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Abstract: In the post−genomics era, Agrobacterium tumefaciens−mediated genetic transformation
is becoming an increasingly indispensable tool for characterization of gene functions and crop
improvement in cucumber (Cucumis sativus L.). However, cucumber transformation efficiency is still
low. In this study, we evaluated the effects of several key factors affecting the shoot−regeneration
rate and overall transformation efficiency in cucumber including genotypes, the age and sources
of explants, Agrobacterium strains, infection/co−cultivation conditions, and selective agents. We
showed that in general, North China cucumbers exhibited higher shoot−regeneration rate than
US pickling or slicing cucumbers. The subapical ground meristematic regions from cotyledons
or the hypocotyl had a similar shoot−regeneration efficiency that was also affected by the age
of the explants. Transformation with the Agrobacterium strain AGL1 yielded a higher frequency
of positive transformants than with GV3101. The antibiotic kanamycin was effective in selection
against non−transformants or chimeras. Optimization of various factors was exemplified with the
development of transgenic plants overexpressing the LittleLeaf (LL) gene or RNAi of the APRR2
gene in three cucumber lines. The streamlined protocol was also tested in transgenic studies in three
additional genes. The overall transformation efficiency defined by the number of verified transgenic
plants out of the number of seeds across multiple experiments was 0.2–1.7%. Screening among
T1 OE transgenic plants identified novel, inheritable mutants for leaf or fruit color or size/shape,
suggesting T−DNA insertion as a potential source of mutagenesis. The Agrobacterium−mediated
transformation protocol from this study could be used as the baseline for further improvements in
cucumber transformation.

Keywords: cucumber; Cucumis sativus; genetic transformation; Agrobacterium tumefaciens; T−DNA
insertion mutagenesis; gene editing

1. Introduction

Cucumber (C. sativus L.) is an economically valuable vegetable crop worldwide and a
model of choice to investigate several important biological processes such as chromosome
evolution, sex expression, and vascular biology [1]. Since public release of the cucumber
draft genomes over a decade ago [2,3], significant progress has been made in molecular
mapping and cloning of genes or quantitative trait loci (QTL) in cucumber (reviewed
in [4–9]). Very few of those cloned candidate genes or QTL have been functionally char-
acterized. Recent advances in the Clustered Regularly Interspaced Short Palindromic
Repeats−associated protein 9 (CRISPR−Cas9)−mediated gene editing have revolutionized
plant biology research and crop improvement [10]. An efficient genetic transformation
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system is important for gene function studies or gene editing; however, this is lacking
in cucumber.

Genetic transformation is a process in which a cell takes up naked DNA from the sur-
rounding medium and incorporates it to acquire an altered genotype that is heritable [11].
The Gram−negative bacterium A. tumefaciens (Agrobacterium in short hereinafter) has the
ability to transfer DNA into plant cells and integrate this T−DNA stably into the nuclear
genome [12]. By taking advantage of this natural engineer, Agrobacterium−mediated trans-
formation has becoming the most widely used genetic transformation approach in both
dicot and monocot plants. Trulson et al. [13] were probably the first to report genetic trans-
formation in cucumber. Since then, extensive studies have been conducted to develop and
optimize Agrobacterium−mediated transformation in cucumber (reviewed in [14–16]). A
typical Agrobacterium−mediated genetic transformation experiment includes the selection
and preparation of explants, development of T−DNA plasmid constructs, inoculation and
co−cultivation of explants with Agrobacterium, shoot regeneration in selective growth me-
dia, rooting of shoots and generation of plantlets, and finally the validation and functional
characterization of target genes in transgenic plants. Many factors have been shown to
affect the transformation efficiency that may include genotypes; explant sources; the strains,
concentrations, and inoculation methods of Agrobacterium; the temperature, duration, and
light conditions of co−cultivation of explants with the bacterium; components and concen-
trations of chemicals in culture media; selective antibiotics; and reporter genes for positive
transformants. Many investigations have been carried out aiming to optimize various
parameters to improve the transformation efficiency (reviewed in [4,14–16]). Some of these
factors seem to be consistent and readily applicable across different experiments. For
example, most studies used cotyledon explants cultured in the Murashige and Skoog (MS)
medium for shoot regeneration and rooting with 6−BA (BAP—6−benzylaminopurine)
and ABA (abscisic acid) as the major growth regulators and kanamycin (50–150 mg L−1) as
the selective agent. However, many other factors varied widely in proposed ‘optimized’
protocols, which probably reflects the genotypic effects or experimental conditions among
those experiments. The reported overall transformation efficiency varied among differ-
ent cucumber genotypes. The US slicing cucumber Poinsett 76 (PS76) and several North
China−type (Chinese Long) cucumber lines such as Changchunmici (CCMC) or Xintaimici
(XTMC) seem to be less recalcitrant to Agrobacterium−mediated transformation and are
popular choices in various transformation studies (reviewed in [15]). While cucumber
plant regeneration can be achieved from somatic embryogenesis via callus culture [17–20]),
direct organogenesis seems more efficient and time saving ([17,21]). For direct organogen-
esis, most cucumber transformation studies used cotyledon nodes or hypocotyls as the
sources of explants (e.g., [22–25]). Early identification of transformants has been facilitated
with reporter genes allowing GUS staining (e.g., [19,23,26]) or GFP fluorescence detection
(e.g., [27–29]). Inspired by work from other crop plants, additional measures have been
explored aiming to enhance Agrobacterium infection including vacuum infiltration, sonica-
tion, micro−brushing of explants, or addition of antioxidant chemicals in culture media to
reduce oxidative stresses caused by mechanical wounding (e.g., [29–31]).

Despite the significant progresses made in Agrobacterium−mediated cucumber trans-
formation in recent years, the transformation efficiency (TE) reported in different studies
was generally low but varied widely between 0.1% and 5% (see the Discussion section
below for more details). It seems that Agrobacterium−mediated transformation in cucumber,
to some extent, remains an art. This could be seen in the very different TEs even from
the same genotype. In many cases, the reported transformation protocols lack necessary
experimental details for others to repeat. Some protocols used specific cucumber geno-
types or plasmid vectors that are not readily accessible by the community. A reliable and
reproducible protocol with predictable transformation efficiency evaluated with consistent
or comparable criteria is lacking. Thus, one motivation of the present study was to eval-
uate some important factors affecting cucumber transformation efficiency and develop a
baseline protocol that is amendable for further optimization by the community. Here we
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reported the effects of cucumber genotypes, explant type and age, Agrobacterium strains,
and antibiotics on shoot regeneration and the overall transformation efficiency, which
were exemplified using two target genes (LL and APRR2) in the US slicing cucumber line
Poinsett 76 (PS76) and the US pickling cucumber line H19. The protocol was also tested by
developing transgenic plants in the 9930 background for three additional genes including
the broad−spectrum disease resistance gene CsSGR (staygreen) [32], the fruit shape gene
FS1.1, and the target leaf spot (TLS, causal agent Corynespora cassiicola) resistance gene Cca4.

