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Abstract: Neurodevelopmental disorders (NDDs) affect 2–5% of the population and approximately
50% of cases are due to genetic factors. Since de novo pathogenic variants account for the majority
of cases, a gene panel including 460 dominant and X-linked genes was designed and applied to
398 patients affected by intellectual disability (ID)/global developmental delay (GDD) and/or
autism (ASD). Pathogenic variants were identified in 83 different genes showing the high genetic
heterogeneity of NDDs. A molecular diagnosis was established in 28.6% of patients after high-depth
sequencing and stringent variant filtering. Compared to other available gene panel solutions for
NDD molecular diagnosis, our panel has a higher diagnostic yield for both ID/GDD and ASD. As
reported previously, a significantly higher diagnostic yield was observed: (i) in patients affected by
ID/GDD compared to those affected only by ASD, and (ii) in females despite the higher proportion
of males among our patients. No differences in diagnostic rates were found between patients affected
by different levels of ID severity. Interestingly, patients harboring pathogenic variants presented
different phenotypic features, suggesting that deep phenotypic profiling may help in predicting
the presence of a pathogenic variant. Despite the high performance of our panel, whole exome-
sequencing (WES) approaches may represent a more robust solution. For this reason, we propose the
list of genes included in our customized gene panel and the variant filtering procedure presented
here as a first-tier approach for the molecular diagnosis of NDDs in WES studies.

Keywords: neurodevelopmental disorders; intellectual disability; autism; gene panel; next generation
sequencing; re-analysis

1. Introduction

Neurodevelopmental disorders (NDDs) are a group of clinically and genetically het-
erogeneous diseases, collectively affecting 2–5% of the general population [1]. NDDs
typically manifest during childhood as a result of abnormal brain development leading
to anomalies in cognitive and learning abilities, behavior, and memory. Among NDDs,
intellectual disability (ID) affects 1 to 3% of the population [2] and impairs the correct
functioning of conceptual skills, social abilities, and everyday self-management tasks of
affected individuals [3,4], representing a significant public health problem [5]. Up to 50%
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of ID cases are due to genetic causes, while environmental exposure to specific teratogens,
viral infections, radiation, severe head trauma and lack of oxygen to the brain are known
non-genetic causes of ID and account for approximately 30% of total ID cases [6].

In the last decade, next-generation sequencing (NGS) technologies have been inte-
grated into clinical practice and are being proposed as a first-tier approach for ID molecular
diagnosis [7]. Overall, sequencing-based approaches allow the identification of the causal
genetic factor in ~30% of ID cases [8,9] and facilitate the discovery of new causal genes.
This fast-growing amount of information is stored in publicly accessible databases, such
as SysNDD and SFARI, among others [10,11]. ID is genetically highly heterogeneous and
its genetic basis is shared with other NDDs [12], explaining in part their observed comor-
bidity. For instance, 70% of patients affected by autistic spectrum disorder (ASD) also
show ID; conversely, 40% of ID patients display ASD [13]. Several causal genes are shared
among various NDDs and converge to a limited set of biological processes, such as those
regulating synaptic plasticity, chromatin remodeling, gene transcription, and protein degra-
dation [14,15]. Consequently, the analysis of the genes related to these relevant molecular
pathways may allow the identification of the pathogenic genetic factors in a significant
proportion of NDDs cases [12].

Although whole exome sequencing (WES) approaches allow us to interrogate the
entire set of human coding regions, gene panels permit the analysis of specific genes of
interest, representing a fast cost-effective solution for NDD molecular diagnosis [16]. In
addition, gene panel approaches reduce the possibility of detecting variants of unknown
significance and incidental findings, which may lead to uncertainty in patients rather than
clarity. Many customized panels have been developed to fit with the limited bioinformatics
and computational resources of most clinical diagnostic services, leading to a diagnostic
rate ranging from 10 to 25%, depending on the panel used and the clinical characteristics of
the patients studied [17].

