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Abstract: Antipsychotic-induced akathisia (AIA) is a movement disorder characterized by a subjective
feeling of inner restlessness or nervousness with an irresistible urge to move, resulting in repetitive
movements of the limbs and torso, while taking antipsychotics (APs). In recent years, there have been
some associative genetic studies of the predisposition to the development of AIA. Objective: The
goal of our study was to review the results of associative genetic and genome-wide studies and to
systematize and update the knowledge on the genetic predictors of AIA in patients with schizophrenia
(Sch). Methods: We searched full-text publications in PubMed, Web of Science, Springer, Google
Scholar, and e-Library databases from 1977 to 2022. The Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) quality scale was used for the critical selection of the studies.
Results: We identified 37 articles, of which 3 were included in the review. Thus, the C allele of
rs1800498 (59414 C>T) and the A allele of rs1800497 (17316 G>A) (TaqIA) from the DRD2 gene as well
as the TT genotype rs13212041 (77461407 C>T) from the HTR1B gene were found to be associated
with AIA. Conclusions: Uncovering the genetic biomarkers of AIA may provide a key to developing
a strategy for the personalized prevention and treatment of this adverse neurological drug reaction of
APs in patients with Sch in real clinical practice.

Keywords: antipsychotic-induced akathisia; adverse drug reaction; extrapyramidal disorder;
antipsychotics; pharmacogenetics; gene; genetic biomarker; single nucleotide variant; association;
variation

1. Introduction

Akathisia is a neurological movement disorder characterized by a subjective feeling
of inner restlessness or nervousness with an irresistible urge to move, resulting in repeti-
tive movements such as crossing legs, swaying, or constantly switching from one leg to
another [1,2]. The first description in the literature dates back to 1901 when the Czech
neuropsychiatrist Ladislav Gaskovec described a phenomenon that he called “inability to
sit”, which was a non-drug related akathisia [3]. The first report of drug-induced akathisia
appeared only in 1960 when Kruse W. described three patients who developed “muscle
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restlessness” while taking phenothiazines (a group of antipsychotics (APs)) [4]. Akathisia
as a symptom can be a part of both hereditary and acquired neurodegenerative diseases
(Appendix A, Table A1).

The most common form of secondary akathisia is drug-induced akathisia [5]. Drug-
induced akathisia can develop while taking drugs of various pharmacological groups
(Appendix A, Table A2). However, this drug-induced neurological complication most
often develops while taking APs, including first-generation APs (haloperidol and chlor-
promazine) and second-generation APs (risperidone, olanzapine, sulpiride, ziprasidone,
quetiapine, clozapine, aripiprazole, and amisulpiride) [5].

Therefore, antipsychotic-induced akathisia (AIA) is a movement disorder occurring
while taking APs and is characterized by a subjective feeling of inner nervousness with an
irresistible urge to move (Appendix A, Figure A1) [1,2].

The prevalence of AIA among adult patients with schizophrenia (Sch) varies widely
between 0.85% and 55% around the world, while the average prevalence of AIA worldwide
is nearly 30% [6]. In addition to taking APs, there are non-modifiable and modifiable risk
factors for the development of AIA, as presented in Appendix A, Table A3.

Thus, AIA is a multifactorial neurological disorder in which both a genetic predisposi-
tion and environmental factors play a role. Non-modifiable risk factors for the development
of AIA include female sex (for tardive AIA); middle age; and genetic predisposition. In
addition, modifiable factors pose a high risk in the development of AIA, such as long-term
use of APs; vitamin B6 deficiency; ferritin deficiency; low serum iron; traumatic brain injury;
alcohol abuse; autoimmune NMDAR-encephalitis; and cancer. The genetic predisposition
to the development of AIA involves the carriage of single nucleotide polymorphisms
(SNPs) of genes, which are under the influence of external modifying factors. Based on
statistical data, the incidence of SNPs in the population is 3%, thus, when also subject to
risk factor conditions, the possibility of AIA increases significantly. The role of SNPs in the
mechanism of AIA development has been evaluated for more than 40 years and the number
of publications revealing the significance of SNPs in the pathogenesis of AIA continues to
increase [7–11]. Thus, the study of the SNPs of other candidate genes associated with AIA
in patients with Sch is relevant [12–16].

The aim of this study was to identify the relevant SNPs/polymorphisms of candidate
AIA genes since, based on these data, it is possible to compile a genetic risk panel for the
chances of patients with Sch developing AIA.

2. Materials and Methods
2.1. Search Strategy

We searched full-text publications in PubMed, Web of Science, Springer, Google
Scholar, and e-Library databases in English and Russian. The keywords were as fol-
lows: antipsychotic-induced akathisia; drug-induced akathisia; antipsychotics; genes;
adverse drug reaction; extrapyramidal disorder; antipsychotics; pharmacogenetics; ge-
netic biomarker; single nucleotide variant; association; variation; and akathisia genes. In
addition, earlier publications of historical interest were included in the review.

