, but on a relatively small
number of participants (~2000). Because non-linear MR is less well powered than a linear
MR, this sample would therefore be underpowered for this analysis. On the other hand,
the UKB, only had a five-level minimal phenotype for happiness. Since poor phenotyping
can mask non-linearities, and because happiness may not be the same as wellbeing, the
interpretation of any analysis in the UKB would be unclear [65]. MR is generally more
robust as a test of the causal null hypothesis than as a method of effect estimation because
of many of the complications (such as those described above) of interpreting MR effect
estimates. However, this approach to interpreting MR results may be less robust here
because our sensitivity analyses implied that our study may be underpowered.

As with many MR studies using genome-wide significant SNPs as instruments, we
have not explored the causal mechanism linking the SNPs to having children. However,
provided the other Instrumental Variables’ assumptions are valid, IV analyses do not require
a causal association between the instrument and the exposure [66]. Although there was
substantive sample overlap between our exposure and the outcome GWAS, we do not expect
there to be material bias to our MR results. The one-sample MR two-stage least square
estimator is asymptotically equivalent to the two-sample MR Wald ratio, but it is necessarily
applied in settings equivalent to 100% sample overlap. If two-sample MR is necessarily
biased by sample overlap, then a one-sample MR would not provide valid estimates. Indeed,
existing research implies that most two-sample MR estimators perform well even with a
100% sample overlap [67]. Instead, the primary effect of no sample overlap is to ensure that
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weak instrument bias attenuates results. However, the F-statistic in our primary analysis is
49, which implies only a 2% bias due to weak instruments. While we cannot guarantee this
will attenuate results, it does not seem likely to cause material bias. Finally, we cannot explore
more detailed psychological mechanisms, such as differences between expected (numbers of)
children and reality, which could explain the observational analyses.

5. Conclusions

We conducted a two-sample Mendelian randomisation study to explore the causal
effect that children have on parental wellbeing. Contrary to the previous literature, our
results do not imply the presence of a negative lifetime effect of having children on well-
being. Comparing our results to many existing observational studies is complicated by
the temporal insensitivity of MR estimates. Future studies could therefore consider using
other quasi-experimental methods, such as Interrupted Time Series [68], to explore if the
discrepancy between our findings and the observational literature are due to the transient
effects of having children, of which MR is either unable to detect or which average out over
the life course.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030716/s1, Figure S1: Difference in SNP—outcome associa-
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p-value threshold; Figure S4: Forest plot for the SNP- specific Wald ratios for the primary analysis;
Figure S5: Funnel plot for the primary analysis; Figure S6: Leave-one-out sensitivity analysis;
Table S1: Gene-exposure and gene-outcome associations used in the primary analysis;
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