In this work, we present a customized gene panel for NDD molecular diagnosis
(mainly ID and ASD). Pathogenic/likely pathogenic variants were identified in 28.6% of
patients. Disease severity had no effect on the diagnostic yield, which was significantly
higher in patients affected by ID/global developmental delay (GDD) compared to ASD
patients. Since WES approaches are replacing gene panel studies, we propose the list of
460 genes included in our custom gene panel and the filtering procedures presented here
as a first-tier virtual panel approach for the fast molecular diagnosis of NDDs.

2. Materials and Methods
2.1. Patients Description and Classification

We screened 398 patients (247 males, 151 females) from the Clinical Genetics Unit at the
Parc Taulí Hospital Universitari (Sabadell, Spain) between March 2019 and December 2021.
Most of the selected patients were previously tested and negative for array-CGH and FMR1
CGG expansion studies. Patients having consanguineous parents were excluded from
this study. Informed consent was obtained from patients, parents or enrolled participant’s
legal representatives.

Clinical characteristics were manually extracted from the patient’s electronic health
record and codified using Human Phenotype Ontology (HPO) codes [18]. The list of con-
sidered patients, their demographic information, and clinical characteristics are available
in Table S1.

Since all enrolled patients had a clinical diagnosis of ID/GDD or ASD, HPO codes
were leveraged to classify patients into two possible subsets. The autistic spectrum disorder
(ASD) subset comprised 76 patients with HPOs related to autistic behavior (HP:0000729,
HP:0000735, HP:0000728, HP:0008763, HP:0000758, HP:0000717, HP:0031433, HP:0000723,
HP:0000753) but without HPOs related to ID/GDD (HP:0001249, HP:0001256, HP:0010864,
HP:0006887, HP:0006889, HP:0002187, HP:0002342, HP:0001263, HP:0012758, HP:0100543).
All the remaining 322 patients were included in the ID/GDD subset.
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To test whether clinical and demographic features could predict the absence/presence
of a pathogenic variant, each single HPO term used was classified into 16 possible cate-
gories representing different affected systems or clinical entities. The following categories
were taken into account as predictors: “Abnormality of metabolism/homeostasis”, “Ab-
normality of prenatal development or birth”, “Abnormality of the cardiovascular system”,
“Abnormality of the digestive system”, “Abnormality of the ear”, “Abnormality of the
endocrine system”, “Abnormality of the eye”, “Abnormality of the genitourinary sys-
tem”, “Abnormality of the head”, “Abnormality of the integument”, “Abnormality of the
musculoskeletal system”, “Abnormality of the respiratory system”, “Abnormal nervous
system morphology”, “Abnormal nervous system physiology”, “Behavioral abnormality”,
“Intellectual disability”. The list of HPOs included in each category is available in Table S2.
In addition, the patient’s sex and the total number of affected categories were also used as
predictors in our analysis. For each considered predictor, a correlation-like measure was
computed to test its association with the presence of the pathogenic variants. In particular,
the Glass rank biserial correlation coefficient was computed for the predictor total number
of affected categories, while φ correlation coefficients were computed for the rest of the
considered predictors.

A random forest (RF) analysis was carried out using the R library “randomforest” to
evaluate the combined predictive ability of all the considered predictors. To assess the
accuracy of the model, out-of-bag (OOB) estimates were used. The model was grown using
5000 trees, which were sufficient to achieve stable OOB estimates. Data were stratified by
outcome; an under-sampling without replacement technique to balance the dataset was
used by randomly selecting 80% of the least frequent category (presence of a pathogenic
variant). Default values were used for all the other RF parameters.

For exploratory purposes, we aimed to identify shared phenotypic profiles among
patients harboring pathogenic variants (analysis of prototypes). To this end, patient’s
pairwise proximities (PROX) derived from the RF classifier were transformed to dissimilar-
ities (1-PROX) and a hierarchical clustering was performed using the Ward agglomerative
method. The resulting dendrogram was used to manually identify groups of neighbor
patients harboring pathogenic variants. Finally, the phenotypic features of the patients in
the identified groups were compared to those of the rest of the patients.