2.2. Eligibility Criteria

We analyzed placebo-controlled studies, cross-sectional studies, case-control studies,
case studies, systematic reviews, meta-analyses, and Cochrane reviews from 1977 to 2022.
Duplicate articles were excluded from the analysis.

2.3. Review Strategy

The analyzed data were presented as text and divided by genes. Further, the data
are summarized in Table 1, considering genes, SNPs, and the presence or absence of an
association with the risk of developing AIA.
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2.4. Data Synthesis

The search was conducted throughout the year from 10 October 2021 to 19 Septem-
ber 2022 by double independent peer review. A total of 2175 articles were found by
keywords. After exclusion, we analyzed 35 articles, and only 3 articles were found to
match the search. We excluded articles in which the data were not statistically signifi-
cant; the SNPs data did not match the international nomenclature databases; associations
with specific alleles/polymorphisms were not indicated in the articles; samples included
less than 100 people; and the articles considered associations with other manifestations
of AP-induced extrapyramidal syndrome (EPS). The search data are presented in a Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) chart flow
(Figure 1) [17]. The register number is CRD42022374137.
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2.5. Data Not Included in the Review

We excluded 20 studies that showed positive associations with AP-induced movement
disorders without differentiating with which ones [13,18–36].
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We also excluded the studies where there was no clear indication of which allele
carriers and which SNPs had a high risk of developing AIA, as well as studies where the
presented data did not match the international nomenclature databases [37,38].

Lastly, we excluded studies with statistically insignificant data [39–48].

3. Results
3.1. Genes Encoding Key Enzymes in Metabolism of Antipsychotics

Cytochrome P450 (CYP) enzymes of the liver are involved in the metabolism of more
than 85% APs [49]. Many APs undergo several sequential biotransformation reactions.
Biotransformation is catalyzed by specific enzyme systems which may also catalyze the
metabolism of endogenous substances such as steroid hormones. The liver is the major site
of biotransformation, although specific APs may undergo biotransformation primarily or
extensively in other tissues [50]. Most often, APs biotransformation reactions occur in the
liver, however, individual APs undergo these reactions to a greater or lesser extent in other
organs and tissues of the human body [49]. APs metabolized via phase I reactions have
longer half-lives (Appendix A, Figure A2) [49].

Enzymes catalyzing this phase biotransformation are mostly from the cytochrome
P450 system, flavin-containing monooxygenase system, monoamine oxidase, aldehyde and
alcohol dehydrogenase, deaminases, esterases, amidases, and epoxide hydratases [51,52].
Oxidation reactions, which occur with CYP enzymes (mixed function oxidases (MFO) or
mono-oxygenases), take place in the smooth endoplasmic reticulum (ER) of the cell [53].
These reactions involve cytochrome P450 reductase, nicotinamide adenine dinucleotide
phosphate (NADPH), and oxygen (O2). CYP enzymes also better metabolize APs with a
high-fat solubility [52]. The CYP system is involved in numerous reactions, for example,
hydroxylation; dealkylation; deamination; sulfoxidation; and oxidation [54]. The isoen-
zymes of the main APs metabolism pathways currently studied in the treatment of Sch are
CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Appendix A, Figure A3) [49].

Most often, CYP enzymes are in the liver, but they are also founded in other organs
and tissues of the human body (for example, in the small and large intestines, testicles or
ovaries, duodenum, pancreas, kidneys, spleen, lymph nodes, etc.). The enzymes of the
CYP system are in the endoplasmic reticulum in cells. The four phenotypes are distin-
guished, depending on the metabolic activity of isoenzymes, as extensive (EM—extensive
metabolizers), intermediate (IM—intermediate metabolizer), poor (PM—poor metabolizer),
and ultrafast (URM—ultrarapid metabolizers) and they are characterized by a normal,
intermediate, reduced, and increased ability to metabolize enzyme substrates, respec-
tively [55]. Carrying low-functional or non-functional SNPs of the genes encoding the
hepatic cytochrome of P450 isoenzymes in patients with PM phenotype can greatly affect
the metabolic rate of AP in one or more metabolic pathways, or AP with narrow dose
ranges, such as haloperidol [56–58] (Appendix A, Tables A4 and A5).

3.2. Genes Encoding the Transport Proteins of Antipsychotics (via the Blood-Brain Barrier)

The transcellular transport of biologically active substances via the blood-brain barrier
(BBB) can be carried out in the following ways [59,60]: simple diffusion; facilitated diffusion;
endocytosis via receptor-mediated transcytosis; and efflux transport. Efflux is the active
removal of a substance from a cell through a protein pump embedded in the cell membrane.
Efflux transport is movement in the “brain-blood” direction [59].

In recent years, much more attention has been paid to studies of this transcellular
transport pathway across the BBB [61,62]. The most important transport efflux mech-
anism is believed to be the carrier-mediated excretion of APs from the brain to blood.
BBB endothelial cells contain numerous membrane transporters involved in the influx
or efflux of various major substrates such as electrolytes, nucleosides, amino acids, and
glucose [15,61,63]. Efflux transport is based on the so-called ATP-Binding Cassette (ABC)
transport proteins associated with ATP [15,63]. ABC transport proteins have an affinity
for a broad category of solutes, especially for large fat-soluble molecules with a number
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of nitrogen and oxygen atoms in their structure. These ABC transport proteins use ATP
hydrolysis to pump molecules across the membrane and, hence, they can cause solute
efflux against a concentration gradient [15,64,65]. P-glycoprotein (P-gp: ABCB1) and breast
cancer-associated protein (BCRP: ABCG2) are the main transporters of ABC efflux in the
BBB [62,66–69].

