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Abstract: Copy number variation (CNV) is an important class of genetic variations widely associated
with the porcine genome, but little is known about the characteristics of CNVs in foreign and indige-
nous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous
pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP
BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP
and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86)
copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and
WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively.
Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1,
FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population;
these genes were a loss event in the WECP population. This study provides important information
on CNV differences between foreign and indigenous pig breeds, making it possible to provide a
reference for future improvement of these breeds and their production performance.

Keywords: copy number variation; Anhui indigenous pig breeds; Western commercial pig breeds;
SNP; immune; meat quality

1. Introduction

With the development of DNA sequencing technology and other molecular biology
techniques, different types of genetic variations can be investigated at the DNA level such
as single nucleotide polymorphism (SNP), insertion-deletion (indel), microsatellite DNA,
copy number variations (CNVs), and structural variations in large indels [1]. These rich
variants are the driving force of biological evolution and one of the factors that cause genetic
and phenotypic diversity. CNVs are mutations of DNA fragments ranging from kilobases
to megabases in length, which are prevalent in human and domestic animal genomes [2]. In
recent years, most studies have considered SNPs as the main genetic variants contributing
to phenotypic diversity [3], while structural variations have scarcely been investigated
despite their significant impact on explaining phenotypic variation. Speciation is correlated
with reduced gene flow among genetically differentiated populations. Paudel et al. [4]
identified 1408 CNV regions (CNVRs) in Sus domesticus and determined that CNVs evolve
approximately 2.5 times faster than SNPs. Therefore, studying CNVs in the genome is
useful for understanding the genetic diversity of genomes, the genomic makeup of different
species, and individual differences.
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In previous studies, it was found that CNVs mainly occurred during meiosis. They
were caused by chromosomal structural rearrangements resulting in non-allelic homol-
ogous recombination that could be passed to offspring [5], with some CNVs occurring
during the period of DNA self-repair. Lee et al. proposed the fork stalling and template
switching model to explain some of the complex CNV formation mechanisms [6]. CNVs
have now been identified in approximately 12% and 7% of the human [7] and mouse
genomes [8], respectively, and studies have successfully detected a large number of CNVs
in domestic animals. Many studies have reported that CNVs affect protein-coding genes in
pigs [9], humans [10], mice [11], cattle [12], and other species.

Because CNVs cover a broader genomic region in domestic animals, many studies
have reported that CNVs play an important role by potentially altering gene structure
and dosage, exposing recessive alleles, alternating gene regulation, and affecting other
mechanisms [13]. For example, a large segment of duplication on the Z chromosome of
chickens leads to blocked chicken feather development and late feathering [14]. A porcine
study identified a significant relationship between the copy number gain of the proto-
oncogene (c-KIT) on chromosome 8 [15]. In addition, many studies have found that some
CNVs have a significant impact on various complex characteristics and biological processes,
including phenotypic and important economic traits, such as milk production [16], repro-
ductive [17,18], and growth traits [19]. We, therefore, consider it important to use CNV
studies for animal genetic improvement.

Western commercial pig (WECP) breeds have advantages in growth rate, daily gain,
and other features, whereas Anhui indigenous pig (AHIP) breeds have advantages in
meat quality, disease resistance, and other traits. Our group previously evaluated runs
of homozygosity and SNP signatures of selection, identifying many differential gene
expression patterns between AHIP and WECP populations. Currently, there are no reports
of CNVs between the AHIP and WECP populations, nor are there any reports of differences
between the two populations caused by CNVs. This study used the Illumina Porcine 80K
SNP BeadChip and Penn CNV software to identify autosomal CNVs in 320 pigs from the
AHIP and WECP populations. We analyzed the distribution of CNVs in the pig genome and
different populations to comprehensively determine the population genetic background
differences and genetic diversity of AHIPs and WECPs, providing crucial information for
the genetic improvement of these breeds through sustainable breeding programs.

2. Materials and Methods
2.1. Ethics Statement

All experiments in this study were carried out in accordance with the recommen-
dations of the Animal Care Committee of the Anhui Academy of Agricultural Sciences
(Hefei, China). The program was approved by the Animal Protection Committee of Anhui
Provincial Agricultural Science (Hefei, China; No. AAAS2020-04).