2.2. Gene Panel Content

As most identified NDD genes follow a dominant inheritance model [19], a customized
gene panel (NNDTauliPanel) was designed to cover the coding region of 460 autosomal
dominant or X-linked genes associated with ID/GDD or ASD. Genes were extracted
from the SysID database (https://sysndd.dbmr.unibe.ch/ accessed on 20 January 2019),
a manually curated database of known ID-associated genes [11]. ASD-associated genes
were extracted from SFARI (https://gene.sfari.org/ accessed on 20 January 2019) (score
1 or 2 genes), an evolving database for the autism research community [10]. The initial
list of genes was manually reduced to fit with the library and sequencing requirements of
an Illumina MiSeq platform, considering the genes ascertained to be strongly associated
with ID/GDD or ASD. The Design Studio software (Illumina, Inc., San Diego, CA, USA)
was used to design an enrichment library to sequence the coding regions of the final list
of 460 genes. Overall, the designed probes covered a total of 1.73 Mb of coding sequences
(and 20 bp intronic sequences at each side), representing 1.57% of the whole human exome
and 0.05% of the whole human genome. The list of genes, exon coordinates, and obtained
coverage values is available in Table S3.

2.3. Sequencing and Data Processing

Sequencing was performed using the NDDTauliPanel and an Illumina MiSeq platform
(Illumina, San Diego, CA, USA), producing 2 × 150 nt paired-end reads. Raw data quality
was assessed using FastQC software (v0.11.8) [20]; raw reads were mapped to the human
reference genome (hg19) using Burrows–Wheeler aligner (BWA, v0.7.17-r1188) [21] and

https://sysndd.dbmr.unibe.ch/
https://gene.sfari.org/
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subsequently processed using the Genome Analysis Toolkit (GATK) [22] to remove PCR
duplicates and perform base quality score recalibration. Only bases with a Phred quality
score >18 were considered for variant calling and only variants with Phred-scaled confi-
dence >10 were called using the Haplotype Caller tool from GATK (v4.0.11.0) [23]. Variant
annotation was performed using WGSA pipeline (version 0.85) [24].

Coverage analysis was performed for each considered expanded exon (20 bp at each
side). For every patient, an average coverage of 244× was obtained and on average 98.05
and 92.41% of the considered positions had coverage ≥ 10 and ≥50, respectively (Table S3).
For SYNGAP1, TUBB, and EHMT1, the sequencing was not possible in 7, 3, and 1 of
their exons, respectively, and genetic variation could not be interrogated in these regions
(Table S3).

2.4. Variant Filtering

A stringent in-house filtering pipeline was developed to detect highly penetrant ultra-
rare variants. Firstly, variants with a read depth < 10 and variants with an allele count > 4
in gnomAD [25] were discarded. Variants with a proportion of the alternate allele < 30%
were also discarded.

Among variants passing the above filtering criteria, only those predicted to affect
the protein sequence were considered for further analysis. Only loss of function (LoF)
variants (stop gain, frameshift, canonical splicing, start loss), stop loss, non-frameshift,
missense, and variants predicted to affect splicing were considered. Variants detected with
a score ≥ 0.5 by either SQUIRLS [26], spliceAI [27], splice ADA, or splicing RF [28] were
considered as variants predicted to affect splicing and thus retained.

Finally, variants were prioritized, considering as candidate those that (i) are reported
as pathogenic/likely pathogenic in ClinVar, (ii) are absent in gnomAD, and (iii) are pre-
dicted to strongly affect protein function (LoF, non-frameshift with a PROVEAN [29]
score ≤ −2.5, missense predicted to be deleterious by ≥50% of available bioinformat-
ics predictors, variants predicted to affect splicing). For missense variants, the follow-
ing bioinformatics predictors were used to assess their deleterious effect: (i) predic-
tors based on functional prediction (SIFT, SIFT4G, Polyphen2-HDIV, Polyphen2-HVAR,
LRT, MutationTaster2, MutationAssessor, FATHMM, MetaSVM, MetaLR, CADD, VEST4,
PROVEAN, FATHMM-MKL, FATHMM-XF, fitCons, DANN, GenoCanyon, Eigen, Eigen-
PC, M-CAP, REVEL, MutPred, MVP, MPC, PrimateAI, DEOGEN2), and (ii) predictors based
on conservation scores (bStatistic, phyloP100way_vertebrate, phyloP30way_mammal,
phyloP17way_primate, phastCons100way_vertebrate, phastCons30way_mammal, phast-
Cons17way_primate, GERP++ and SiPhy).