One important use of Agrobacterium−mediated transformation in plants is the genera-
tion of T−DNA insertional mutants [33–35]. In Arabidopsis and rice, tens of thousands
of T−DNA insertion lines have been developed, which has provided a powerful tool to
investigate gene functions through reverse genetics (e.g., [36–38]). T−DNA is integrated
into the host plant genome randomly via illegitimate recombination, which may result
in mutagenesis in non−target genes [39]). Theoretically, in any Agrobacterium−mediated
transgenic plants, mutant phenotypes should be observed if the T−DNA insertion is inside
a gene responsible for a phenotype. Reports on T−DNA insertion mutants in cucumber
transgenic plants are rare (e.g., [40]). Thus, the second objective of the present study was to
assess the potential of T−DNA insertion mutagenesis as a tool to generate mutants, which
was exemplified with four confirmed mutants for leaf color and fruit size/shape.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Five cucumber inbred lines from different market groups were used for assessment of
effect of genotypes on transformation efficiency. They included one US slicing cucumber—
Poinsett 76 (PS76), two US pickling type lines—Gy14M and H19, and two north China fresh
market (Chinese Long, CL) lines—9930 and WI7602. Seeds of 9930 and WI7602 were kindly
supplied by Xingfang Gu (Chinese Academy of Agricultural Sciences, Beijing, China)
and Sen Li (Shanxi Agricultural University, China), respectively. Gy14M (also known
as Gy14M42) is the monoecious version of the gynoecious Gy14 [41]. H19 is a littleleaf
(LL) mutant [25]. Genome assemblies for both Gy14 and 9930 are publicly available at
http://cucurbitgenomics.org/v2, (accessed on 26 February 2023). All lines are monoecious
with typical fruit morphological features of their market groups [1]. Plantlets regenerated
from tissue culture were kept in jars with MS medium in a tissue culture chamber with
a temperature cycle of 28 ◦C/18 ◦C and 16 h/8 h of light/dark. At approximately the
5−true−leaf stage, the seedlings were transplanted into pots in a greenhouse.

2.2. Plasmid Vectors and Agrobacterium Strains

We used two cucumber genes as examples to evaluate the transformation efficiency and
mutagenesis; these included littleleaf (LL), which encodes a WD40 repeat domain−containing
protein regulating organ size variation [25]; and APRR2 (Arabidopsis pseudo−response regulator 2),
which underlies the w locus for white immature fruit color [42,43]. Transgenic plants overex-
pressing (OE) the wild−type allele of the LL gene that was driven by the CaMV 35S promoter
and RNAi (RNA interference) knockdown line for the APRR2 gene were developed. For
OE, the coding sequence (CDS) of the LL gene was cloned and inserted into the plasmid of
pCAMBIA2301−ky digested with Kpn II and Xba I to generate the Pro35S:LL construct (LL−OE
construct in short hereinafter) [25,44]. The RNAi construct for APRR2 was generated using two
gene−specific fragments that were inversely inserted into the pFGC1008 plasmid vector double
digested with Asc I/Swa I and BamH I/Spe I (RNAi−APRR2 construct in short hereinafter)
(Supplementary Figure S1) [45,46]. Identity of all constructs was verified by Sanger sequencing;
the construct was then introduced into Agrobacterium via electroporation for the AGL1 strain
and via the freeze–thaw method for GV3101 [47]. Transformation of OE vectors was performed
in both PS76 and H19 for comparison of the transformation efficiency between genotypes, while
RNAi was conducted in PS76 with AGL1 and GV3101 to assess effects of Agrobacterium strains
on transformation.

http://cucurbitgenomics.org/v2
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2.3. Cucumber Transformation Procedures

The entire transformation process was divided into 14 main steps, which are illus-
trated in Supplementary Figure S2. Step−by−step protocols of the entire procedure
(including the formulae and components of all growth media used in this study) are
provided in Supplementary File S1. Briefly, seeds were soaked in tap water for 60 min
and then peeled, surface sterilized by soaking in 75% ethanol for 1 min, and rinsed
3 times with autoclaved ddH2O. Then, the seeds were sterilized one more time with
6% sodium hypochlorite (NaClO) for 12 min followed by rinsing with ddH2O three
times. Seeds were dried by blotting on sterilized filter paper and then placed on MS
germination medium for 3 days.

Explants were dissected from cotyledon nodes and/or hypocotyls of germinating
seeds with forceps and a tweezer then placed in sterilized 1

2 MS liquid medium or
water to avoid drying out before inoculation. The Agrobacterium suspension was pre-
pared by shaking a single colony in Luria–Bertani (LB) medium for about 48 h to reach
OD600 = 0.7. Then, acetosyringone (AS, 200 µM) and Silwet L−77 (0.05%) were added
to the bacterial suspension. The explants were immediately transferred to the Agrobac-
terium solution with gentle shaking by hand for 12 min. In some trials, we also tested
vacuum infiltration to enhance bacterium infection (Supplementary File S1) [29,30].
Nevertheless, we did not find a significant improvement in the transformation effi-
ciency from vacuum infiltration, which may also have increased the chance of con-
tamination. After pouring off the inoculation liquid, the explants were blotted dry
with sterilized filter paper. Then, the explants were placed onto a piece of sterilized
filter paper in a Petri dish containing co−culture MS medium. The explants were
co−cultured with Agrobacterium in the dark at 23 ◦C or 28 ◦C for 2 d and transferred
to the differentiation MS medium with appropriate antibiotics and hormones. The
explants with a yellowish color were subcultured every 2 weeks until the shoots had
4–5 small green leaflets. The shoots with green leaves were then transferred into the
rooting medium to induce roots. When 3 or more radicles or main roots were visible,
the plantlets were transplanted to the soil in small plastic cubes covered with a plastic
dome or Saran Wrap film to maintain humidity and acclimation. Hardy T0 plants
were transplanted into large pots and grown in greenhouses. Self−pollinations were
conducted on these plants to obtain T1 seeds.

2.4. Treatments with Phytohormones and Antibiotics

No hormones were added to the germinating media. To assess the effects of synthetic
cytokinin and ABA on shoot regeneration, four concentrations of 6−BA (2.0, 1.5, 1.0,
and 0.5 mg L−1) and two concentrations of ABA (1.0 and 0.5 mg L−1) (a total of eight
combinations) were tested with five cucumber lines. The antibiotic selective efficiency
was evaluated with two antibiotics: kanamycin with three treatments (0, 50, 100 mg L−1)
and hygromycin with four treatments (0, 5, 10 and 15 mg L−1) in the shoot−regeneration
growth medium. For each antibiotic, the concentration in the selective rooting medium was
decreased to half of that in the shoot−regeneration medium. The shoot−regeneration rate
was defined as the number of explants with shoot regeneration divided by total number of
explants used multiplied by 100.

2.5. PCR and qPCR Verification of Transformants and GUS Activity Assay

To verify antibiotic−selected putative transgenic plants, leaf samples were isolated
from emerging new leaves of plants grown in the greenhouses to avoid possible contam-
ination by residual Agrobacterium. Genomic DNA was extracted with the CTAB method.
PCR was performed by cloning a 194 bp fragment of the npt II gene (for kanamycin
resistance) from the T−DNA region in the plasmid vector (primer sequences: forward
5′CTCTGATGCCGCCGTGTTCC 3′; reverse 5′CGCCCAATAGCAGCCAGTCC 3′). Quan-
titative real−time PCR (qPCR) was used to examine the expression level of the LL gene
in LL−OE transgenic plants. Total RNA was isolated with the plant RNA purification
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mini kit, and cDNA was synthesized with a reverse−transcription kit (both from Thermo
Fisher Scientific, Waltham, MA, USA). The qPCR was performed on a QuantStudio™
3 Real−time PCR system following our early procedure ([25]) and using the cucumber
CsActin gene as the internal reference ([32]). The relative expression level was calculated
using the 2−∆∆CT method. For qPCR of each sample, there were three biological and
three technical replicates. Significance was determined via pairwise t−tests. The overall
transformation efficiency (TE, %) was defined as the numbers of PCR−positive plantlets
from independent transformation events divided by total number of explants or seeds
used multiplied by 100.