Active transport proteins of APs efflux across the BBB from the ABC family are
increasingly recognized as important determinants of APs’ distribution in the central
nervous system (CNS) and their excretion [59,66]. The P-gp, as a transport protein, has
shown itself to be a key element of the BBB in most people. It can actively transport a huge
number of lipophilic drugs from the endothelial cells of the brain capillaries that form the
BBB. In addition to P-gp, other transporter proteins, such as members of the multidrug
resistance protein (MRP) family and BCRP, appear to contribute to APs’ efflux across the
BBB [70].

The implications of all these transport proteins at the BBB level include the minimiza-
tion or prevention of AP-induced neurotoxic adverse drug reactions (ADRs) [15,64,65],
aggravation of Sch symptoms [56,64], or development of pseudo resistance to APs [65,71].
At the same time, ABC transport proteins may also limit the central distribution of the APs
used to treat Sch, increasing the risk of developing therapeutic resistance [64,65,67].

Therefore, knowledge of the genetically determined changes in the functional activity
and expression of the aforementioned BBB transport proteins can help form a new per-
sonalized strategy for predicting the elimination of APs from the brain and provide new
therapeutic opportunities for therapeutically resistant Sch (Appendix A, Table A6).

The most studied and clinically significant transport proteins provide APs’ efflux
across the BBB and the membrane of target neurons of APs’ action [68,72] (Appendix A,
Table A7).

In the case of a genetically determined decrease in the functional activity or expression
of the P-gp, BCRP, and Multidrug Resistance-Associated Protein 1 (MRP1) transport pro-
teins at the level of the BBB endothelial cell membranes, the APs’ efflux from the brain into
the blood is disturbed to varying degrees (decreases significantly, insignificantly, or moder-
ately) [68]. This, in turn, leads to an increase in the exposure time of these APs to the brain
and an increased risk of cumulation during chronic (long-term) psycho pharmacotherapy,
and significantly raises the risk of developing serious AP-induced neurotoxic ADRs [64].
The accumulation of APs ultimately leads to a slowdown in their metabolism due to the
enzymatic system, and therefore the phenotype of such patients with Sch is more often
referred to as a PM rather than a poor transporter [73].

Appendix A, Table A6 shows that the SNPs of the ABCB1 gene are of the greatest
clinical interest in psychiatric practice since the P-gp encoded by this gene is involved
in the efflux through the BBB of many APs. The least studied is the ABCC1 gene, whose
role in pharmacogenetics (PGx) continues to be actively studied. On the other hand, some
APs (e.g., clozapine, olanzapine, quetiapine, etc.) are cleared through the BBB by several
transporter proteins, which is considered important when clinically interpreting the results
of PGx in real psychiatric practice. This demonstrates that a comprehensive approach to
assessing the contribution of the SNPs of these genes that affect the APs efflux of the first
and new generations is relevant and scientifically substantiated.

3.3. Genes Encoding Targets of Antipsychotics
3.3.1. Key Receptors for Antipsychotics Action

Many pharmacogenetic studies have confirmed the clinical validity and importance of
some brain neurotransmitter systems in mediating treatment efficacy and the onset of ADRs.
The genetic variability of dopaminergic and serotoninergic receptors plays a significant
role in APs’ efficacy [55]. Based on the fact that a dopaminergic receptor blockade is the
leading theory for the development of AIA, the genes of the dopaminergic system are key
targets [74]. At the same time, the pathogenesis of AIA is complex and the serotonergic
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and glutamatergic systems should also be considered. Thus, the genes of the serotonergic
and glutamatergic systems are also key targets [75] (Appendix A, Table A8).

3.3.2. Key Enzymes of Antipsychotics Action

Key enzymes are represented by genes encoding Heparan Sulfate Proteoglycan 2
(HSPG2), catechol-O-methyltransferase (COMT), NAD(P)H Quinone Dehydrogenase 1
(NQO1), the Regulator of G Protein Signaling 2 (RGS2), Glutathione S-Transferase Pi 1
(GSTP1), Protein Phosphatase 1 Regulatory Inhibitor Subunit 1B 9 PPP1R1B), Brain-Derived
Neurotrophic Factor (BDNF), and Manganese-containing superoxide dismutase (MnSOD)
(Appendix A, Table A9).

3.4. Evidence from a Systematic Review

Based on the results of a systematic review, we selected three studies that met the
Materials and Methods selection criteria; these studies are presented in Table 1.

Table 1. Systematic review results.

