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Abstract: For medical data mining, the development of a class prediction model has been widely used
to deal with various kinds of data classification problems. Classification models especially for high-
dimensional gene expression datasets have attracted many researchers in order to identify marker
genes for distinguishing any type of cancer cells from their corresponding normal cells. However,
skewed class distributions often occur in the medical datasets in which at least one of the classes has a
relatively small number of observations. A classifier induced by such an imbalanced dataset typically
has a high accuracy for the majority class and poor prediction for the minority class. In this study, we
focus on an SVM classifier with a Gaussian radial basis kernel for a binary classification problem.
In order to take advantage of an SVM and to achieve the best generalization ability for improving
the classification performance, we will address two important problems: the class imbalance and
parameter selection during SVM parameter optimization. First of all, we proposed a novel adjustment
method called b-SVM, for adjusting the cutoff threshold of the SVM. Second, we proposed a fast
and simple approach, called the Min-max gamma selection, to optimize the model parameters of
SVMs without carrying out an extensive k-fold cross validation. An extensive comparison with
a standard SVM and well-known existing methods are carried out to evaluate the performance of
our proposed algorithms using simulated and real datasets. The experimental results show that our
proposed algorithms outperform the over-sampling techniques and existing SVM-based solutions.
This study also shows that the proposed Min-max gamma selection is at least 10 times faster than the
cross-validation selection based on the average running time on six real datasets.

Keywords: support vector machine; imbalanced datasets; threshold adjustment; parameter selection

1. Introduction

In recent years, medical data mining has gained recognition, and especially, the
development of the class prediction model has been of great interest. The classification of
medical datasets arises in many applications, such as medical diagnostic tests of diseases
and gene expression tests. Medical diagnosis is used to find out the diseases of patients
based on the given symptoms and physical examinations. Gene expression tests are to
predict the probability of diseases based on the genes associated with the phenotype or
disease. About diseases such as liver cancer, lung cancer, breast cancer, and gastric cancer,
the early diagnosis or prediction of these diseases are pretty vital, because they can prevent
or stop an outbreak and even save precious time. Hence, developing a powerful prediction
model is considered as a primary task for medical data mining. However, medical datasets
often have the imbalanced classes distribution problem, which means positive outcomes
are rare compared to the negative outcomes, and what we are interested in is the minority
class rather than the majority class.

Imbalanced datasets are considered as critical issues in data mining and machine
learning. The conventional classifiers generally have a high prediction for the majority
class but fail to detect the minority class, because they are designed for maximizing the
overall accuracy and assume that the costs misclassification are equal.

Genes 2023, 14, 583. https://doi.org/10.3390/genes14030583 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14030583
https://doi.org/10.3390/genes14030583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-7490-4331
https://doi.org/10.3390/genes14030583
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14030583?type=check_update&version=1


Genes 2023, 14, 583 2 of 13

The support vector machine (SVM) is the most popular classifier algorithm and
has been proven to outperform other classification methods when dealing with high-
dimensional datasets and numerical features [1]. Because it can deal with nonlinear and
high-dimensional problems, it has a good performance for many different datasets. The
standard SVM is formulated as follows:

Primal problem:

min
w

1
2
‖w‖2 + C

N

∑
i=1

ξi

subject to yi(wTφ(xi) + b) ≥ 1− ξi;

ξi ≥ 0, i = 1, 2, . . . , N.

yi =

{
+1 if xi ∈ class(+1);
−1 if xi ∈ class(−1),

where w is an orthogonal vector to the hyperplane wTφ(xi) + b = 0, C is the cost of
misclassification, b ∈ R is the bias, φ(xi) is a mapping function, and ξi is a slack variable.
Slack variables measure the error that includes the data points on the wrong side of
the hyperplane or within the margin. Hence, the classifier can be written as f̂ (xi) =
wTφ(xi) + b, and the predicted label is sgn[ f̂ (xi)].

Because it is difficult to solve the primal problem directly when the mapping function
is not the identity function, we need to convert the primal problem into the dual problem:

Dual problem:

max
α

N

∑
i=1

αi −
N

∑
i,j=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C;
N

∑
i=1

yiαi = 0, i = 1, 2, . . . , N.