The GUS activity (for β−glucuronidase) in the seeds of the putative transformant
was measured with MUG (4−methyl−umbelliferyl−β−d−glucuronide, Sigma−Aldrich)
staining according to a previously described method [48].

2.6. Identification and Characterization of Morphological Mutants

LL−OE transgenic T1 plants together with their wild type (WT) PS76 were grown in
the University of Wisconsin Walnut Street Greenhouses facility (WSGH) or in the field of
the Hancock Agricultural Research Station (HARS). Throughout the growing season, all
plants were carefully examined for any variation from the WT. These traits included the
color, shape, and size of the roots, leaves, stem, flowers, and fruits. Measurements of the
size of fruits, leaves, stems, and flowers were conducted with rulers in replicated trials.
Plants showing any non−target gene−related morphological variation were tagged and
self−pollinated to advance to T2, which were planted again to verify the inheritability of
the mutant traits. Putative mutants were crossed with other WT cucumber lines to develop
segregation populations to investigate the inheritance mode of the mutant. Some mutants
were observed in both greenhouses and open fields to assess the effect of environments on
expression of the mutant phenotype.

3. Results
3.1. Evaluation of Cotyledon and Hypocotyl as Explants for Direct Shoot Organogenesis

Shoots can be regenerated directly from explants or indirectly from calli. While each
method has its own advantages and disadvantages, direct regeneration of shoots from the
cotyledon node is the most popular method in cucumber transformation ([17,21,30,46,49]).
In a germinating seed (Figure 1A), meristematic tissues for culture could be from the
shoot apical meristem (SAM) or subapical ground meristematic region in the cotyledon–
hypocotyl junction [50] (Figure 1B). The SAM region is small and grows quickly. It is difficult
to mechanically wound and lacks a key surface component for recognition by Agrobacterium
(Figure 1C,D) ([51,52]). Indeed, we collected the SAM region from the germinating seeds
of PS76 and inoculated them directly with Agrobacterium carrying the LL−OE construct.
Of 246 explants inoculated and co−cultivated, all were able to generate shoots quickly in
regeneration medium, but no resulting plantlets were able to survive from the selection with
100 mg L−1 kanamycin (Figure S3A). On the other hand, the ground meristem grows slower
than SAM, and it is relatively easy to generate mechanical wounding during dissection
of the explants (Figure 1D–I). Thus, both cotyledons and hypocotyl containing ground
meristem cells were tested as explants. In addition, each cotyledon piece could be cut
transversely into two parts: the proximal half and the distal half (Figure 1F–G); the proximal
half could be cut twice to make a V−shaped wound [23](Figure 1H) or cut longitudinally
into two pieces (Figure 1I) [30]. In this way, there could be a maximum of four cotyledon
explants from one seed.
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part of the hypocotyl of PS76 that carried the LL−OE construct (Figure 1D) for Agrobacte-
rium inoculation/co−cultivation. As compared with cotyledon explants, hypocotyl ex-
plants took less time for shoot regeneration. One challenge in using hypocotyl as the ex-
plant was to isolate the proximal hypocotyl part under a dissecting microscope to avoid 
any residual SAM, which was time−consuming and prone to contamination. To address 
this potential issue, we cut the hypocotyl at the position a bit far away from the SAM 
without using a microscope (Figure 1E). From 719 hypocotyl explants (719 seeds) tested, 
we obtained three PCR−positive LL−OE transformants (TE = 0.42%, Figure S3), which was 
similar to the 0.5% TE when cotyledons were used as the explants, in which 21 PCR−pos-
itive LL−OE transformants were obtained from 4206 explants (from 2103 seeds). This sug-
gested that both the cotyledon and distal hypocotyls could be good sources of explants.  

3.2. Effects of Explant Age and Co−Cultivation Temperature/Duration on Shoot Regeneration  

Figure 1. Harvest of different explants from 3−day−old cucumber seedlings for tissue culture.
(A) An etiolated seedling cultivated in the dark at 28 ◦C at 3 d (72 h) after germination. (B) The
positions of the shoot apical meristem (SAM) and ground meristem region on the seedling are
highlighted in red and light green, respectively. (C) The different organs are shown. (D) Dissected
SAM and proximal part of the hypocotyl. (E) Dissected SAM and distal part of the hypocotyl.
(F) Cotyledons were cut in half transversely with distal and proximal segments. (G) The proximal
part of a cotyledon was excised with a straight cut. (H) A V−shaped cut from the proximal end of
the cotyledon. (I) The proximal parts of the cotyledon were cut into 2 pieces longitudinally. Scale
bar = 1.0 cm.

We also evaluated the use of hypocotyls as explants [24,53]. We excised the proximal
part of the hypocotyl of PS76 that carried the LL−OE construct (Figure 1D) for Agrobacterium
inoculation/co−cultivation. As compared with cotyledon explants, hypocotyl explants
took less time for shoot regeneration. One challenge in using hypocotyl as the explant was
to isolate the proximal hypocotyl part under a dissecting microscope to avoid any residual
SAM, which was time−consuming and prone to contamination. To address this potential
issue, we cut the hypocotyl at the position a bit far away from the SAM without using a
microscope (Figure 1E). From 719 hypocotyl explants (719 seeds) tested, we obtained three
PCR−positive LL−OE transformants (TE = 0.42%, Figure S3), which was similar to the
0.5% TE when cotyledons were used as the explants, in which 21 PCR−positive LL−OE
transformants were obtained from 4206 explants (from 2103 seeds). This suggested that
both the cotyledon and distal hypocotyls could be good sources of explants.

3.2. Effects of Explant Age and Co−Cultivation Temperature/Duration on Shoot Regeneration

After co−cultivation with Agrobacterium, we found that cotyledon explants displayed
either a yellowish or whitish color (Figure 2). When cultured in shoot−regeneration
medium, shoots could only be generated from yellowish explants, while none could be
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produced from whitish ones. The frequency of whitish−colored explants seemed to be
correlated with the age of explants (days of germination of seeds). When the seeds of
PS76 were geminated at 28 ◦C for 2 d (~2 cm total length) and then the excised explants
were co−cultured at the same temperature for 2 d, ~40.5% of the explants (17/42) showed
a whitish color (Figure 2A,B). When the cotyledon explants from seedlings after 3 d of
germination at 28 ◦C in the dark (~4 cm in length) were co−cultivated with Agrobacterium
for 2 d, approximately 13.0% (7/54) of the explants were whitish (Figure 2C,D). Bacterium
co−cultivation also increased the frequency of whitish cotyledon explants to 1.4% (1/70)
(Figure 2E) and 14.6% (Figure 2F) when co−cultured in the dark for 2 d without and with
inoculation with Agrobacterium.
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may increase the transformation efficiency (e.g., [54]). We tested the effect of two temper-
ature settings (23 °C and 28 °C) of co−cultivation on shoot−regeneration efficiency. Of 160 
cotyledon explants from PS76 planted in shoot−regeneration medium with 50 mg L−1 kan-
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Figure 2. Frequency of whitish and yellowish explants was related with duration of seed germination
and co−cultivation of explants. (A). Seeds germinated at 28 ◦C for 2 d. (B). Explants from 2−day ger-
mination were co−cultured in the dark for 2 d. (C). Seeds germinated at 28 ◦C for 3 d. (D). Explants
from 3−day germination were co−cultured in the dark for 2 d. (E). Explants without inoculation
after co−culture for 2 d. (F). Explants inoculated with Agrobacterium and co−cultured for 2 d. The
red arrows indicate whitish explants that had poor shoot−regeneration ability. Scale bar = 1.0 cm.