2.5. Re-Analysis Variant Filtering

Since the filtering pipeline was extensively changed from its initial version, once all
samples had been processed, the whole dataset was re-analyzed in January 2022, consider-
ing the most updated version of the pipeline. In addition, a different setting for the variant
filtering process was implemented to also detect variants in mosaic state and variants with
a low proportion of the alternate allele. Again, variants with a read depth < 10 and variants
with an allele count > 4 in gnomAD were discarded. Variants with a read depth ≥ 10 and
<50 were discarded when the proportion of the alternate allele was <20% for LoF variants
or <25% for non-LoF variants, respectively. To detect mosaic variants, those with a read
depth ≥ 50 and a proportion of the alternate allele ≥ 10% were retained. To mitigate
the possible increase in false positives, a mechanism to easily identify sequencing errors
was implemented. In particular, variants absent in the general population but present in
>3 patients of our cohort were highlighted as potential false positive calls.

2.6. Copy Number Variants Detection and Filtering

Copy number variants (CNVs) were called using XHMM [30] and ExomeDepth [31].
To reduce the number of false positive CNV calls, those reciprocally sharing 80% of their
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length with >3 other CNVs calls were discarded. Similarly, CNVs reciprocally sharing
90% of their size with those having an allele count > 10 or an allele frequency > 0.0001 in
either DGV [32] or gnomAD were discarded. Finally, CNVs called by only one software
and with a Phred score < 20 for XHMM or <3 for ExomeDepth were discarded. CNVs were
prioritized by considering as candidates those called with a Phred score ≥ 30 by XHMM
and a Phred score ≥ 20 by ExomeDepth.

2.7. Exome Sequencing

In order to compare the NDDTauliPanel performance with WES approaches, for
85 out of the 284 patients with negative NDDTauliPanel, WES was performed using the
KAPAHyper Exome kit (Roche) on a NovaSeq 6000 platform (Illumina) producing 2 × 50 nt
paired-end reads at CNAG-CRG (Barcelona, Spain). Data processing, variant calling and
filtering procedures described in Sections 2.3–2.6 were also applied to WES data. Con-
sidering the current information stored at SysNDD and SFARI (accessed on 20 December
2022), an updated virtual version of the NDDTauliPanel was generated. To filter variants
located in genes following a recessive inheritance model, compound heterozygous and ho-
mozygous variants with a frequency≥ 0.1% or found in homozygosity in >4 individuals in
gnomAD were discarded. The filtering criteria described in Sections 2.4–2.6 were applied
for dominant and X-linked genes.

2.8. Variant Validation and Classification

A manual search was carried out for the variants passing the filtering criteria to
check if the clinical characteristics described in the literature were consistent with those
of the patient carrying a given variant of interest. The inheritance pattern of the selected
variants was assessed using Sanger sequencing for SNPs and indels, while MLPA or
array-CGH was used for putative CNVs. Variants were classified following the American
College of Medical Genetics and Genomics and the Association for Molecular Pathology
(ACMG/AMP) guidelines [33] and the recommendations provided by the Sequence Variant
Interpretation working group at ClinGen for criteria PVS1, PM2 and PS2/PM6 (https:
//clinicalgenome.org/working-groups/sequence-variant-interpretation/ accessed on 4
October 2022). Variants classified as pathogenic and likely pathogenic were submitted
to ClinVar.

3. Results
3.1. Diagnostic Yield, Variant Types, and Genes

The NDDTauliPanel was used for the molecular diagnosis of 398 patients with an
average age of 14.5 years old (standard deviation = 11.20 years old) affected by either
ID/GDD or ASD. On average, only six variants per sample were kept after filtering, and of
those, only 1.6 variants per sample were prioritized as candidates. Overall, 99.73% of the
detected variants were eliminated during the filtering process.