2.2. Samples and Genotyping

A total of 320 blood samples were collected from 10 breeds of pigs, including 5 foreign
breeds (WECP): Yorkshire (n = 50), Landrace (n = 30), Duroc (n = 30), Pietrain (n = 30),
Berkshire (n = 30), and 5 indigenous Anhui pig populations (AHIP): Anqing six-end-white
pig (ASP, n = 30), Wei pig (WP, n = 30), Wannan Spotted pig (WSP, n = 30), Wannan Black pig
(WBP, n = 30), and Huai pig (HP, n = 30). We considered two different groups based on the
results obtained in the previous study [20]. We extracted genomic DNA from ear tissues using
the traditional phenol/chloroform method. The concentration and purity of genomic DNA
were assessed using a NanoDrop™ 2000 (Thermo Fisher Scientific, Waltham, MA, USA).

The Porcine SNP80k BeadChip (Illumina, San Diego, CA, USA) includes 68,528 SNPs
with an average gap length of 38 kb on each chromosome and was used for individual
genotyping. GenomeStudio version 2011 (Illumina, version 1.9.4) was used for genotype
calling and SNP clustering, and tight quality control was applied to SNP filtering to improve
the precision of CNV detection. SNPs with call rates below 90%, minor allele frequencies
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below 0.03, and p-values below 1e6 for Hardy-Weinberg equilibrium were eliminated. SNPs
found on the sex chromosomes were also disregarded. Ultimately, 54,075 autosomal SNPs
were retained for CNV analysis and detection.

2.3. Genome-Wide Detection of CNVs and CNVRs

To discover CNVs, the population frequency of the B allele (PFB) of SNPs and the log
R ratio (LRR) and B allele frequency (BAF) at each SNP marker were incorporated into a
hidden Markov model using the PennCNV software [21]. Each SNP, LRR and BAF was
exported from GenomeStudio, and the PFB was created based on each SNP BAF. Based on
the Scrofa 10.2 reference genome assembly (http://may2015.archive.ensembl.org/index,
accessed on 2 June 2022), the physical locations of SNPs on chromosomes were established.
Using the gcmodel option in PennCNV, genomic waves were adjusted for the GC content
in the 500 kb genomic region around each SNP on both sides. Subsequently, each sample
was subjected to quality control before analysis to reduce the possibility of false-positive
CNVs [22]. In summary, we included samples with LRR 0.3, BAF drift 0.01, and an LRR
0.05 for the GC wave factor. Copy number variations were classified as having at least two
individuals and three or more consecutive SNPs [23].

The software CNVRuler was then used to integrate the overlapping CNVs to create
CNVRs [24]. We chose the CNV method by region approach for our investigation. Sub-
sequently, we applied a recurrence value of 0.3, as advised by the CNVRuler manual and
previous studies [25], to avoid overestimating the size and frequency of CNVRs. Finally,
control raw data filtered for occurrence in at least three individuals were used as the last of
our results.

2.4. Gene Contents and Functional Annotation

We used BioMart (http://www.biomart.org/, accessed on 15 October 2022) to identify
genes overlapping with the CNVRs, including gene ID and gene type from the Ensembl
gene 80 database based on the Sscrofa 10.2 genome assembly. Owing to the incomplete
annotation of porcine genes in the Gene Ontology (GO) or Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases, we first converted the pig Ensembl gene IDs to orthologous
human Ensembl gene IDs using BioMart [26]. The Metascape tool (https://metascape.org/,
accessed on 3 November 2022) was used for gene enrichment analysis, including GO analysis
and KEGG pathway analysis (min overlap: 3, p value cutoff: 0.01, min enrichment: 1.5).
In this study, we annotated gene sets according to the type of CNV, based on their forma-
tion mechanisms, and those with a corrected p-value of <0.05 were selected to explore the
genes involved in biological processes. In addition, information from the pig quantitative
trait loci (QTL) database was used to find QTL located in the identified CNVRs or QTL
partially overlapping with the CNVRs (at least 50% inside the CNVs) for further analysis
(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index, accessed on 5 November 2022).