K(xi, xj) = φ(xi)
Tφ(xj),

where αi is a Lagrange multiplier, and K(xi, xj) is a kernel function. Common choices
for kernel functions are linear function K(xi, xj) = xT

i xj, polynomial function K(xi, xj) =

(xT
i xj + c)d, and Gaussian radial basis function K(xi, xj) = exp−γ‖xi−xj‖2

. In particular,
Gaussian radial basis function is very popular in the SVM. In general, K(xi, xj) can be
considered as the similarity measurement between two data points xi and xj. In the dual
standard SVM, the classifier can be rewritten as f̂ (xi) = ∑N

j=1 αjyjK(xi, xj) + b.
Although the standard SVM is a powerful tool for classification, it still has some

drawbacks:

1. The hyperplane used in the SVM algorithm will skew toward the minority class if the
training dataset is imbalanced. The objective of the conventional SVM is to maximize
the overall accuracy and an equal misclassification cost is assumed in the classifiers.

2. The performance of the SVM highly depends on the parameter selection and its kernel
selection. In general, it can be very time consuming to optimize its parameters by
using a grid search.

The SVM is based on the structural risk minimization (SRM) and aims to maximize
the margin and minimize the misclassification error. As a consequence, in order to lower
∑N

i=1 ξi (misclassification error), the hyperplane will skew toward the minority class in
the imbalanced dataset so that the SVM easily misclassifies the new observations to the
majority class. So far, the common solutions to this problem are re-sampling, cost-sensitive
learning, and a threshold adjustment.
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Re-sampling is used to modify the dataset to improve its balance, and it can be
categorized into two groups: under-sampling (such as a one-sided selection [2]) and over-
sampling (such as SMOTE [3] and borderline SMOTE [4]). Although re-sampling is the
easiest way to improve the performance, it still has some drawbacks. Under-sampling may
lose some valuable information, and over-sampling will increase the completion time.

Cost-sensitive learning [5] is to adjust the misclassification cost between the majority
class and minority class, and the ratio of two costs can be determined by the inverse of
the imbalanced ratio (IR), which is defined as the proportion samples in the number of
the majority class to the minority class [6], PSO algorithm [7], and information entropy [8].
However, some researchers do not recommend cost-sensitive learning. They believe that
the improving effect will be limited because the Karush–Kuhn–Tucker (KKT) conditions
take the penalty constants as the upper bounds of the misclassification costs [9].

A threshold adjustment is to modify the threshold or decision value, and there are
some methods based on the rule of thumb [10], Fisher’s discriminant analysis [11], the
midpoint between two-class data points using ensemble learning [12], and the F1 score
of the k-fold cross validation [13]. In order to evaluate the efficiency of classification, we
consider the most time-consuming method proposed by Brank et al. (2003) [13], but we
adjust the threshold based on the G-mean of the five-fold cross validation and rename it
the CV-THR SVM.

Tuning the parameters is one of the most critical steps for training the model, and
a grid search is the simplest method. However, it is time consuming to optimize the
parameters of a nonlinear SVM by using a grid search [14,15]. Recently, many types
of optimization algorithms were proposed to minimize the completion time, such as
particle swarm optimization (PSO) [16–18], the genetic algorithm (GA) [15,16,18], a linear
search [14], and others [19–21]. These optimization algorithms are all based on k-fold cross
validation, and different metrics are used as the evaluation criteria. Taking k-fold cross
validation as the fitness function may avoid overfitting but costs too much time, which is
quite inefficient.

In this paper, we consider the SVM with a Gaussian radial basis kernel and C = 10. In
order to deal with the above problems, the imbalanced datasets and parameter selection,
we purpose a fast and simple method based on a threshold adjustment, called b-SVM, to
improve the classification performance for imbalanced datasets, and furthermore, we also
propose an approach, called the Min-max gamma selection, to optimize the parameter γ
of SVMs without carrying out an extensive k-fold cross validation. The remaining part of
this paper is organized as follows: Section 2 describes our new methods, materials, and
flowcharts. Section 3 presents the results of the experiments and compares our approaches
with other methods. Section 4 is the discussions and conclusions.