According to the ACMG/AMP criteria and ClinGen recommendations, 80 pathogenic
and 35 likely pathogenic variants in 114 patients were identified (one patient carried two
pathogenic variants), leading to a final 28.6% diagnostic yield (Table S4).

Among these pathogenic/likely pathogenic variants, 73.9% were de novo, 10.4% were
inherited, 8.7% were not inherited by the single available parent, and for 7% of variants
inheritance could not be assessed (Table 1). LoF variants represented 53.9% (62 variants)
of those reported as pathogenic/likely pathogenic, while 35.7% (41) and 4.3% (5) variants
were missense and non-frameshift, respectively. In addition, CNV calling using the NGS
data allowed the identification of three pathogenic deletions and two likely pathogenic
duplications. Finally, two variants predicted to affect the splicing process were identified, a
pathogenic de novo intronic variant in SETD5 and a pathogenic de novo synonymous variant
in ARID1B (Tables 1 and S4). In both cases, mRNA analysis had been previously reported
in the literature, demonstrating their effect on splicing and the generation of a truncated
protein product [34,35].

https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
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Table 1. Diagnostic yields, inheritance patterns and variant types for pathogenic/likely pathogenic variants.

ALL ID/GDD ASD

Patients (M/F) 398 (247/151) 322 (180/142) 76 (67/9)
All 28.6% 33.2% 9.2%
M 24.7% 30.0% 10.4%

Diagnostic
yield

F 35.1% 37.3% 0.0%

Inheritance
Pattern

de novo 73.9% (85) 64.8% (79) 85.7% (6)
Inherited 10.4% (12) 10.2% (11) 0.9% (1)

X-linked (M/F) 16.5% (7/12) 17.6% (7/12) 0.0% (0)
Uncertain/NA 15.7% (10/8) 16.7% (10/8) 0.0% (0/0)

LoF 53.9% (62) 51.8% (56) 85.7% (6)
Missense/in

frame 40.0% (41/5) 41.7% (41/4) 14.3% (0/1)

Cryptic splicing 1.8% (2) 1.9% (2) 0.0% (0)Variant type

CNVs
(DEL/DUP) 4.3% (3/2) 4.6% (3/2) 0.0% (0/0)

ID/GDD and ASD subsets explained in Section 2.1; the total numbers of patients or variants are reported in
parentheses; M = males; F = females; NA = not available; DEL = CNV deletion; DUP = CNV duplication.

Pathogenic variants were identified in 83 different genes. For 25 different genes,
pathogenic/likely pathogenic variants were detected in more than one patient (Table S4).
Among those, five de novo pathogenic variants were identified in ANKRD11, causing KBG
syndrome, characterized by macrodontia of the upper central incisors, characteristic facial
features, short stature, developmental delay/intellectual disability, and
behavioral issues [36].

Remarkably, a de novo missense and a de novo frameshift deletion were detected in two
male patients in the FMR1 gene. The patient carrying the frameshift deletion showed clinical
characteristics compatible with Fragile X syndrome. Instead, the patient harboring the
missense variant was affected by severe ID and presented clinical features not suggesting
Fragile X syndrome. Pathogenic variants in the coding region of FMR1 are causal in <1%
of Fragile X syndrome cases and only a few dozen patients with point variants have been
reported in the literature to date [37].

A de novo likely pathogenic duplication predicted to affect exons 2–14 was initially
identified from NGS data in WDR26 and confirmed by array CGH to involve the whole
sequence of WDR26. To our knowledge, no patients have been reported in the literature
with duplications involving WDR26. In addition, a splicing likely pathogenic variant was
identified in WDR26 for a second patient and a de novo recurrent missense likely pathogenic
variant was also detected in FBXO28 for a third patient. WDR26 and FBXO28 are located
within the 1q41-q42 deletion syndrome critical region, a rare cause of intellectual disability,
seizures, facial dysmorphia, and multiple anomalies [38]. All three patients with variants
in WDR26/FBXO28 were affected by severe ID, epilepsy, dysmorphia, behavioral abnormal-
ities, and central nervous system alterations, including incomplete hippocampal inversion,
corpus callosum hypoplasia, or cerebellar atrophy. None of our patients showed the char-
acteristic multi-system features of patients affected by 1q41-q42 deletion syndrome [39].