3. Results
3.1. Genome-Wide Detection of CNVs

Following a strict calling pipeline in PennCNV, we discovered 11,409 CNVs in 18 chro-
mosomes, including 7546 CNVs in the WECP population (loss: 6644, gain: 902) and
3863 CNVs in the AHIP population (loss: 3368, gain: 495). A total of 604 CNVRs were
discovered by merging the CNV areas that had been determined to overlap, including 379
and 225 events in the WECP and AHIP populations, respectively. The statistical mapping
of CNVRs in autosomes of the AHIP and WECP populations is shown in Figure 1.

Among these 604 CNVRs, we found 133 gain and 471 loss events. The distribution
of CNVRs in pig autosomes is shown in Table 1. The distribution of these CNVRs on
chromosomes is shown in Figure 2 (Table S1). We also found that in the WECP population,
these CNVRs ranged in length from 4.85 kb to 9761.85 kb, with a median of 901.97 kb
and a total coverage of 553.08 Mb, corresponding to 22.57% of the pig genome. The
number of CNVRs distributed on chromosome 1 was large, with 39 CNV events. In

http://may2015.archive.ensembl.org/index
http://www.biomart.org/
https://metascape.org/
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
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the AHIP population, the CNVRs ranged in length from 25.44 kb to 6400.56 kb, with a
median of 774.74 kb and a total coverage of 267.18 Mb, corresponding to 10.90% of the
pig genome (Table S2). The number of CNVRs distributed on chromosome 1 was greatest
with 24 CNV events. The overall size distribution showed smaller CNVRs in the AHIP
population than in the WECP population (Figure 3).
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Figure 1. Statistical bar graphs of CNVRs in autosomes of the AHIP and WECP populations. A total
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yellow (AHIPs_gain), red (WECPs_loss), and green (WECPs_gain), respectively. Y-axis values are the
number of CNVRs and X-axis values are chromosomes.
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Figure 2. Genomic distribution and status of CNVRs in pig autosomes. The locations of 604 CNVRs
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green (WECPs_gain). Y-axis values are chromosome names, and X-axis values are chromosome
position in Mb, which are based on the Sscrofa 10.2 reference genome assembly.
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Table 1. The distribution of CNVRs in the pig autosomes.

Group Sample
Size

Total
Number
of CNV

Unique
Number
of CNVR

Gain Loss Average
Size (kb)

Max
Size (kb)

Median
Size (kb)

Min
Size (kb)

AHIPs 170 3863 225 47 178 1187.45 6400.56 774.74 25.44
WECPs 150 7546 379 86 293 1459.32 9761.85 901.97 4.85

Total 320 11409 604 133 471 1358.04 9761.85 4.85
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Figure 3. Different CNVR events and length statistics in the AHIP and WECP populations. The
X-axis represents the type of CNVR in the AHIP and WECP populations, and the Y-axis is the length
size of the CNVR. Violin width is wider representing more data and narrower representing less data.

3.2. Analysis of Genes within AHIPs and WECPs CNVR

In the AHIP and WECP populations, we retrieved 720 and 1749 genes within or
overlapping CNVRs, respectively, using the Ensembl genes 80 databases (reference genome:
Sscrofa 10.2, Table S2). To facilitate subsequent analyses, we converted these genes to
Sscrofa 11.1 Duroc and ultimately obtained 408 and 1113 genes in the AHIP and WECP
populations, respectively (Figure 4A) (Tables S2 and S3). The two populations had 277
common genes, with 80 unique genes in the AHIP populations and 639 unique genes
in the WECP populations. Among them, AHIPs_loss, AHIPs_gain, WECPs_loss, and
WECPs_gain contained 26, 86, 75, and 44 unique genes, respectively (Figure 4B).