Previous studies indicated that lower temperatures (18–20 ◦C) during co−cultivation
may increase the transformation efficiency (e.g., [54]). We tested the effect of two temper-
ature settings (23 ◦C and 28 ◦C) of co−cultivation on shoot−regeneration efficiency. Of
160 cotyledon explants from PS76 planted in shoot−regeneration medium with 50 mg L−1

kanamycin, 36 (22.5%) and 22 (13.8%) yielded shoots at 23 ◦C and 28 ◦C, respectively
(Figure S4), which supported our earlier observation that a lower temperature promoted
shoot regeneration.
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3.3. Effect of Agrobacterium Stains, Antibiotics, and Selection Pressure on Shoot Regeneration or
Transformation Efficiency

Several Agrobacterium strains such as AGL1, GV3101, EHA105, EHA101, and LBA4404
have been used in cucumber transformation [15], but there is no report that compared the
transformation efficiency of different strains. We compared the transformation efficiency
between AGL1 and GV3101. We developed RNAi−APRR2 transgenic plants in PS76
using both strains (Figure 3). A total of 1000 explants (from 500 seeds) were co−cultured
with each strain (Figure 3). One and three independent PCR−positive transgenic plants
were obtained with GV3101 (TE = 0.10% with explants or 0.20% with seeds) and AGL1
(TE = 0.30% with explants or 0.60% with seeds), respectively, suggesting a significantly
higher efficiency of AGL1−mediated transformation than GV3101 in PS76.

Genes 2023, 14, x FOR PEER REVIEW 8 of 25 
 

 

S4), which supported our earlier observation that a lower temperature promoted shoot 
regeneration. 

3.3. Effect of Agrobacterium Stains, Antibiotics, and Selection Pressure on Shoot Regeneration or 
Transformation Efficiency 

Several Agrobacterium strains such as AGL1, GV3101, EHA105, EHA101, and 
LBA4404 have been used in cucumber transformation [15], but there is no report that com-
pared the transformation efficiency of different strains. We compared the transformation 
efficiency between AGL1 and GV3101. We developed RNAi−APRR2 transgenic plants in 
PS76 using both strains (Figure 3). A total of 1000 explants (from 500 seeds) were co−cul-
tured with each strain (Figure 3). One and three independent PCR−positive transgenic 
plants were obtained with GV3101 (TE = 0.10% with explants or 0.20% with seeds) and 
AGL1 (TE = 0.30% with explants or 0.60% with seeds), respectively, suggesting a signifi-
cantly higher efficiency of AGL1−mediated transformation than GV3101 in PS76. 

 
Figure 3. Agrobacterium stain AGL1 exhibited higher transformation efficiency than GV3101. Trans-
genic plants were developed with RNAi constructs for the CsAPRR2 gene in a PS76 background. 
Plantlets in the jars were generated from GV3101−mediated (A) and AGL1−mediated (D) transfor-
mation, respectively. T0 transgenic plants grown in soil were mediated by GV3101 (B) and AGL1 
(E), respectively. PCR verification identified positive T0 transgenic plants from GV3101−mediated 
(C) and AGL1−mediated (F) transformation, respectively. In (C,F), the first lane is a size marker, and 
lanes 1–4 are the positive control and three regenerated plantlets from independent transformation 
events. Scale bar = 1.0 cm. 

Figure 3. Agrobacterium stain AGL1 exhibited higher transformation efficiency than GV3101. Trans-
genic plants were developed with RNAi constructs for the CsAPRR2 gene in a PS76 background.
Plantlets in the jars were generated from GV3101−mediated (A) and AGL1−mediated (D) transfor-
mation, respectively. T0 transgenic plants grown in soil were mediated by GV3101 (B) and AGL1
(E), respectively. PCR verification identified positive T0 transgenic plants from GV3101−mediated
(C) and AGL1−mediated (F) transformation, respectively. In (C,F), the first lane is a size marker, and
lanes 1–4 are the positive control and three regenerated plantlets from independent transformation
events. Scale bar = 1.0 cm.
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During inoculation/co−cultivation with Agrobacterium, only cells close to the wound-
ing sites could be successfully infected [28]. Non−transformed or chimeric shoots or
plantlets could be produced during tissue culture. Antibiotics are often added to the
growth medium as a selective agent to kill or inhibit growth of untransformed cells or
tissues. The T−DNA in many plasmid constructs carry the neomycin phosphotransferase
II (npt II) gene conferring kanamycin resistance [55]. In PS76 cucumber, 50–100 mg L−1

kanamycin was widely used to select positive transformants [21,23,27]. In developing
LL−OE transgenic plants, we evaluated the survival rate of PS76 explants in culture media
containing 0, 50, and 100 mg L−1 kanamycin. In kanamycin−free culture medium, 41.3%
of the explants (n = 75) could produce shoots, and the rate decreased to 16.9% (n = 71) and
4.2% (n = 310) when the shoot−regeneration medium was supplied with 50 and 100 mgL−1

of kanamycin, respectively (Figure 4A–C). At 100 mg L−1 of kanamycin, most shoots that
initiated from the explants had leaves that were yellow or turned to yellow at later stages
and stopped growing; only plantlets with green leaves could continue growth during sub-
cultures (Figure 4D,F). In chimeric plants, non−transformed leaves could also be inhibited
or killed by kanamycin during subculturing (Figure 4G).
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Figure 4. Antibiotic selection at different stages. (A–C) Explants in MS medium with 0, 50 and
100 mg L−1 of kanamycin. (D) Explants initiating yellow and green shoots. (E) Yellow and green
plantlets growing in Petri dishes. (F) Plantlets growing in jars. (G) One albino true leaf in the plantlet
was killed by kanamycin, which probably was due to the generation of a chimeric plantlet during
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(I) Plantlets in rooting MS medium. Scale bar = 1.0 cm.
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Roots were much more sensitive to kanamycin toxicity than shoots: at 100 mg L−1

of rooting medium, only very few roots could be initiated from the plantlet; at 50 mgL−1,
the shoot could produce 4–5 main roots, which was still fewer than the root numbers
in kanamycin−free medium (Figure 4H). At 50 mg L−1 of kanamycin, false−positive
transformants could be effectively eliminated (Figure 4I). The use of kanamycin in both
shoot and root regenerating media saved time and labor for subsequent PCR validation
and transgenic plant growth.

During development of RNAi−APRR2 transgenic plants in PS76, the pFGC1008 vector,
which contains the selective marker hyg for hygromycin resistance, was used (Figure S1).
Thus, hygromycin was added to the culture medium as a selective agent. We found that
PS76 was very sensitive to hygromycin. Almost no shoots could be initiated from explants
from the culture medium with >10 mg L−1 hygromycin; all explants were strongly chlorotic
or albino at 15 mg L−1. Shoots could be initiated at 5 mg L−1 of hygromycin (Figure S5).
At this concentration, from 1000 explants, we were able to generate four plantlets, three
of which were validated by PCR with an estimated transformation efficiency of 0.30%
(=3/1000 × 100).