3.2. Data Re-Analysis

Once all samples had been processed, the whole dataset was re-analyzed to capture
putative variants in mosaic state and variants with a low proportion of the alternate
allele. Comparing original and re-analysis data, 93 variants previously not detected were
identified and 15 were selected for further analysis.

Of those, a frameshift insertion in OTUD7A and 5 CNVs resulted in being false posi-
tives. Finally, five variants (two missense, one frameshift, one stop gain, one CNV deletion)
were classified as pathogenic and one missense variant as likely pathogenic (Table S5),
increasing the diagnostic yield from an initial 27.1% to the final 28.6%. Among the six
pathogenic/likely pathogenic variants detected in the re-analysis, two were identified
reducing the original alternate allele frequency threshold from 30% to 25%; three variants
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were identified using the filtering criteria designed to detect variants in the mosaic state
(Table S5). However, when validated through Sanger sequencing, those variants appeared
to be in heterozygous state (Figure S1).

Remarkably, among the eight SNV and indels considered in the re-analysis (Table S5),
only a frameshift insertion in OTUD7A resulted to be false positive. Although our results
are based on a limited number of observations, our findings suggest that for these types
of variants the joined usage of relaxed quality criteria and a mechanism to easily detect
sequencing error could significantly increase the sensitivity, with a minor effect on the
number of false positives generated.

3.3. Sex and Patient Subset Analysis

Clinical characteristics were manually retrieved from electronic health records and
codified using HPO terms (Table S1). Taking advantage of the codified clinical features,
patients were classified either in ID/GDD or ASD subsets, as explained in Materials and
Methods (Section 2.1). In total, 322 patients (180 males, 142 females) were included in the
ID/GDD subset, and 76 patients (67 males, 9 females) in the ASD subset.

The diagnostic rate ranged from 33.2% for the ID/GDD subset to 9.2% for the ASD
subset (p-value = 5.69 × 10−5 for X2 test), suggesting that the designed custom gene panel
has a very high performance for patients affected by ID/GDD. Although the diagnostic
yield was much lower in ASD patients, a recent meta-analysis evaluating several gene
panels demonstrated that the diagnostic rate in ASD patients ranges from 0.22 to 10% [40]
indicating that NDDTauliPanel has a high performance for ASD patients as well.

Males were significantly enriched in the whole cohort (p-value = 1.494 × 10−6 for X2

test) and even more in the ASD subset (p-value = 4.648 × 10−11 for X2 test). However,
pathogenic/likely pathogenic variants were identified in a higher proportion of females
(p-value = 0.03 for X2 test) (Table 1). As reported by previous studies, our finding supports
a female protecting (or male susceptibility) effect, in which females require a higher mu-
tational burden to develop NDD clinical manifestations [41–43]. Pathogenic variants in
the 106 X-linked genes included in the NDDTauliPanel were detected in 7.9 and 2.8% and
accounted for 20.4 and 11.4% of total pathogenic variants in females and males, respectively.
These findings indicate that X-linked genes do not account for the higher number of affected
males among NDD patients (Table S4). Most variants in X-linked genes in females were de
novo (8 out 10 tested) and four of them were located in genes known to escape X-inactivation
(DDX3X, USP9X and IQSEC2), for which pathogenic variants are usually lethal in males
and clinical manifestations are only observed in females. All the other variants identified
in X-linked genes were located in genes not known to escape X-inactivation and for which
females often show a milder phenotype than males.

3.4. Clinical Profiling

For 261 patients in the ID/GDD subset, the severity of the ID was extracted from the
patient’s electronic health record (Table S1). In detail, 60 borderline, 111 mild, 55 moderate,
and 35 severe ID patients were identified. No significant differences in the diagnostic
rate were observed among ID categories (p-value = 0.21 for X2 test), even though the
diagnostic yield ranged from 28.3% in borderline patients to 37.1% in patients with severe
ID (Table S1).