3.3. Enrichment Analysis of Candidate Genes in WECPs and AHIPs

We performed enrichment analysis of genes in the WECP and AHIP populations
based on the type of CNVR events. The results of GO enrichment analysis showed
that these genes were mainly enriched in the regulation of vesicle-mediated transport
(GO: 0060627, p = 2.69 × 10−4), regulation of secretion (GO: 0051046, p = 3.98 × 10−4),
regulation of immune effector process (GO: 0002697, p = 4.58 × 10−4), and actin cy-
toskeleton organization (GO: 0030036, p = 9.40 × 10−3). The KEGG pathway analy-
sis showed enrichment in inositol phosphate metabolism (hsa00562, p = 3.13 × 10−2),
cAMP signaling pathway (hsa04024, p = 3.13 × 10−2), and pathways of neurodegeneration-
multiple diseases (hsa05022, p = 3.13 × 10−2) that were loss events in the WECP popula-
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tions (Figure 5A,B). GO enrichment analysis also showed genes that were mainly enriched
in the regulation of leukocyte mediated cytotoxicity (GO: 0001910, p = 2.78 × 10−2), the
regulation of centrosome duplication (GO: 0010824, p = 2.89 × 10−2), regulation of mi-
totic cell cycle (GO: 0007346, p = 2.89 × 10−2) and the sensory perception of umami taste
(GO: 0050917, p = 4.55 × 10−2). These were identified as loss events in the AHIP popula-
tions (Figure 5C,D) (Tables S5 and S6).
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and KEGG pathway analysis results of annotation genes in CNVR of AHIPs_gain event. (C) The GO
and KEGG pathway analysis results of annotation genes in CNVR of WECPs_loss event. (D) The GO
and KEGG pathway analysis results of annotation genes in CNVR of WECPs_gain event.



Genes 2023, 14, 654 7 of 12

4. Discussion

Pigs play an important role in human development and are the most important meat
source in the world. China has a long history of artificial domestication and has the greatest
resource of pig breeds in the world, contributing significantly to the improvement of other
pig species around the world. In recent years, joint genome-wide association studies
have found a large number of potential candidate markers associated with economic and
phenotypic traits that are important for genetic improvement of breeds. Compared with
SNPs, CNVs have unique advantages in that they have longer DNA segments and affect
gene expression more easily; therefore, they can be applied as a new molecular genetic
marker to the study of genetic mechanisms in animals [27]. In domestic animals, several
studies have revealed CNVs that can affect phenotypic qualities, economic traits, and
the prevalence of a number of serious diseases [28–30]. In our study, we performed a
genome-wide detection analysis of AHIP and WECP populations based on the Porcine
80K SNP BeadChip. After the Penn CNV software analysis, we detected 11,409 CNVs on
autosomes. We employed a significantly strict definition of overlap by CNVRuler software
processing, which ultimately obtained 604 CNVRs. However, there were some CNVRs that
appeared only at low frequency in the population, which we considered likely to be caused
by the large number of breeds in each population. A second reason may be that the SNP
BeadChip has inherent limitations in resolution and sensitivity when used to detect CNVs.
However, similar traits existed among the populations from which they were derived, and
we aimed to analyze CNV differences among the common traits.

Our research highlights an interesting pattern. The number of CNVS in the WECP
populations is larger, and the segments are longer than those in the AHIP populations. We
considered three possible reasons to explain these observations: First, the WECP population
is subjected to high intensity hybrid breeding, while the AHIP population is currently small
owing to the impact of pig plague in Africa, leading to the possible existence of some
inbreeding. These factors may result in a higher genetic polymorphism in WECPs than in
AHIPs, as reports have found that some CNVs may segregate in inbred populations [31].
The second possibility is because the tool we employed was the Porcine 80K SNP BeadChip,
which has a high marker density, but the reference genome used in the analysis was based
on the Duroc genome, which could have resulted in higher alignment for WECPs. Thirdly,
the five breeds in the AHIP population have similar origins and may have had gene
communication at an early stage or even have shared ancestry. This may not be the case
with the breeds in the WECP population, which have independent origins. We compared
our results with those of other studies; and found that the CNVs detected in this study
were greater than those identified in the Large White (LW) population by Wang et al. [32],
who used similar detection methods (Table S7). Approximately 181.71 Mb (32.85%) in
the WECP population in this study overlapped with their results; we only contrasted the
loss and gain events, and both events were not counted. The reason for this discrepancy
may be that the LW breed was included in our study, while there was only one with the
large number in Wang et al. study. Therefore, a certain degree of similarity was observed.
However, differences in domestication selection and genetic background contribute equally
to the occurrence of this phenomenon.