3.4. Genotypic Effects on Shoot−Regeneration Rate and Transformation Efficiency

We compared the shoot−regeneration efficiency from cotyledon explants in Gy14M,
9930, H19, PS76, and WI7602 (Figure 5). Previous studies have shown that 6−BA and
ABA are the most important phytohormones affecting shoot regeneration in cucumber
transformation [22,23,31,56,57]. To evaluate genotypic effects, we first optimized the con-
centrations of the two hormones. Eight treatments of the shoot culture medium were set
up from combinations of four concentrations of 6−BA (at 0.5, 1.0, 1.5, and 2.0 mg L−1)
and two concentrations of ABA (at 0.5 and 1.0 mg L−1). For each treatment, >40 cotyle-
don explants from each genotype were tested. Representative images for each line with
the highest regeneration rate at a given treatment are shown in Figure S6. The effect of
6−BA/ABA treatments on shoot regeneration varied among different cucumber lines and
was more obvious in the American picking (Gy14M and H19) and slicing cucumber (PS76)
lines. The average shoot−regeneration rate across all eight treatments for 9930, WI7602,
PS76, H19 and Gy14M was 87.9, 68.1, 29.6, 19.8, and 17.5%, respectively (Figure S6F). The
corresponding highest regeneration rates were 97.8, 77.8, 52.1, 42.2, and 33.3%, which were
observed at different 6−BA/ABA combinations among these lines (Figure 5). Overall, the
shoot−regeneration ability was significantly higher in 9930 and WI7602 than in PS76, H19,
or Gy14M (Figure S6F). These data suggested that Chinese Long cucumbers have a higher
shoot−regeneration rate than the three US picking or slicing cumbers. Nevertheless, under
the optimal hormone concentrations, PS76 exhibited a comparable shoot−regeneration
efficiency to WI7602, which was consistent with earlier work.

We further tested the protocol by developing transgenic lines in the 9930 genetic
background for three target genes including overexpressing the candidate gene for the
fruit shape QTL FS1.1 and the TLS resistance gene Cca4 (unpublished data), as well as
CRISPR−Cas9−based gene editing of CsSGR (dm1/psl/cla1), a gene that contributes to
broad−spectrum resistances against three pathogens [32]. For FS1.1 and Cca4, we employed
the same set of parameters that we used for LL−OE in PS76. To develop transgenic plants
overexpressing FS1.1, we harvested two cotyledon explants from each germinating seed of
9930. Out of 1,200 explants from 600 seeds, we identified 3 verified, independent transgenic
lines with a TE of 0.25% (based on the number of explants; 0.50% based on the number
of seeds). For Cca4, we obtained 5 PCR−positive plants from 1,200 cotyledon plants
(300 seeds, 4 explants per seed) with an estimated TE of 0.42% (based on the number of
explants harvested) or 1.67% (based on 300 seeds used). The lower TE (0.25%) for FS1.1
than that for Cca4 (0.42%) based on the number of explants was interesting. It is not known
if more explants harvested from a germinating seed (four vs. two in this case) will affect
the shoot−regeneration ability, and this may require further investigation. In developing
CRISPR−Cas9−edited CsSGR mediated by EHA105, from 4100 cotyledon explants (from
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~2000 seeds, 2 explants per seed), we obtained 23 PCR−positive plants with an estimated
TE of 0.56% (based on 4100 of explants harvested) or 1.12% (based on 2050 seeds used). We
averaged the TE by genotype from various experiments from this study for PS76, H19, and
9930; the results were 0.90, 0.50, and 1.05% (based on the number of seeds) or 0.40, 0.25, and
0.48% (based on the number of explants), respectively. The TE for individual experiments is
presented in Supplementary Table S1. The overall transformation efficiency seemed largely
consistent with the shoot−regeneration rate (Figure 5) among the three lines.
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Figure 5. Effect of 6−BA and ABA phytohormones on shoot−regeneration rate (%) among five
cucumber genotypes. There were eight combinations of 6−BA (at 0.5, 1.0, 1.5, and 2.0 mg L−1) and
ABA (at 0.5 and 1.0 mg L−1). Fruit appearances of five genotypes and their market groups are shown
under the bar graph. For each bar of the graph, the error bar is the mean ± SD (standard deviation)
from three biological repeats. The letters a–c indicate statistically significant differences between
means of the shoot−regeneration rate based on one−way ANOVA with the Tukey–Kramer test
(p < 0.05). Scale bar = 5 cm. We compared the transformation efficiency between PS76 and H19 by
developing transgenic plants overexpressing the LL gene driven by the CaMV 35S promoter ([25]).
For H19 (Figure 6), 400 cotyledon explants were co−cultivated from 200 seeds with the Agrobacterium
strain AGL1. After shoot regeneration and rooting, two plantlets were able to survive from culture in
MS medium containing 100 mg L−1 of kanamycin, one of which was validated by PCR (Figure 6A–C).
Consistent with the functions of the LL gene ([25]), the LL-OE transgenic plants displayed significantly
large organ sizes for male and female flowers, leaves, and fruits (Figure 6B,D–G). Thus, in H19
LL−OE, the overall transformation efficiency was 0.25% (=1/400 × 100 for explants) or 0.50% (based
on the number of seeds). For PS76, we germinated 2103 seeds and obtained 4925 explants from
cotyledons and hypocotyls. Using the same transformation procedures as for H19, we eventually
obtained 196 kanamycin−resistant plantlets. All the 196 putative transgenic plants were subjected to
PCR validation, of which 24 were PCR−positive (TE = 0.49% with explants or 1.14% with seeds); 21
of the 24 positive plants displayed expected phenotypes ([25]).
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Figure 6. Development of transgenic plants overexpressing (OE) the LittleLeaf (LL) gene in pickling
cucumber inbred line H19. (A) Regenerated plantlets in selective MS medium in a jar. (B) The
regenerated plantlet (H19−OE−LL) was transplanted into soil together with the control (H19) plant.
(C) One transgenic plant (lane #2) was validated by PCR. Lane 1 is the positive control, and the
plant in lane 3 was a false positive. Comparison of the male (D) and female (F) flowers, first 5 true
leaves (E), and mature fruits between the OE line and WT also supported that H19−OE−LL is a
true transgenic plant overexpressing the LL gene with phenotypic effects. All plants shown are at T0.
Scale bar = 1.0 cm in (A,D,F) and 5.0 cm in (B,E,G).

3.5. Additional Evidence for Validation of Positive Transformants

During shoot regeneration, subculturing, and rooting, the addition of selective antibi-
otics in the culture medium allowed for the elimination of most false positives (Figure 4).
True transformants could be further validated with PCR amplification of a fragment from
the T−DNA in a vector (e.g., npt II) from newly emerged leaves of putative transgenic
plants (e.g., see Figures 3C,F and 6C). However, the most direct evidence should be from
the performance of the target genes in transgenic plants. Various approaches could be
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taken to functionally characterize the transgenic plants depending on the nature of the
transgenic events. For the LL−OE transgenic plants, we examined the expression level of
LL in 10 independent T1 OE plants (OE1−OE10) with qPCR and found that OE6 and OE7
exhibited a significantly higher expression of LL that was more than a 30−fold increase
compared with the control; these were followed by OE5, OE9, and OE10, which were
3–5 times more than the control (Figure 7A). For OE5, OE7, and OE10, we performed
GUS assays in the young developing seeds (T1) that exhibited the characteristic blue color,
suggesting a successful integration of the T−DNA into the PS76 genome in these OE plants
(Figure 7B). When the OE (OE1, 5, 7 and 9; T1) and WT seeds were germinated in MS
medium containing 100 mg L−1 kanamycin, all OE seedlings were able to develop longer
and more numerous roots than the WT (Figure 7C). The LL gene regulates organ size in
cucumber [25]. The increased leaf size and other organs in these T1 OE lines provided the
most direct evidence of successful transformation of the LL gene (Figure 7D).
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of LL expression in immature seeds with GUS staining. (C) Evaluation of kanamycin resistance of OE
plants in MS medium with (Kan+) and without (Kan−) the selective agent. (D) OE transgenic plants
had a larger leaf area than the WT. Scale bar = 1.0 cm (A–C) or 10.0 cm (D).