In order to check if phenotypic features could predict the presence of a pathogenic
variant, correlation coefficients and their confidence intervals were computed for the
16 HPO categories, the number of affected HPO categories, and the sex. Although each
single variable had a poor predictive power, the predictors: number of affected HPO
categories, sex, ID, abnormalities in the nervous system morphology, and abnormali-
ties of the musculoskeletal system positively associated with the presence of pathogenic
variants (Figure 1a).
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Figure 1. Association of phenotypic variables with the presence of pathogenic variants and random
forest analysis results. (a) Correlation coefficients and corresponding 95% confidence intervals for
the phenotypic variables described in Section 2.1. The Glass rank biserial correlation coefficient
was obtained for the variable “Number of categories”, while for all the remaining variables, the φ

correlation coefficient was computed. (b) Receiver operating curve (ROC) and area under the curve
(AUC) for the prediction model in the random forest analysis (left). On the right are represented the
distributions of random forest votes between patients with identified pathogenic variant (red) and
the rest (blue).

Subsequently, a random forest analysis was performed to assess the joint predictive
power of the considered variables in predicting the presence of a pathogenic variant.
Overall, the model showed a sensitivity of 64%, a specificity of 59.6%, an accuracy of 60.1%
and area under the curve (AUC) of 0.63 (CI 0.57–0.69) (Figure 1b, left), suggesting that the
set of variables poorly predicts the presence of pathogenic variants. Consistently with this
weak discrimination ability, patients with and without pathogenic variants showed a small
although significant difference in the probabilities provided by the random forest model
(median differences = 0.12, Mann–Whitney U-test p-value = 6.56 × 10−6) (Figure 1b, right).
Although the considered variables have poor predictive power, this evidence suggests that
some phenotypic differences exist between patients with identified pathogenic variant and
the rest.

To test whether patients could be grouped together according to their shared pheno-
typic features, an exploratory analysis was conducted on the proximities derived from the
random forest model (prototype analysis). Three different groups enriched with patients
harboring pathogenic variants were identified (Figure S2). A diagnostic yield of 56, 46.3,
and 50% was achieved for the 25, 54, and 26 patients in groups 1, 2, and 3, respectively
(Table S6). The phenotypic features defining the clinical profiles of these three groups are
available in Table S6.



Genes 2023, 14, 708 9 of 13

3.5. WES Analysis

For 85 out of the 284 patients with a negative NDDTauliPanel, WES was performed and
pathogenic/likely pathogenic variants were identified in 16 patients (Table S7). Of those,
variants in compound heterozygous or homozygous state were detected in five patients
in recessive genes not covered by the NDDTauliPanel. For ten patients, pathogenic/likely
pathogenic variants were located in genes related to dominant forms of ID but not included
in our design (two variants in AP1G1, one variant in JARID2, RHEB, TAF1, TRPM3, SPEN,
MAP1B, SHANK1, and GRIA2). Finally, for a pathogenic variant located at the 5′ end of
exon 24 of SHANK3, the coverage obtained from the NDDTauliPanel did not reach the
minimal requirements for considering the variant. In contrast, the 46x coverage obtained
from WES was sufficiently high to allow its detection.

4. Discussion

The advent of high-throughput sequencing technologies has revolutionized the molec-
ular diagnosis of neurodevelopmental disorders (NDDs) and has facilitated the identifi-
cation of a growing number of associated genes and the detection of shared molecular
pathways playing a central role in their etiopathogenesis. Although current technologies
allow us to interrogate the whole genome, generally, molecular diagnosis is obtained con-
sidering a portion of the genome, either the exome or a limited list of genes related to a
disease of interest. Using an in-house targeted gene panel sequencing strategy, a 28.6%
global diagnostic yield was obtained in 398 patients affected by ID/GDD and ASD.