We next annotated the genes within the CNVR regions in the WECP and AHIP
populations and performed enrichment analyses separately by loss and gain event types
and identified several genes associated with disease resistance in the WECPs_loss event.
Forkhead Box J1 (FOXJ1) and Forkhead Box K2 (FOXK2) are among the Forkhead Box (Fox)
family members [33], and numerous studies have shown that Fox family members play
an important role in lymphatic system development and immune function regulation [34].
Ma et al. [35] found that the transcriptional and protein levels of the host factor FOXJ1
were significantly downregulated by African swine fever virus (ASFV) infection of primary
porcine alveolar macrophages. Multiple studies confirm that FOXJ1 plays an antiviral role
against ASFV replication, revealing a function for FOXJ1 in positively regulating the innate
immune response. FOXK2 was previously defined as an ILF-enhancer binding factor and
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has now been shown to bind to the IL-2 promoter [36,37], a transcription factor essential
for IL-2 mRNA synthesis in activated T lymphocytes [38]. In human studies, the disruption
of FOXK2 was found to be associated with central nervous system abnormalities and
intellectual disability [39]. Using an SNP BeadChip, Fabian et al. [40] identified some CNVs
in a population with anorectal malformations (ARM) disease, confirmed the presence of
nine submicroscopic CNVs using qPCR and suggested several genes, such as FOXK2, as
factors causing ARM disease. The mannose-binding lectin 2 (MBL2) gene is one of the
members of the C-type (Ca2+ dependent) lectin gene superfamily and plays an important
role in the first line of defense against pathogen infection [41]. The MBL-C protein encoded
by the MBL2 gene is an important component of the innate immune lectin pathway and
functions to mediate immune regulation and phagocytosis [42]. Many studies have shown
that MBL2 is an important component of the innate immune response and a key gene
regulating the resistance or susceptibility of livestock to pathogens [43,44]. Álvarez et al.
demonstrated that MBL2 underlies a QTL for immunoglobulin A levels on OAR22 of
Djallonké lambs and confirms a signature of resistance to infection with gastrointestinal
parasites [45]. In addition, we also found loss of TNF receptor superfamily member 4
(TNFRSF4 [46]). TNFRSF4 is one of the major members of the TNF receptor-family member
4 (TN-FRSF4) and is mainly inducibly expressed in activated CD4+ and CD8+ cells [47].
TNFRSF4, combined with its ligand, can promote the proliferation of T cells, prevent
the development of immune tolerance [48], and play an important role in the immune
environment [49]. In our study, we found that TNFRSF4 was lost in WECP populations.
Similarly, sirtuin 1 (SIRT1 [50]), a nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylase, is a key regulator of cell metabolism [51]. SIRT1 is involved in regulating the
activation of macrophages and T lymphocytes via the NF-kB and AP-1 pathways, inhibiting
inflammation as well as promoting cellular stress resilience by improving mitochondrial
function [52]. In studies of mice, Labiner found that a knockout of SIRT1 in mice exacerbated
renal mitochondrial dysfunction and increased inflammation and mortality in sepsis [53].
The neutrophil cytosolic factor 1 (NCF1 [54]) gene was also lost in the WECP population,
and all of them affected the immunity of individuals in earlier studies reported. Therefore,
we conjecture that the loss of these genes has the potential to be one of the important factors
that contributes to the higher resistance and immunity of Chinese domestic pigs compared
to foreign pig breeds.