For transgenic plants, inheritability of the target gene is important for gene
function studies or crop improvement. The poor fertility in early−generation trans-
genic plants has been observed in many plant species (e.g., [13,58–61]). This seemed
particularly true for the LL−OE plants in both the PS76 and H19 backgrounds in the
present study. In most independent T0 lines, we found very few fruits with plump
seeds inside. For example, in PS76−LL−OE, only 2 and 12 plump seeds were har-
vested from the fruits of OE6 and OE12, respectively (Figure S7). Fruits from OE7
and OE8 T0 plants had no developed seeds, and no plump seeds could be obtained
from OE−H19−LL−1 T0 plants. Eventually, we were able to obtain several seeds
from OE7 and OE8 (but not OE−H19−LL−1) by growing a cutting branch from the
original T0 plants. The poor fertility in most T0 transformants often could be restored
at least partially in subsequent generations [62]. However, among four independent
PS76−RNAi−APRR2 T0 transgenic plants, three were sterile with no seeds, and
one produced only three plump seeds (Figure S7). After five more generations of
self−pollinations, the resulting T5 RNAi−APRR2 plants still had very low fertility,
which was also true for the F1 plants from reciprocal crosses between the T5 RNAi
plant and PS76 (Figure S8).

3.6. Identification and Characterization of Putative Mutants from T−DNA Insertions

During transformation, the locations where T−DNA integrates into the recipient
genome are largely random [63], which can result in T−DNA insertion mutation.
In the phenotypic characterization of the transgenic OE−LL plants, we identified a
dozen mutants with morphological variation as compared with the WT (PS76). The
phenotypes of four such mutants are exemplified in Figure 8 and include yellow flesh
and skin in mature fruits, which was in contrast with the light−green mature fruit
and white flesh in PS76 (Figure 8A,B), short and slim fruit (Figure 8C,D), short and
fat fruit (Figure 8E,F), and yellow leaf (Figure 8G–I). The yellow leaf mutant showed
a similar green leaf color to PS76 in the greenhouse, but in the field, the green true
leaves gradually turned to yellow, suggesting a possible development stage and/or
environment dependent regulation of leaf color in this mutant (Figure 8I). All seemed
inheritable because they showed consistent mutant phenotypes in both T1 and T2
generations. Further, we developed an F2 segregation population from the cross
between Gy14M and the yellow leaf mutant. Among 581 F2 plants examined, 439 and
142 had green and yellow leaves, respectively, which fit a 3 green:1 yellow segregation
ratio (χ2 = 0.09 and P = 0.76), which suggested that a single recessive nuclear gene
controls the yellow leaf mutant phenotype.

In addition to the above four mutants, we also isolated a number of other mor-
phological mutants from the progeny of PS76−OE−LL T0 plants. A few examples
are shown in Supplementary Figure S9; these include wrinkled leaf (Figure S9A,B)
and jagged edge but flat leaf (Figure S9E,F). Interestingly, we intended to overexpress
the LL gene to enlarge the leaf size, but one plant was a dwarf and had very small
leaf size (Figure S9C,D). The wild type PS76 is monoecious, but we found a gynoe-
cious plant (Figure S9G,H). The inheritability of these mutant phenotypes requires
further investigation.
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Figure 8. Examples of four leaf and fruit size or color mutants identified from Agrobac-
terium−mediated transgenic plants overexpressing the LL gene in the PS76 genetic background.
The inheritability of each mutant phenotype was validated by consistent performance in both T1 and
T2 generations under greenhouse and/or field conditions. The four mutants included yellow flesh and
skin (A,B), short and slim fruit (C,D) short and fat fruit (E,F), and yellow leaf (G−I). In (I), for both the
WT and the mutant, the leaves are in order from the oldest at the upper left to the youngest at the
lower right. Phenotypes of each mutant in T1 and T2 generations are shown. Scale bar = 5.0 cm.
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4. Discussion
4.1. Agrobacterium−Mediated Transformation Efficiency in Cucumber

Since the first report of cucumber genetic transformation [13], numerous studies
have been conducted that aimed to improve the transformation efficiency (TE) (reviewed
in [14–16]). A consensus from early investigations is that cucumber, like other cucurbit
crops, is recalcitrant to Agrobacterium−mediated transformation and has a much lower
TE than many other crops outside the Cucurbitaceae family. Further, the TE reported in
different studies varied significantly. In the literature, two methods were used to estimate
TE. In some studies, the TE was defined as the number of T0 plants out of the total number
of start explants. These putative T0 transgenic plants were verified by multiple approaches
that included Southern hybridization, PCR, and phenotypic characterization of target genes
in T1 or T2 plants. Using these criteria, [23]) reported a TE of ~1.7% in PS76, which was 1.1%
in the cucumber genotype Greenlong [26]. In the South China−type cucumber line Cu2,
three independent T0 transgenic plants were generated from 1132 seeds with an estimated
TE of 0.27% [28] (if one explant from one seed is assumed). In the present study, using
the number of explants as the base of calculation in the RNAi−APRR2 transformation
experiments with PS76, we estimated a TE of 0.10% and 0.30% for the Agrobacterium strains
GV3101 and AGL1, respectively. The TE for LL−OE was 0.25% in H19 and 0.49% in PS76.
In the 9930 background, the transformation efficiency for FS1.1, Cca4, and CsSGR was
0.25, 0.43, and 0.56% respectively. The average TE by genotype for PS76, H19, and 9930
from different experiments of this study was 0.90, 0.50, and 1.05% (based on the number
of seeds) or 0.40, 0.25, and 0.48% (based on the number of explants), respectively (see
Supplementary Table S1).

In a few studies, GFP was used as the reporter gene and the TE was calculated as
the number of GFP−positive shoots [27,30] or T0 plants [29] out of the total number of
explants. In this way, Nanasato et al. [30] found that the transformation efficiency varied
from 7.5–16% with an average of 11.9± 3.5% in the Japanese cucumber line Shinhokusei No.
1. In PS76, the TE was 21% (Agrobacterium strain EHA105) or 8.5% (strain LBA4404) [27].
Via the combined use of optimized vacuum infiltration, micro−brushing, sonication, and
the addition of antioxidants, Xin et al. [29] reported a TE of 5.18, 2.20, 1.97, and 2.46% for
Cu2, XTMC, 404 (Chinese Long), and Eu1 (European−type) cucumbers, respectively. The
TE based on GFP−positive explants was probably an overestimate of the actual TE (see dis-
cussion below). However, due to the different methods used, the TEs reported in different
studies were not readily comparable. Other than the many factors discussed in the study,
the experiences of the researchers probably also contributed to the varying TE reported.
From a practical perspective, TE estimation based on the number verified/validated T0
or advanced−generation transgenic plants is more useful and should be used to estimate
the TE in future studies. Since multiple explants could be obtained from a single seed, the
number of seeds and explants used in a study should also be reported for easy comparison.