Gene
(OMIM *
Number)

SNP
(Location)

Association with
AIA p-Value Sample Country Reference

DRD2 (126450)

rs1800498
(NG_008841.1:g.59414C>T)

(TaqI_D)

Major allele C is
associated with the

risk of AIA
0.001 402 The

Netherlands [76]

rs1800497
(NG_012976.1:g.17316G>A)

(TaqIA)

Minor allele A is
associated with the

risk of AIA

0.03 402 The
Netherlands [76]

0.011 234 Australia [77]

HTR1B (182131) rs13212041
(NC_000006.12:g.77461407C>T)

Homozygous
genotype TT is

associated with the
risk of AIA

0.004 229 Croatia [75]

Note: * from the open database OMIM—Online Mendelian Inheritance in Man [78]; SNP—single-nucleotide
polymorphism; and AIA—antipsychotic-induced akathisia.

3.4.1. The DRD2 Gene

The DRD2 gene is located on the 11q23.2 chromosome and encodes D2-type dopamin-
ergic receptors [79,80]. This gene is predominantly expressed in the brain, most commonly
in the basal ganglia, midbrain, cerebral cortex, and pons (Appendix A, Figure A4) [7,81,82].

The D2 receptors are members of the G protein-coupled dopamine receptor family,
which also includes D1, D3, D4, and D5 receptor types [83]. They are involved in the
modulation of locomotion, reward, reinforcement, memory, and learning. The D2 receptor
inhibits the activity of the adenylate cyclase. Abnormalities in the structure of the DRD2
gene have been associated with affective disorders [84] and with peak dose dyskinesia
in patients with Parkinson’s disease (PD) [85]. A missense mutation in this gene can
presumably cause myoclonic dystonia. Other SNPs have been described in patients with
Sch. Alternative splicing of the DRD2 results in two transcript variants encoding different
isoforms. A third variant has been described, but it has not been determined whether this
form is normal due to aberrant splicing or not [81,86].

We found two studies of SNPs of the DRD2 gene with a risk of developing AIA.
Koning et al. [76] studied the association of thirteen SNPs of nine candidate genes (DRD2,
DRD3, 5HTR2A, 5HTR2C, COMT, NQO1, GSTP1, RGS2, and MnSOD) with the risk of
developing AIA in 402 Northern European patients with mental disorders taking APs for
at least a month. Positive statistically significant associations were found with allele C of
rs1800498 (NG_008841.1:g.59414C>T) (TaqI_D) (p-value = 0.001) and allele A of rs1800497
(NG_012976.1:g.17316G>A) (p-value = 0.03). Other authors also confirmed that minor allele
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A of rs1800497 (NG_012976.1:g.17316G>A) (TaqIA) (p-value = 0.011) is associated with
the risk of developing AIA according to the Barnes Akathisia Rating Scale (BARS) among
234 Australian patients with mental disorders on AP monotherapy for at least a month
(p-value = 0.011) [77].

3.4.2. The HTR1B Gene

The HTR1B gene is located on the 6q14.1 chromosome and encodes a G-protein-
coupled 5-hydroxytryptamine (serotonin) receptor. The gene is expressed in the brain,
mainly in the thalamus and basal ganglia (Appendix A, Figure A5) [87].

The protein functions as a receptor for ergot alkaloid derivatives, various anxiolytics
and antidepressants, and other psychoactive substances such as lysergic acid diethylamide.
It also regulates the release of 5-hydroxytryptamine, dopamine, and acetylcholine in the
brain and thereby influences neural activity, nociceptive processing, pain perception, mood,
and behavior. In addition, it plays a role in the vasoconstriction of cerebral arteries [88].

In the study, the authors studied the association between five SNPs (rs6313, rs3813929,
rs6295, rs13212041, and rs1805054) of the candidate genes (HTR1A, HTR1B, HTR2A,
HTR2C, and HTR6) with the risk of developing AIA. As a result, a positive associa-
tion was noted between the carriage of the homozygous genotype TT of rs13212041
(NC_000006.12:g.77461407C>T) of the HTR1B gene with the risk of AIA in patients with
Sch according to the BARS scale (p-value = 0.004) [75].

4. Discussion
4.1. Summary of Evidence

Our review of the potential genetic biomarkers of AIA made it possible to systematize
the results of previous associative genetic studies. The greatest interests for researchers
concerning the genetic biomarkers of AIA, including the candidate genes: GRIN2A, GRIN2B,
HSPG2, DRD2, DRD3, DRD4, COMT, HTR2A, HTR2C, PPP1R1B, BDNF, MnSOD (SOD2),
and GSTP1 (Figure 2).
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In this review, with the help of Table 1, we visually displayed the available data in
terms of genetic biomarkers for the development of AIA in patients with Sch, despite the
small number of articles included.

Although we conducted a comprehensive search of frequently used databases and
search terms, it cannot be ruled out that some recent publications may have been overlooked.
According to the results of our systematic review, only three studies could be included
that confirmed the carriage of SNPs in the studied candidate genes: C allele of rs1800498
(NG_008841.1:g.59414C>T) (TaqI_D) and A allele of rs1800497 (NG_012976.1:g.17316G>A)
(TaqIA) of the DRD2 gene and the TT genotype of rs13212041 (NC_000006.12:g.77461407C>T)
of the HTR1B gene.