A higher diagnostic yield was observed in females, despite the higher proportion
of males in the cohort, supporting a female protecting effect. As previously reported,
the diagnostic rate was significantly higher in patients affected by ID/GDD than those
solely affected by ASD [44]. Interestingly, most of the NDD patients were affected by
borderline/mild forms of ID, suggesting that NDDTauliPanel represents a powerful solu-
tion independent of the patient’s ID level. Although patients included in this study were
recruited only by one hospital, which could lead to a possible ascertainment bias and a
higher diagnostic yield, no differences in the diagnostic rate were observed between the
ID severity levels, as previously reported for pathogenic CNVs in patients with ID and
comorbid psychiatric disorders [45].

Our NDDTauliPanel outperforms most of the gene panel approaches for both ID/
GDD [9] and ASD patients [40]. In particular, a higher diagnostic rate was achieved using
the NDDTauliPanel compared to 22 out of the 26 gene panel approaches having a sample
size >100 described in a recent meta-analysis [9] (Figure S3). The remaining four studies
were focused on early onset epilepsy [46,47], and early infantile onset developmental and
epileptic encephalopathies [48,49], for which a much higher diagnostic yield was reported
in the literature compared to ID/GDD and ASD [50].

Despite the high diagnostic rate obtained from the NDDTauliPanel, our results suggest
that WES solutions may represent a more powerful approach, allowing the detection
of pathogenic variants in genes with recessive inheritance and those recently described
to be associated with NDDs. The NDDTauliPanel was designed using the information
available in January 2019 and represents only a subset of all the NDD genes discovered
to date. Considering 480 exomes previously analyzed by our laboratory, an average of
115x coverage was obtained for the genomic positions of the pathogenic/likely pathogenic
variants detected using the NDDTauliPanel, demonstrating that current WES approaches
guarantee high coverage over all variants identified in this work. However, in WES studies,
identifying the causal genetic factors is more time-consuming due to the higher number of
variants generated. Considering our WES data and the current size of SysNDD and SFARI,
27 times more variants were obtained in WES compared to NDDTauliPanel after variant
filtering, which significantly increases the cost and the turnaround time compared to the
gene panel setting.

Leveraging the codified phenotypic features retrieved from the patients’ electronic
health records, we aimed to identify the clinical profile of patients with identified pathogenic
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variants. As a whole, the considered phenotypic features poorly predicted the presence of
a pathogenic variant. However, our results demonstrate that specific subgroups of patients
show particular phenotypic features. Although the identified clinical profiles cannot be
introduced into current clinical practice, we believe that the use of codified clinical features
joined with deep-phenotyping techniques may improve decision making for genetic testing.

Considering the constant drop in sequencing price, the computational costs and all the
evidence provided by this work, we propose the list of 460 genes included in our custom
gene panel and the variant filtering procedure presented here as a first-tier approach for the
molecular diagnosis of NDDs in WES studies. The joint usage of (i) the proposed virtual
gene panel, (ii) a very stringent filtering procedure, (iii) procedures for the identification of
sequencing errors, (iv) multiple softwares for the detection of CNVs and cryptic splicing
variants, and (v) criteria for variant prioritization may result in a limited list of candidate
variants, leading to the identification of the pathogenic genetic variants in approximately
30% of NDD patients in WES studies.

5. Conclusions

Nowadays, both WES and whole genome sequencing (WGS) are cost-effective, al-
though at present for WGS settings, the computational resources available in most clinical
laboratories are not sufficient for the analysis of hundreds of patients. For this reason,
currently WES studies represent the most common solution adopted by clinical laboratories
for the molecular diagnosis of genetic diseases. The major challenge in analyzing both
WES and WGS data is represented by the vast number of variants generated and their
subsequent interpretation. Although WES solutions are replacing gene panel studies, the
results presented here highlight the importance of stringent filtering criteria for the efficient
detection of causal genetic variants. To this end, we propose the implemented filtering
procedure and the list of 460 genes used in the NDDTauliPanel as a first-tier virtual panel
for WES studies in patients affected by dominant or X-linked forms of NDDs.
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