4.2. Effects of Cucumber Genotypes on Transformation Efficiency

The varying transformation efficiency among different studies discussed above could
also be attributed to the different cucumber lines used. The shoot−regeneration rate and
overall TE in cucumber are known to be genotype−dependent (e.g., [15,16,64–66]). In the
present study, we compared the shoot−regeneration efficiency among PS76 (US slicer),
Gy14M (US pickle), H19 (US pickle), 9930 (Chinese Long), and WI7602 (Chinese Long).
Across eight 6−BA/ABA treatments, the average shoot−regeneration rate for 9930 and
WI7401 was significantly higher than that of the other three lines; 9930 (87.9%) and Gy14M
(17.5%) had the highest and lowest mean regeneration rate frequency, respectively (Figure 5).
These data were largely consistent with the notion that Chinese Long cucumbers have an
overall higher regeneration rate than cucumbers in other market groups. In addition, based
on the data of multiple experiments in this study, the mean transformation efficiency of 9930
was also higher than that of PS76 and H19 (Supplementary Table S1), indicating a positive
correlation between the shoot−regeneration rate and the overall transformation efficiency.
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However, the transformation efficiency can vary even within the same market group
(e.g., [29,31]). In reality, the ability to select a specific line for Agrobacterium−mediated
transformation may be limited and in many cases may be dictated by the traits under
investigation or the research objectives. Nevertheless, both PS76 and 9930 should be the
genotypes of choice for Agrobacterium−mediated transformation studies.

One interesting question regards the genetic or molecular basis of different transfor-
mation efficiencies among cucumber genotypes. In an earlier study, QTL mapping was
conducted to identify the QTL for shoot−regeneration ability using a recombinant inbred
line (RIL) population derived from 9930 (high efficiency) and 9110Gt (low efficiency) [57,67].
Four QTLs were identified that explained 9.7–16.6% of the observed phenotypic variance.
Further, a candidate gene (Csa1G642540) was proposed for one major−effect QTL that was
a homolog of Arabidopsis AT3G44110 encoding DnaJ Homologue 3 (J3). While the linking
of this gene to shoot−regeneration ability requires further evidence, this work did show
that there is a genetic basis for the ability of organ/tissue/plant regeneration in cucumber.

In Arabidopsis, many development regulator genes have been identified that play
critical roles in tissue/organ/plant regeneration, callus formation, or wounding response
and repairing. Some well−characterized genes are WUSCHEL (WUS), PLETHORAS (PLT),
BABY−BOOM (BBM), ENHANCED SHOOT REGENERATION (ESR), GROWTH REGU-
LATING FACTORS (GRF), GRF−INTERACTING FACTOR (GIF), and WOUND INDUCED
DEDIFFERENTIATION 1 (WIND1). Overexpression of these genes is often associated
with improved callus formation and/or plant regeneration, while deficient mutants of
these regulators significantly decrease callus formation and shoot regeneration [68–70].
Introduction of constructs carrying PLT5, WIND1, WUS, or their combinations significantly
increases the in planta transformation efficiency in multiple crops including snapdragons,
tomato, and Brassica rapa [71]. The expression of a fusion protein combining wheat GRF4
and its cofactor GIF1 substantially increased the efficiency and speed of regeneration in
wheat, triticale, and rice and increased the number of transformable wheat genotypes [72].
Overexpressing a chimeric fusion of ClGRF4 and ClGIF1 increased the transformation
efficiency in watermelon [73].

We wondered if any of these development regulator genes may be associated with
the varying transformation efficiencies in different cucumber lines. From the Gy14v2.1 and
9930v3.0 genome assemblies (http://cucurbitgenomics.org/v2, accessed on 26 February
2023), we identified the closet homologs of the eight Arabidopsis development regulator
genes: CsESR1 (CsGy2G017320), CsWIND1 (CsGy2G016460), CsWUS (CsGy6G031220), CsPLT5
(CsGy1G020130), CsBBM (CsGy2G008180), CsGRF4 (CsGy2G026820), CsGIF1 (CsGy2G002810),
and CsGRF5 (CsGy3G026820). We extracted the complete genomic DNA sequences (including
the promoter region of each gene) from the PacBio genome assembly of Cuc2 [29,74] and HIFI
genome assembly of PS76 (unpublished data). Among 9930, Gy14M, Cuc2, and PS76, the 9930
and Gy14M varieties had the highest and lowest shoot−regeneration frequency, respectively,
and PS76 was in the middle (Figure 5). For each gene, we aligned the gDNA sequences of the
four lines, but no consistent polymorphisms or haplotypes were found among them that could
be potentially associated with the shoot−regeneration efficiency. Nevertheless, this merits
more investigations in the future to find a possible correlation of the expression of these genes
with the transformation efficiency. It is possible that overexpression of any or some of these
genes may boost the success rate of shoot regeneration or the overall transformation efficiency.

4.3. Effect of Explant Types and Ages on Transformation Efficiency

In cucumber transformation, most investigations used cotyledons as the explant source
and collected one or two explants per germinating seed. Nanasato et al. [30] tested the
method to cut one cotyledon into two pieces, which allowed four explants from one seed.
In this study, we found the proximal part of hypocotyl could also be a source of explants
(Figure 1). We compared the transformation efficiency using explants from both cotyledons
and the hypocotyl and found that both sources of explants had a similar efficiency. Thus,
up to five explants could be harvested from one germinating seed (Figure 1). This may

http://cucurbitgenomics.org/v2
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be an advantage when seed availability is an issue. This method may also save time in
explant preparation.

The age of cotyledon explants taken from the germinating seeds seemed to affect shoot
regeneration significantly (Figure 2). After two days of co−cultivation with Agrobacterium
in the dark, the explants could be either yellowish or whitish. The whitish explants were
not able to regenerate into shoots (Figure 2). Explants from seeds germinated at 28 ◦C
for 2 d had more (~41%) with a whitish color than those from seeds germinated at the
same temperature for 3 d (13%). In addition, co−cultivation also resulted in more whitish
explants (14.6%) than those without (1.4%) inoculation with Agrobacterium (Figure 2E,F). If
the explants were harvested from seedlings after 5 d of germinating seeds, the cotyledons
were too thin to generate shoots. This suggested that for PS76 and 9930, germinating
the seeds for 3 d might be appropriate for harvesting the explants. However, the seed
germination rate may be influenced by multiple factors such as age and maturity, and the
optimal time for a specific genotype could be identified from a preliminary study based on
the frequency of yellow explants after co−cultivation.

In this study, we found that the frequency of yellow explants after co−cultivation
was positively correlated with the shoot−regeneration rate (Figure 2). This was similar
to what was observed in the genetic transformation of Brachypodium distachyon, in which
calli could be either white or yellow and only yellow calli had the ability to transform [75].
The healthy yellowish color was probably the result of carotenoid accumulation. High
levels of carotenoids can be produced in the etioplasts of seedlings that germinate in the
dark, which gives the cotyledons their characteristic yellow color [76]. In dark−grown
Arabidopsis, enhanced production of carotenoids in plastids improves transition to photo-
synthetic development upon exposure to light (photomorphogenesis). In the green leaves,
carotenoids play important roles for photosynthesis and photoprotection [77,78]. If the
explants are harvested too early or too late from the germinating seeds or are inoculated
with Agrobacterium, they may be less tolerant to the stresses due to wounding or pathogen
infection, which may result in a whitish color due to less carotenoid accumulation (and
thus less protection). Of course, the white explants could also be due to the use of poor or
underdeveloped seeds.