4.2. Comparison with the Existing Literature

Basically, the SNPs which we reviewed were studied in the framework of associative
studies with mental disorders. At the same time, it was discovered that the SNPs of some
of the discussed candidate genes are associated not only with the development of AIA but
also with antipsychotic-induced parkinsonism (AIP). Thus, rs1800497 (Taq1A) of the DRD2
gene is associated with a high risk of AIP [22,89].

Among the genes studied for encoding the P450 isoenzymes, involved in the metabolism
of APs through the hepatic metabolic pathway, related to the development of AIA were
the CYP1A2 gene (responsible for the metabolism of haloperidol, thioridazine, thiothixene,
trifluoperazine, flupentixol, chlorpromazine, loxapapine, promazine, asenapine, zotepine,
quetiapine, clozapine, lumateperone, olanzapine, perphenazine, and pimozide [76]), and
the CYP2D6 gene (responsible for the metabolism of alimemazine, promazine, zuclopenthixol,
thioridazine, haloperidol, trifluoperazine, levomepromazine, flupentixol, perphenazine,
fluphenazine, pipothiazine, chlorpromazine, and prochlorperazine [90]).

It is known that other cytochrome P450 isoenzymes are also involved in the metabolism
of APs, including CYP1A1 (haloperidol, olanzapine, and perispirone); CYP1B1 (perphenazine);
CYP2A6 (promazine and clozapine); CYP2B6 (quetiapine); CYP2C8 (perphenazine, cloza-
pine, lumateperone, and perospirone), CYP2C9 (haloperidol, perphenazine, promazine,
clozapine, and olanzapine); CYP2C18 (perphenazine); and CYP2C19 (haloperidol, pipo-
tiazine, perphenazine, promazine, and thioridazine) [90]. In addition, several polymor-
phisms of the CYP2D6 gene are associated with a high risk of AIA [91–93].

However, we did not find any studies highlighting the role of non-functional and/or
low-functional alleles of SNPs of the genes encoding the liver P450 isoenzymes on the
development of AIA in patients with Sch. It is noteworthy that the greatest interest in
the study of genetic biomarkers of AIA is among researchers in the Northern European
countries, where this problem is being actively studied. In other regions of the world,
including Russia, genetic studies of AIA have not been found. However, based on the
data, we could not define whether the authors studied the family history of the observed
patients with AIA for monogenic neurodegenerative diseases in which akathisia can be
part of the syndrome of the disease, such as Huntington’s disease, hereditary kinesiogenic
and non-kinesiogenic dyskinesias, etc. [94].

The risk of AIP increases depending on the minor allele of some SNPs and haplotypes
of the candidate genes regulating G-protein signaling, including the RGS2 gene (regulator
of G-protein signaling 2); the ADORA1 gene (adenosine A1 receptor); and the ADORA2A
(adenosine A2A receptor) and ADORA3 (adenosine A3 receptor) genes. However, the
authors did not find any documented associations of the SNPs of these genes with changes
in the risk of developing AIA [33,95,96].

Clinical manifestations of AIA lead to a significant decrease in the quality of life of
patients with Sch and a decrease in their compliance with psychopharmacotherapy [78].
This explains the need for further research aimed at searching for the genetic biomark-
ers of AIA in various racial and ethnic groups of psychiatric patients. The planning of
large single-center and multicenter studies adopting a standardized design seems to be
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required. Furthermore, future studies should concentrate on including ethnically and
racially heterogeneous populations of Russia and other countries.

5. Limitation

Regarding limitations, we would like to highlight the low quality of the studies we
reviewed. We considered interesting associative data, however; when using the databases
of The National Center for Biotechnology Information (NCBI) [97,98] as controls, the data
were inconsistent, in particular, other alleles were presented in particular SNPs that were
not even complimentary.

At the same time, some authors considered the association of EPS with specific SNPs as
a single disease without differentiation into the main AP-induced extrapyramidal disorders,
in particular AIA, AIP, and AP-induced tardive dyskinesia.

6. Conclusions

It should be recognized that there is no final or single decision on the leading role of
any SNPs/polymorphisms of candidate genes in the development of AIA. Uncovering
the genetic predictors of AIA (as the most common neurological ADRs in the treatment
of patients with Sch) may provide a key to developing a strategy for the personalized
prevention and treatment of AP-induced extrapyramidal complications in patients with
Sch in real clinical practice. However, to confirm this theory, there is a need for larger
multicenter studies with different racial and ethnic groups of patients. Of course, currently,
there are publications of studies of candidate genes leading to the development of AIA, but
at the same time, clear genetic biomarkers are not known. There is no unifying research on
this topic of interest.
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Appendix A

Table A1. Primary and secondary akathisia.

Primary Akathisia Secondary Akathisia

Huntington’s disease Drug-induced akathisia

Hereditary kinesiogenic dystonia Sindengham‘s disease

Hereditary non-kinesiogenic dystonia Symptomatic Tourette’s syndrome

Familial Tourette syndrome
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Table A2. List of drugs which predispose patients to drug-induced akathisia.