2. Materials and Methods
2.1. b-SVM

To deal with the high rate of false negatives, we focus on the reasons that standard
SVM f̂ (xi) formula easily becomes negative in the imbalanced dataset. First of all, we
decompose and analyze the f̂ (xi) structure:
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f̂ (xi) =
N

∑
j=1

αjyjK(xi, xj) + b;

b =
1

#USV

( #USV

∑
i=1

yi − φ(xi)
T β

)
;

=
1

#USV

(
(#PUSV)− (#NUSV)−

#USV

∑
i=1

N

∑
j=1

αjyjK(xi, xj)

)
;

= ∆− 1
#USV

( #USV

∑
i=1

N

∑
j=1

αjyjK(xi, xj)

)
,

where USV are the support vectors whose α values are less than C and greater than 0,
PUSV are the USV of minority class, NUSV are the USV of majority class, and tuning
factor ∆:

∆ =
(#PUSV)− (#NUSV)

#USV

∆ is directly related to the IR. In general, the number of support vectors in the majority
class is larger than in the minority class, which implies that the more imbalanced the dataset
is, the more negative ∆ is. Because ∆ results in the skewness of hyperplane, we correct the
hyperplane by eliminating ∆, f̂ (xi) = ∑N

j=1 αjyjK(xi, xj) + b− ∆. Finally, b-SVM is defined
as follows:

b-SVM:

f̂ (xi) =
N

∑
j=1

αjyjK(xi, xj) + b;

yi =

{
+1 if f̂ (xi) > ∆;
−1 if f̂ (xi) < ∆,

2.2. Min-Max Gamma Selection

The two parameters, C and γ, play an important role in radial basis function kernel
(Gaussian kernel) and there are no exact ranges for their values. The radial basis function
kernel is defined as

K(xi, xj) = exp−γ‖xi−xj‖2
,

where γ is a parameter that sets how far the searching radius of training dataset reaches.
Many researchers prefer applying k-fold cross validation to calculation of G-mean instead
of training dataset as fitness values, to avoid overfitting or underfitting, even though the
excessive completion time is required. In contrast, if we take the G-mean of training dataset
as fitness value, it is usually to obtain the γ which is larger than the optimal γ. Although
we can prevent the model underfitting and lower the completion time, overly large value
of γ can easily cause model overfitting.

To overcome the problem above, a new method called Min-max gamma selection is
proposed to select the appropriate γ value without carrying out k-fold cross validation.
We select the γ from the set {2−20, 2−19.5, . . . , 1

Data dimension} and calculate the “G-mean
of training dataset” for each γ. In particular, we choose the smallest value of γ which
has the largest G-mean of training dataset as the optimal γ, to avoid overfitting and
underfitting. Min-max gamma selection Algorithm 1 is formally presented as follows:
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Algorithm 1: Min-max gamma selection

Input: Training set D; γ = {2−20, 2−19.5, . . . , 1
Data dimension}

for γ = 2−20 to 1
Data dimension do

1. Fit the SVM model with specific γ value
2. Calculate the G-mean of training set D

end
Select the smallest γ which has the largest G-mean of training set.
Output: Optimal γ

It is worth mentioning, C-value has effect on optimal γ-value, and based on our
previous experiments, we suggest setting C = Data dimension or C =

√
Data dimension

for Min-max gamma selection.

2.3. Performance Measures

In order to evaluate classifiers on imbalanced datasets, using accuracy as a measure can
be misleading. Therefore, we consider an alternative measure, G-mean, which is a measure
of the ability of a classifier to balance sensitivity and specificity, has been widely used
in imbalanced datasets, where G-mean =

√
sensitivity× speci f icity, sensitivity= TP

TP+FN ,
and specificity= TN

TN+FP (TP=true positive; FN=false negative; TN=true negative; FP=false
positive). To evaluate whether the performance between two methods is significantly
different, the paired-t test with significance level of α = 0.05 is conducted for comparing
paired classification results.

2.4. Simulation Study

We generate low-dimensional and high-dimensional datasets to evaluate the clas-
sification performance of SVMs. Low/(high)-dimensional datasets are generated as fol-
lows: Each observation has 30 (1000) features. Among all the features, 20 (900) are non-
informative features, each following independently N(0, 1) for both classes. The remaining
10 (100) are informative features following k-dimensional multivariate normal distribu-
tions Nk(−µ, Σ) and Nk(µ, Σ) for the majority class and the minority class, respectively,
where k is the number of informative features, µ = {0.25, 0.5}, Σ = (1− ρ)Ik + ρ1k1T

k , and
ρ = {0, 0.7}. In this simulation, we assume that informative features are equi-correlated
with correlation ρ and the degree of imbalance is quantified using the imbalance ratio
(IR), which is represented as the ratio between the number of samples in the majority
and minority classes. For each simulation experiment, we generate the training dataset of
60 and 200 samples, respectively, and the testing dataset of 2000 samples, with different
IR = {1, 1.5, 3}. In the end, we have 48 datasets, and each simulation is repeated 50 times.
We use testing datasets to evaluate the classification performance of SVMs and ensure good
statistical behavior.