4.4. Increase Agrobacterium Infection and Efficiency of Selection for Positive Transformants

For successful Agrobacterium−mediated transformation, effective bacterial infection
of the explants and selection of transformed cells is critical. Many factors play roles in
these processes including bacterial strains, infection or co−cultivation time/duration, and
selective antibiotics and selection pressure [15,16]. Agrobacterium strains have been shown
to be a main factor that influences the transformation efficiency. In Medicago truncatula, the
transformation efficiency with the hypervirulent strain AGL1 was twice that obtained with
LBA4404 [79]. AGL1 also exhibited a higher efficiency than C58, GV3101, and EHA105 in
switchgrass [80], but it was lower than GV3101 in tomato [81]. In cucumber, several Agrobac-
terium strains such as C58, GV3101, and EHA105 have been used in genetic transformation,
of which EHA105 seems to be the most often used (e.g., [46,82–84]). In this study, we com-
pared the transformation efficiency between two strains: AGL1 and GV3101. Consistent
with work in other plants, we found that AGL1 (TE = 0.30%) had a higher transformation
efficiency than GV3101 (TE = 0.10%) (Figure 3). We did not observe any obvious negative
effects on explants or shoot regeneration associated with the more virulent AGL1. As such,
AGL1 seems to be a good choice in Agrobacterium cucumber transformation studies.

Due to the large amount work in transformation, an efficient selection system is critical
to eliminate untransformed cells and reduce false positives and chimeras, thus reducing
the workload. Some studies employed reporter genes such as GUS or GFP to detect
infected/transformed cells (e.g., [19,23,26–28,40]). The uses of a GFP reporter system or
antibiotic selection for true transformants have their own pros and cons. The GFP reporter
system is amendable for high−throughput screening of positive transformants. When the
GFP reporter gene is used for positive shoot selection, several shoots could be initiated from
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the explant. If no selection pressure is applied, GFP−positive shoots might be chimeric with
a mixture of transformed and untransformed cells (e.g., [27,30]). It is time−consuming to
identify them at T1 generation. In addition, it is not known how many true transgenic plants
that are from a single GFP−positive shoot have the same genotype. On the other hand,
shoot regeneration may be inhibited by antibiotics during shoot culture. In the present
study, for PS76 and H19, kanamycin alone seemed to be an effective selective agent for shoot
regeneration and rooting. Our results indicated that 100 mg L−1 of kanamycin in the shoot
culture medium was able to inhibit 96% of the initiating or greening of shoots (Figure 4).
Moreover, we found that some leaves of regenerated plantlets were killed by kanamycin
while other were not affected, which suggested that kanamycin can effectively reduce
the chimera in the transformants. Roots were more sensitive to kanamycin (Figure 4H);
we found that 50 mg L−1 of kanamycin in the rooting culture medium was effective to
select against false positives. Based on the RNAi−APRR2 transformation (Figure 5) and
earlier studies (e.g., [85]), cucumber seems to be very sensitive to hygromycin, which may
need more optimization in the system. For these reasons (at least for PS76 and 9930), we
suggest the use of 100 mg L−1 of kanamycin for the selection of cucumber transformants
during shoot regeneration. When other genotypes are used, some preliminary work may be
helpful to optimize the antibiotic concentrations. If the construct carries the GFP reporter
gene, both screening systems could be considered to improve the selection efficiency.

Many other measures have been tested to enhance Agrobacterium infection of cucumber
explants including vacuum infiltration, sonication, micro−brushing of explants, or addition
of antioxidant chemicals in the culture medium to reduce oxidative stresses caused by
mechanical wounding (e.g., [28–30]). We used a vacuum pump to facilitate vacuum infiltra-
tion in this study but did not optimize this system (pressure and duration) or evaluate its
efficiency. Thus, the transformation protocol we developed from this study could be used
as the baseline for future improvement by testing and optimization of these methods.

4.5. T−DNA Insertion as a Source of Mutagenesis in Cucumber

During transformation, the T−DNA is integrated into the recipient genome randomly
via illegitimate recombination [39]. This T−DNA insertion mutagenesis may result in the
disruption of the functions of genes in which the T−DNA is inserted. Tens of thousands of
mutant lines have been developed with this strategy in Arabidopsis and rice, representing
a powerful tool in functional genomics studies (e.g., 92; [36–38,86,87]). Work on T−DNA
insertion mutagenesis in cucumber is rare [16], which is probably due to the low transforma-
tion efficiency in cucumber, thereby producing very few transgenic plants and thus lacking
the necessary population size to detect visibly recognizable mutant phenotypes. Since
T−DNA mutagenesis is not the goal for most transformation projects, a lack of attention
to those rare events is also possible. In this study, we produced many T1 seeds from T0
LL−OE transgenic plants, which allowed us to grow a large number of T1 plants in the field
to identify mutants that were easy to recognize visibly (Figure 8 and Figure S9). Among
a dozen mutants we identified, four were confirmed to be inheritable (Figure 8), while
others still require additional investigation to confirm (Figure S9). These mutants could
also be due to mutagenesis during tissue culture or spontaneous mutations, but the chance
seems to be very low. An indirect piece of evidence is that all the mutants we identified
were from LL−OE progeny. Most of those mutant plants also showed the expected pheno-
types overexpressing the LL gene. Nevertheless, further validation is needed. A simple
whole−genome resequencing or map−based cloning of these mutant alleles may confirm
this. The scope of T−DNA insertion mutagenesis that does not have visible phenotypic
changes in the LL−OE or other transgenic plants may also merit an evaluation. Regardless,
work from this study suggested that Agrobacterium−mediated transformation is a potential
source of T−DNA insertion mutagenesis.
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5. Conclusions

In general, North China−type cucumbers have a relatively higher shoot−regeneration
rate and transformation efficiency than the US slicing or pickling cucumbers. Both Poinsett
76 and 9930 are genotypes of choice in cucumber genetic transformation studies. When
working with either genotype, the following parameters could be considered: use Agrobac-
terium strain AGL1; harvest Agrobacterium at OD = 0.7; germinate seeds at 28 ◦C for 3 d
for explant harvest; co−cultivate explants and bacterium at 23 ◦C for 2 d; select only
yellowish explants for shoot culture; and use kanamycin as a selective agent at 100 mg L−1

for shoot regeneration and 50 mg L−1 for rooting. This protocol can be used as the baseline
for further improvements to increase the transformation efficiency. In addition, Agrobac-
terium−mediated transformation is a good source of mutations from T−DNA mutagenesis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14030601/s1, Figure S1: RNAi construction of APRR2 in pFGC1008.
Figure S2: Life cycle of Agrobacterium-mediated transformation in 110 days in cucumber. Figure S3:
Development of transgenic plant overexpressing the LL gene in PS76 using hypocotyl as the explant.
Figure S4. Shoot regeneration from explants co-cultured with Agrobacterium at 28 °C (A) and 23 °C (B)
with 50 mg L-1 kanamycin added in the MS media. Figure S5: Effect of concentration of hygromycin on
survival of explants and shoot regeneration. Figure S6: The highest regeneration frequency at the given
hormone concentration in 5 tested cucumber genotypes. Figure S7: Lower fertility in T0 transgenic OE
and RNAi plants obtained from the present study. Figure S8: Lower fertility remains in T5 transgenic
plants of PS76-RNAi-APRR2. Figure S9: Examples of more putative T-DNA insertion mutants isolated
from PS76-LL-OE T1 transgenic plants. Supplemental File S1: Protocol of A. tumefaciens-mediated
Genetic Transformation in Cucumber.
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