Our team have previously reported significant differences in meat quality traits and fat
deposition ability between WECP and AHIP populations [55–57]. This study also detected
some genes related to intramuscular fat deposition in the CNV gene enrichment analysis
that were loss events in the WECP population. The diacylglycerol acyltransferase 1 (DGAT1)
gene belongs to the family of cholesterol acyltransferases (ACAT) and has been shown
to significantly increase intramuscular fat content in domestic animals, such as pigs [58],
cattle [59], and sheep [60]. Li et al. [61] found that the overexpression of DGAT1 elevates
intramuscular fat (IMF) content in transgenic mice generated by pronuclear microinjection
with a muscle-specific promoter of porcine muscle creatine kinase (MCK). Liu et al. [62]
were the first to detect the distribution of DGAT1 CNVs in seven Chinese goat populations
and found significant associations with important economic traits such as meat, dairy,
and fiber goats. In a porcine study, Wang et al. [63] found some CNV genes related to
lipid metabolism, such as DGAT1 and DGAT2, in the Duroc population. In our study,
we identified ten QTLs, including average daily gain (ID = 18712441), average backfat
thickness (ID = 8134840), water holding capacity (ID = 15473302), and linoleic acid content
(ID = 17965327) by gene mapping to the CNVs in the WECPs_loss group and by using
functional analysis of the location of the CNVR in DGAT1 using the PigQTLdatabase version
10.2. Domestic animals undergo a series of changes in meat quality over a period of time
after being slaughtered. Among them, the concentration of inosine 5′-monophosphate (IMP)
has been suggested to be an important factor affecting meat quality [64] because IMP is one
of the major nucleotides present in the post-mortem muscle of domestic animals produced
by the rapid degradation of ATP to ADP and AMP, followed by further degradation to
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IMP [65,66]. Related studies have reported that IMP combined with glutamic acid or
aspartic acid enhances the umami taste in meat [67]. The ecto-5′-nucleotidase (NT5E) gene
encodes the enzyme NT5E for the extracellular degradation of IMP to inosine, and several
studies have simultaneously reported that NT5E affects the overall concentration balance
of IMPs and their degradation products [68]. Komatsu et al. [69] estimated the genetic
parameters of IMP and its degradation products at four and seven days post-mortem in
cattle by using a model with or without the NT5E genotype. The results showed that the
heritability of IMP at seven days post-mortem decreased from 0.32 to 0.08 when the NT5E
genotype was included in the model. Similarly, NT5E, which is involved in the biological
process of lipid deposition, has been identified as a candidate gene for selecting markers to
control IMF formation in Chaohu ducks [70]. In this study, we identified 22 QTLs, including
those related to meat quality, such as marbling (ID = 38049), muscle movement percentage
(ID = 38073), and drip loss (ID = 21947,), based on CNVs located in the NT5E gene and the
QTL database in control pigs.

Although we found some interesting information in WECP and AHIP populations,
our study did have some limitations. We used the Porcine 80K SNP BeadChip, which has
limitations that cannot be avoided by showing the specific locations of all CNVs somatically.
Fortunately, the beadchip employed in our study was large enough for its loci to be mapped
relative to other beadchips on pigs. However, the number of groups we studied was not
very large, owing to the presence of African pig fever, which affected the number of our
groups. Therefore, in future experiments, we plan to expand the study population and
obtain phenotypic data to validate the effect of CNVs.

5. Conclusions

In this study, we evaluated CNV differences between the WECP and AHIP populations,
based on the Porcine 80K SNP BeadChip. We found 225 and 379 CNVRs in the WECP and
AHIP populations, respectively, accounting for 22.57% and 10.90% of the porcine autosomal
genome. Statistically, the number of CNVRs was greater and their length was longer in
the WECP than in the AHIP population. We performed enrichment analysis separately by
CNVR event type and found several immunity and meat quality-related candidate genes
in the WECP-loss group. Our analyses found that these genes overlapped with important
economic traits in pigs. These results can help us understand the reasons for the differences
in phenotype between the WECP and AHIP populations and help to effectively improve
the performance of these breeds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030654/s1, Table S1: Distribution of CNVRs on autosomes
in AHIP and WECP populations; Table S2: Statistics of the proportion of CNVR length in pig genome
in AHIP and WECP populations; Table S3: Statistics of annotation genes of different CNVR events
in AHIP population; Table S4: Statistics of annotation genes of different CNVR events in WECP
population; Table S5: GO and KEGG pathways analysis of the annotated genes in CNVR in the AHIP
populations; Table S6: GO and KEGG pathways analysis of the annotated genes in CNVR in the
WECP populations; Table S7: Comparison between identified CNVRs and those reported in other pig
CNVR papers.
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