2.5. Real Datasets

Six benchmark datasets are used to assess the performance of SVMs, and among
all datasets, first two are low-dimensional datasets, and the rest of the datasets are high
dimensional. Table 1 shows the summary of these real datasets. We use ten-fold cross
validation and repeat this process 30 times to evaluate the classification performance.

2.6. Flow Chart for Experiments

First of all, we will compare our proposed method b-SVM with three conventional
SVMs, standard SVM, SMOTE SVM, and CV-THR SVM, in a simulation study and real
datasets. About parameter selection, we employed default C = 10 and γ = 1

Data dimension
for CV-THR SVM without carrying out parameter selection, because CV-THR SVM is too
time-consuming. As for the remaining SVMs, we employed default C = 10 and optimal
γ based on five-fold cross validation (CV gamma selection). CV gamma selection is the
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most common and popular method to determine the parameter, even though it requires
significant time to calculate. Second, with respect to gamma selection, we only consider
three SVMs, standard SVM, SMOTE SVM, and b-SVM, and compare our approach Min-max
gamma selection Algorithm 1 with the common method CV gamma selection. The flow
chart is shown in Figure 1.

Table 1. Summary of real datasets used in the experiments.

Dataset Features #(+1)/#(−1) Source

Haberman 3 81/225 [22]
Liver 5 105/240 [22]

Colon cancer 2000 22/40 [10,23]
Glioma2 4434 7/43 [24,25]
Glioma 4434 14/36 [24,25]

Gastric tumor 4522 8/22 [26]

Simulated and real 

datasets

Standard SVM

CV-THR SVM

SMOTE SVM

Proposed SVM

b-SVM

Parameter Selection

CV-THR SVM: 𝛾 =
1

𝐷𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
and C=10

Other SVMs: CV gamma selection and C=10

Min-max gamma selection with C= data dimension or 

C= 𝐷𝑎𝑡𝑎 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

Result

Classification 

performance:

G-mean

Classification 

performance:

Completion time

Figure 1. The flow chart of experimental design and analysis: parameter selection for imbal-
anced datasets.
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3. Results
3.1. Simulation Study

Figure 2 shows the plots of the average G-means for the low-dimensional simulated
data. When the class sizes are balanced, all four SVM methods achieve similar results
and no significant difference exists between the four methods using pairwise comparisons.
When the informative features are pairwisely correlated, the classification performance
decreases with an inter-feature correlation and the standard SVM and SMOTE SVM appear
to be slightly better than the other two methods. When the imbalance ratio (IR) increases,
all three adjusting SVM methods can significantly improve the classification performance,
particularly for correlated cases. Overall, the SMOTE SVM and b-SVM yield a better
performance than the other methods and there is no significant difference between the
SMOTE SVM and b-SVM. For the high-dimensional simulated data, Figure 3 shows that
the general patterns of the classification performance are similar to those shown in Figure 2.
However, the standard SVM performs much worse than the other three adjusting SVM
methods when the class sizes are imbalanced. Another observation from Figure 3 reveals
that the inter-feature correlation has a negative effect on the classification performance.
Overall, the three adjusting methods yield a similar performance without a significant
difference for all the scenarios, except in the cases where there is a little difference between
two classes (µ = 0.25), a higher imbalance ratio (IR = 3), and a smaller sample size (n = 60).
In such cases, the CV-THR SVM and b-SVM perform significantly better than the SMOTE
SVM. In addition to improving the classification performance for the class imbalance data,
the b-SVM has a much lower completion time, and in contrast, the SMOTE SVM and CV-
THR SVM take over 1000 s to complete the procedures as shown in Table 2. Furthermore,
it is notable that the CV-THR SVM has yet to carry out the parameter selection. In view
of the classification performance and completion time, our proposed b-SVM adjusting
method is the most efficient method and provides good classification performances across
all 48 datasets.

IR=3

μ=0.25

ρ=0

IR=3

μ=0.25

ρ=0.7

IR=3

μ=0.5

ρ=0

IR=3

μ=0.5

ρ=0.7

IR=1.5

μ=0.25

ρ=0

IR=1.5

μ=0.25

ρ=0.7

IR=1.5

μ=0.5

ρ=0

IR=1.5

μ=0.5

ρ=0.7

IR=1

μ=0.25

ρ=0

IR=1

μ=0.25

ρ=0.7

IR=1

μ=0.5

ρ=0

IR=1

μ=0.5

ρ=0.7

60 200 60 200 60 200 60 200

60 200 60 200 60 200 60 200

60 200 60 200 60 200 60 200
0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

G
-m

ea
n

SVMs

Standard SVM

SMOTE SVM

CV-THR SVM

b-SVM

Figure 2. Classification performance (G-mean) of SVMs for simulated low-dimensional datasets.
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Figure 3. Classification performance (G-mean) of SVMs for simulated high-dimensional datasets.