Drug Frequency of
Akathisia Mechanism Level of

Evidence References

A. Antipsychotics

1. First-generation antipsychotics

Haloperidol 24.8% Blockade of dopaminergic D2 receptors in the limbic
system and basal ganglia

A
[99]

Chlorpromazine 15.9% A

2. Second-generation antipsychotics

Amisulpride 11.3%

Blockade of serotonergic 5-HT2, dopaminergic D2,
and adrenergic receptors in the limbic system and

basal ganglia

A [100]

Aripiprazole 8.5% A
[101]

Ziprasidone 8.3% A

Clozapine 7.9% A [102]

Quetiapine 5.2% A

[101]Olanzapine 8.7% A

Paliperidone 3.3% A

Risperidone 14.2% A [103]

Sulpiride 16.4% A [101]

B. Antidepressants

1. Selective serotonin reuptake inhibitors

Fluoxetine NA Blockade of serotonergic 5-HT2C receptors C

[104]

Sertraline NA Dopamine inhibition through its high-affinity
sodium-dependent reuptake in presynaptic endings C

Paroxetine NA Blockade of dopaminergic D2 receptors C

Fluvoxamine NA Blockade of serotonin reuptake, increased action of
serotonin on 5HT1A autoreceptors C

Escitalopram NA Blockade of dopaminergic D2 receptors C

2. Selective serotonin and norepinephrine reuptake inhibitors

Venlafaxine NA Dopamine inhibition through its high-affinity
sodium-dependent reuptake in presynaptic endings

C
[104]

Duloxetine NA C

3. Tricyclic antidepressants

Mirtazapine NA Blockade of serotonergic 5-HT2- and 5-HT3-receptors
as well as α2-adrenergic receptors C [105]

C. Antibacterial drug

Azithromycin NA
Unknown

C [106]

Clarithromycin NA C [107]
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Table A2. Cont.

Drug Frequency of
Akathisia Mechanism Level of

Evidence References

D. Calcium channel blockers

Amlodipine NA Receptor hypersensitivity in the substantia nigra C [108]

Flunarizine NA Unknown C [109]

E. Benzodiazepines

Clonazepam NA

Agonist of GABA receptors

C

[110]Clorazepate NA C

Lorazepam NA C

F. β1-adrenergic antagonists

Betaxolol NA Unknown A [111]

G. β2-adrenergic antagonists

Propanolol NA Blockade of serotonergic 5-HT1A and
5-HT1B receptors A [112]

H. Anticonvulsants

Pregabalin NA Unknown C [113]

Lamotrigine NA Blockade of dopaminergic D2 receptors C [114]

I. Excitants

MDMA (Ecstasy) NA Blockade of dopaminergic and serotonergic 5-HT
receptors, a decrease in the number of 5-HT receptors C [115]

Cocaine NA Dopamine reuptake inhibition C [116]

J. Antimycotics

Ciprofloxacin NA Unknown C [111]

K. Dopaminomimetics

L-DOPA NA Increased activity of the direct dopaminergic
striatal pathway C [117]

L. Lithium preparations

Lithium NA Activation of dopaminergic neurotransmission C [118]

M. Centrally acting dopamine receptor antagonist

Metoclopramide 20–25% Blockade of dopaminergic D2 receptors B [119]

Notes: GABA-γ-aminobutyric acid, MDMA-methylenedioxymethamphetamine, NA-not available; A-Level I
evidence or sustained multiple Level II, III, or IV evidence, data from one or more randomized, controlled
clinical trials; B-Level II, III, or IV, evidence considered generally strong, data from non-randomized clinical trials,
prospective observational studies, cohort studies, retrospective studies, case-control studies, meta-analyses and/or
post-marketing observations; C-Level II, III, or IV, evidence, but the evidence is generally unstable, publication
data of one or more clinical cases or series of cases [120].
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Table A3. Risk factors for antipsychotic-induced akathisia.

Non-Modifiable Risk Factor Modifiable Risk Factor

Second period of middle age
(male: 36–60 years; female: 36–55 years) *

Reception APs:

- duration of admission;
- high daily dose

Female (for tardive AIA) Brain injury

Caucasians Malignant neoplasms

Genetic predisposition

Ferritin deficiency
Low serum iron

Alcohol abuse

Vitamin B6 deficiency

Autoimmune NMDAR encephalitis
Note: AIA-antipsychotic-induced akathisia, APs-antipsychotics, NMDAR-ionotropic glutamate receptor, and *
age periods according to WHO classification [121].

Table A4. Candidate genes encoding key enzymes in antipsychotic metabolism.

Gene
(OMIM Number *)

Chromosome
Location ** Genomic Coordinate ** Protein ***

CYP1A2 (124060) 15q24.1 chr15:74,748,845–
74,756,607(GRCh38/hg38)

Cytochrome P450 Family 1
Subfamily A Member 2

CYP2C9 (601130) 10q23.33 chr10:94,938,658–
94,990,091(GRCh38/hg38)

Cytochrome P450 Family 2
Subfamily C Member 9

CYP2C19 (124020) 10q23.33 chr10:94,762,681–
94,855,547(GRCh38/hg38)

Cytochrome P450 Family 2
Subfamily C Member 19

CYP2D6 (124030) 22q13.2 chr22:42,126,499–
42,130,865(GRCh38/hg38)

Cytochrome P450 Family 2
Subfamily D Member 6

CYP3A4 (124010) 7q22.1 chr7:99,756,960–
99,784,248(GRCh38/hg38)

Cytochrome P450 Family 3
Subfamily A Member 4

Note: * from the open database OMIM—Online Mendelian Inheritance in Man [78], ** from the open database
GeneCards: The Human Gene Database [86], *** from the open database The Human Protein Atlas [81].

Table A5. Antipsychotics with hepatic and predominantly hepatic metabolism.

Antipsychotic Metabolism in the Liver Enzyme of Cytochrome P450

A. First-Generation Antipsychotics

Chlorpromazine Hydroxylation
N-dealkylation

CYP2D6 (the main path), CYP1A2, and
CYP3A4

Haloperidol Glucuronization
N-dealkylation CYP2D6, CYP3A, and CYP1A2

Perphenazine Oxidation, N-dealkylation CYP2D6, CYP1A2, and CYP3A4

Thioridazine Betaoxidation
N-dealkylation CYP2D6 and CYP1A2

Flupentixol
Sulfonic acidification

N-dealkylation
Glucuronization

CYP2D6

Tiapride Oxidation (up to 15%) Underexplored

Sulpiride Not metabolized, excreted through the
kidneys (about 95%) Not involved in metabolism
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Table A5. Cont.

Antipsychotic Metabolism in the Liver Enzyme of Cytochrome P450

B. Second-Generation Antipsychotics

Aripiprazole Oxidation
N-dealkylation CYP2D6 and CYP3A

Amisulpiride Oxidation (about 4%). Underexplored

Asenapine
Glucuronization

Oxidation
Demethylation

CYP2D6 (the main path), CYP1A2, and
CYP3A4

Ziprasidone Oxidation CYP3A4

Quetiapine Oxidation CYP3A4 and CYP2D6

Clozapine Oxidation CYP1A2

Lurasidone Oxidation
N-dealkylation CYP3A4

Olanzapine Oxidation CYP2D6 and CYP1A2

Paliperidone No hepatic metabolism.
Excreted through the kidneys Not involved in metabolism

Risperidone Oxidation CYP2D6 and CYP3A

Sertindol Oxidation CYP3A4 and CYP2D6

Table A6. Transporter proteins and their encoding genes.

Gene
(OMIM * Number)

Chromosome
Location ** Genomic Coordinate ** Protein ***

ABCB1 (171050) 7q21.12 chr7:87,503,017–
87,713,323(GRCh38/hg38)

Multidrug Resistance Protein 1 (MDR1)
P-Glycoprotein 1 (P-gp)

ABCB2 (170260) 6p21.32 chr6:32,845,209–
32,853,816(GRCh38/hg38) Transporter 1 (TAP1)

ABCB3 (170261) 6p21.32 chr6:32,821,831–
32,838,770(GRCh38/hg38) Transporter 2 (TAP2)

ABCB4 (171060) 7q21.12 chr7:87,398,988–
87,480,435(GRCh38/hg38)

Multidrug Resistance Protein 3 (MDR2)
P-Glycoprotein 3

ABCB11 (603201) 2q31.1 chr2:168,915,468–
169,031,396(GRCh38/hg38) Bile Salt Export Pump (BSEP)

ABCC1 (158343) 16p13.11 chr16:15,949,138–
16,143,257(GRCh38/hg38)

Protein associated with multidrug
resistance (MRP1)

ABCC2 (601107) 10q24.2 chr10:99,782,602–
99,853,741(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 2 (MRP2)

ABCC3 (604323) 17q21.33 chr17:50,634,777–
50,692,253(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 3 (MRP3)

ABCC4 (605250) 13q32.1 chr13:95,019,835–
95,301,475(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 4 (MRP4)

ABCC5 (605251) 3q27.1 chr3:183,919,934–
184,018,010(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 5 (MRP5)

ABCC6 (603234) 16p13.11 chr16:16,149,565–
16,223,617(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 6 (MRP6)

ABCC1 (612509) 6p21.1 chr6:43,427,366–
43,451,994(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 7 (MRP7)

ABCC11 (607040) 16q12.1 chr16:48,164,842–
48,249,973(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 8 (MRP8)

ABCC12 (607041) 16q12.1 chr16:48,080,882–
48,156,018(GRCh38/hg38)

Multidrug Resistance-Associated
Protein 9 (MRP9)

ABCG2 (603756) 4q22.1 chr4:88,090,150–
88,231,628(GRCh38/hg38) Breast cancer resistance protein (BCRP)

Note: * from the open database OMIM—Online Mendelian Inheritance in Man [78], ** from the open database
GeneCards: The Human Gene Database [86], *** from the open database The Human Protein Atlas [81], ABCB1—
ATP Binding Cassette Subfamily B Member 1, ABCG2—ATP-Binding Cassette Sub-family G member 2, and
ABCC1—ATP Binding Cassette Subfamily C Member 1.
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Table A7. Antipsychotics—substrates of transport proteins.