Table 2. Completion time (s) of SVMs for simulated datasets.

SVMs L.Datasets 1 H.Datasets 2

Standard SVM 474.14 887.09
SMOTE SVM 976.12 3277.14
CV-THR SVM 452.41 1011.20

b-SVM 474.85 902.50
1 L.Datasets: Low-dimensional datasets. 2 H.Datasets: High-dimensional datasets.

With respect to the gamma selection, Figure 4 shows that in low-dimensional datasets
with a class imbalance (IR = 3), the Min-max Algorithm 1 and CV gamma selection have
a fairly close G-mean and there is no significant difference between the two gamma selection
methods, but in some cases, the b-SVM using the Min-max gamma selection Algorithm 1
has a slightly lower value of the G-mean and these values are less than 2% different from
their respective maximums. However, in high-dimensional datasets, the Min-max gamma
selection Algorithm 1 significantly improves the performance of the standard SVM and
SMOTE SVM when the inter-class effect is small (µ = 0.25) and the G-mean is improved by
more than 10% (Figure 5). Another observation from Figure 5 is that both gamma selection
methods do not have a significant impact on the classification performance of the b-SVM.
Furthermore, SVMs using the Min-max gamma selection Algorithm 1 require much less
computation time, regardless of the low- and high-dimensional datasets (Tables 3 and 4).
Compared to the commonly used CV gamma selection, the Min-max gamma selection
Algorithm 1 can provide a 70% to 80% reduction in the running time with no loss of the
classification performance.
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Figure 4. Classification performance (G-mean) of SVMs using different gamma selections in simulated
low-dimensional datasets with IR = 3.
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Figure 5. Classification performance (G-mean) of SVMs using different gamma selections in simulated
high-dimensional datasets with IR = 3.

Table 3. Completion time (s) of SVMs using different gamma selections in simulated low datasets.

SVMs Min-Max CV

Standard SVM 127.47 474.14
SMOTE SVM 227.30 976.12

b-SVM 127.43 474.85

Table 4. Completion time (s) of SVMs using different gamma selections in simulated high datasets.

SVMs Min-Max CV

Standard SVM 258.92 887.09
SMOTE SVM 470.05 3277.14

b-SVM 257.05 902.50

3.2. Real Datasets

In Table 5, the classification performance of the four SVM methods is compared in
terms of the accuracy, G-mean, computation time (in seconds), and their standard deviation
for the six real datasets. As expected, the standard SVM fails to predict the minority class,
which results in a high accuracy and a low G-mean. In the low-dimensional datasets
(Haberman and Liver), both the b-SVM and CV-THR SVM perform significantly better
than the SMOTE-SVM and SVM in the G-mean. The G-mean is improved by almost 6–20%,
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while the CV-THR SVM is computationally less efficient and the b-SVM is more than
300 times faster than the CV-THR SVM. In the high-dimensional datasets, the b-SVM and
CV-THR SVM can also provide a significant improvement in the G-mean. Moreover, in the
Gastric tumor dataset, the b-SVM and CV-THR SVM provide significant improvements
in the overall accuracy and G-mean simultaneously. However, the SMOTE-SVM does
not present an improvement over the standard SVM for dealing with the class imbalance
problem in the Glioma2 and Gastric tumor datasets. Here, again, the b-SVM can still reduce
the computation time by up to 99% with no loss of the G-mean and accuracy.

Next, we examine the performance of the different gamma selection methods com-
bined with three SVM algorithms on the six real datasets. In Figure 6, the results reveal
that the standard SVM and SMOTE SVM benefit the most from the combination of the
Min-max gamma selection Algorithm 1 in the high-dimensional datasets. However, the
b-SVM in combination with the Min-max gamma selection Algorithm 1 does not present
an improvement in the low-dimensional datasets. In summary, although using the b-SVM
in combination with the Min-max gamma Algorithm 1 selection may, in some cases, not
provide a better performance than the CV gamma selection, the Min-max gamma selection
Algorithm 1 can reduce the computation time by up to 65% with fairly close overall average
classification performances as with the SMOTE SVM.

Table 5. Mean (standard deviation in parentheses) classification performance of SVMs in real datasets.

SVM
Dataset Metrics Standard SMOTE CV-THR b

Haberman Accuracy 0.7213 0.6896 0.6423 0.7182
(0.0020) (0.0026) (0.0045) (0.0020)

G-mean 0.3590 0.5393 0.5754 0.5974
(0.0078) (0.0056) (0.0046) (0.0056)

Time (s) 17.18 22.84 5130.64 16.88

Liver Accuracy 0.7489 0.6880 0.6879 0.7248
(0.0015) (0.0022) (0.0030) (0.0020)

G-mean 0.5655 0.6152 0.6381 0.6298
(0.0043) (0.0034) (0.0029) (0.0031)

Time (s) 19.55 31.58 6641.39 20.66

Colon cancer Accuracy 0.8324 0.8403 0.8278 0.8307
(0.0042) (0.0037) (0.0045) (0.0038)

G-mean 0.7797 0.7892 0.7949 0.8098
(0.0092) (0.0095) (0.0115) (0.0094)

Time (s) 7.28 35.81 2997.96 6.73

Glioma2 Accuracy 0.9340 0.8133 0.8480 0.8540
(0.0017) (0.0096) (0.0054) (0.0045)

G-mean 0.7874 0.6933 0.8236 0.8650
(0.0093) (0.0106) (0.0116) (0.0080)

Time (s) 8.15 71.50 3330.43 7.89

Glioma Accuracy 0.8587 0.8593 0.7940 0.8587
(0.0027) (0.0030) (0.0084) (0.0048)

G-mean 0.6773 0.6797 0.6963 0.6825
(0.0163) (0.0165) (0.0148) (0.0163)

Time (s) 7.90 71.56 3335.27 7.82

Gastric
tumor Accuracy 0.9011 0.8889 0.9456 0.9600

(0.0049) (0.0068) (0.0040) (0.0030)
G-mean 0.8310 0.8132 0.9474 0.9647

(0.0114) (0.0125) (0.0058) (0.0053)
Time (s) 7.60 66.89 3537.62 7.53
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Figure 6. Classification performance (G-mean) of SVMs using different gamma selections in
real datasets.

4. Conclusions

In this work, we have presented a novel threshold-adjusting method based on an SVM
with a Gaussian radial kernel to deal with the class imbalance problem. The imbalance ratio
is a critical factor that decreases the classification performance of the conventional SVM
algorithms. Our simulation studies show that the classification performance of four SVM
algorithms decrease statistically when the features are highly correlated with each other.
In addition to the classification algorithm, the performance of most classifiers depends
on the number of features and selected features. In such situations, a dataset may have
redundant (features with a shared common predictive ability) and irrelevant (features
providing no useful information) features. This implies that feature selection will help
improve the classification performance by selecting the optimal set of features, especially
in the datasets with many features (variables). In addition, the sample size shows a mild
impact on the classification performance of both the b-SVM and CV-THR SVM as compared
to the other SVM algorithms, while the b-SVM is computationally much less expensive than
the CV-THR SVM. On the other hand, the classification performance of the conventional
SVM is improved statistically by increasing the sample size.

Although the SVM performs well using default values in most cases, parameter
optimization has a great impact on the classification performance of the SVM. Therefore,
we also presented a novel gamma selection algorithm to find the optimal gamma parameter.
The simulation and real data results show that all the adjusting SVM algorithms have
a significant improvement for an imbalanced classification and our proposed b-SVM
outperforms the other two SVM methods, both in terms of the G-mean and a reduction
in the computation time. Another observation in this work is that the proposed Min-max
gamma selection Algorithm 1 has been proven to be effective for SVM algorithms. When
applied to six real datasets, the Min-max gamma selection Algorithm 1 can reduce the
computation time by up to 65% with fairly close overall average classification performances
as the respective maximum. In summary, the proposed b-SVM makes it possible to reduce
the run time without a loss of the classification performance for handling an imbalanced
classification. We also found that SVM algorithms may benefit from the Min-max gamma
selection Algorithm 1 even though we observed less improvement in the low-dimensional
real datasets. Our comparison study shows several interesting facts and provides the
researchers some insights into the machine learning classifiers implementation on class
imbalanced data. In the future, we plan to implement an extension of these workflows for
multi-class classification problems.
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