P-Glycoprotein (P-gp) Breast Cancer Resistance
Protein (BCRP)

Multidrug
Resistance-Associated

Protein 1 (MRP1)

Amisulpride
Aripiprazole
Asenapine

Chlorpromazine
Chlorprothixene

Clozapine
Fluphenazine
Flupentixol
Olanzapine

Paliperidone
Periciazine
Quetiapine
Risperidone
Sertindole
Sulpiride

Trifluoperazine
Ziprasidone

Zuclopenthixol

Aripiprazole
Chlorpromazine

Clozapine
Haloperidol
Olanzapine

Paliperidone
Quetiapine
Risperidone

Sulpiride

Clozapine

Table A8. Candidate genes encoding targets/receptors of antipsychotics.

Gene (OMIM * Number) Chromosome Location ** Genomic Coordinate ** Protein ***

Dopaminergic system

DRD2 (126450) 11q23.2 chr11:113,409,605–
113,475,691(GRCh38/hg38) Dopaminergic receptor type D2

DRD3 (126451) 3q13.31 chr3:114,127,580–
114,199,407(GRCh38/hg38) Dopaminergic receptor type D3

DRD4 (126452) 11p15.5 chr11:637,269–
640,706(GRCh38/hg38) Dopaminergic receptor type D4

Serotoninergic system

HTR2A (182135) 13q14.2 chr13:46,831,546–
46,898,082(GRCh38/hg38)

Serotonergic
5-hydroxytryptamine receptor

type 2A

HTR2C (312861) Xq23 chrX:114,584,078–
114,910,061(GRCh38/hg38)

Serotonergic
5-hydroxytryptamine receptor

type 2C

Glutamatergic system

GRIN2A (138253) 16p13.2 chr16:9,753,404–
10,182,928(GRCh38/hg38)

Glutamate ionotropic receptor
type 2A

GRIN2B (138252) 12p13.1 chr12:13,437,942–
13,982,134(GRCh38/hg38)

Glutamate ionotropic receptor
type 2B

Note: * from the open database OMIM—Online Mendelian Inheritance in Man [78], ** from the open database
GeneCards: The Human Gene Database [86], *** from the open database The Human Protein Atlas [81],
DRD2—Dopamine Receptor D2, DRD3—Dopamine Receptor D3, DRD4—Dopamine Receptor D4, HTR2A—
5-Hydroxytryptamine Receptor 2A, HTR2C—5-Hydroxytryptamine Receptor 2C, GRIN2A—Glutamate Ionotropic
Receptor NMDA Type Subunit 2A, and GRIN2B—Glutamate Ionotropic Receptor NMDA Type Subunit 2B.
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Table A9. Candidate genes encoding key targets/enzymes of antipsychotics in the central nervous
system.

Gene
(OMIM * Number) Chromosome Location ** Genomic Coordinate ** Protein ***

HSPG2 (142461) 1p36.12 chr1:21,822,244–
21,937,310(GRCh38/hg38) Perlecan

COMT (116790) 22q11.21 chr22:19,941,371–
19,969,975(GRCh38/hg38) Catechol-O-methyltransferase

NQO1 (125860) 16q22.1 chr16:69,706,996–
69,726,668(GRCh38/hg38)

Quinone dehydrogenase
nicotinamide adenine

dinucleotide phosphate

RGS2 (600861) 1q31.2 chr1:192,809,039–
192,812,275(GRCh38/hg38)

G protein signal transduction
regulator 2

GSTP1 (134660) 11q13.2 chr11:67,583,742–
67,586,656(GRCh38/hg38) Glutathione-S-transferase pi 1

PPP1R1B (604399) 17q12 chr17:39,626,707–
39,636,626(GRCh38/hg38)

Regulatory inhibitor of subunit
1B of protein phosphatase 1

BDNF (113505) 11p14.1 chr11:27,654,893–
27,722,058(GRCh38/hg38)

Brain-derived neurotrophic
factor

MnSOD (147460) 6q25.3 chr6:159,669,069–
159,762,281(GRCh38)

Manganese superoxide
dismutase 2

Note: * from the open database OMIM—Online Mendelian Inheritance in Man [78], ** from the open database
GeneCards: The Human Gene Database [86], *** from the open database The Human Protein Atlas [81], HSPG2—
heparan Sulfate Proteoglycan 2, COMT—catechol-O-methyl transferase, NQO1—NAD(P)H quinone dehydroge-
nase 1, RGS2—regulator of G protein signaling 2, GSTP1—glutathione S-transferases P1, PPP1R1B—protein phos-
phatase 1 regulatory inhibitor subunit 1B, BDNF—brain-derived neurotrophic factor, and MnSOD—manganese
superoxide dismutase.
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