
 

 
 

 

 
Genes 2023, 14, 582. https://doi.org/10.3390/genes14030582 www.mdpi.com/journal/genes 

Article 

A Grid Search-Based Multilayer Dynamic Ensemble System to 

Identify DNA N4—Methylcytosine Using Deep Learning  

Approach 

Rajib Kumar Halder 1, Mohammed Nasir Uddin 1,*, Md. Ashraf Uddin 2,*, Sunil Aryal 2, Md. Aminul Islam 1, 

Fahima Hossain 3, Nusrat Jahan 4, Ansam Khraisat 2 and Ammar Alazab 5 

1 Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh 
2 School of Information Technology, Deakin University, Geelong 3125, Australia 
3 Department of Computer Science and Engineering, Hamdard University Bangladesh,  

Munshiganj 1510, Bangladesh 
4 Department of Computer Science and Engineering, Eastern University, Dhaka 1345, Bangladesh 
5 School of IT, Melbourne Institute of Technology, Melbourne 3000, Australia 

* Correspondence: nasir@cse.jnu.ac.bd (M.N.U.); ashraf.uddin@deakin.edu.au (M.A.U.) 

Abstract: DNA (Deoxyribonucleic Acid) N4-methylcytosine (4mC), a kind of epigenetic modifica-

tion of DNA, is important for modifying gene functions, such as protein interactions, conformation, 

and stability in DNA, as well as for the control of gene expression throughout cell development and 

genomic imprinting. This simply plays a crucial role in the restriction–modification system. To fur-

ther understand the function and regulation mechanism of 4mC, it is essential to precisely locate the 

4mC site and detect its chromosomal distribution. This research aims to design an efficient and high-

throughput discriminative intelligent computational system using the natural language processing 

method “word2vec” and a multi-configured 1D convolution neural network (1D CNN) to predict 

4mC sites. In this article, we propose a grid search-based multi-layer dynamic ensemble system (GS-

MLDS) that can enhance existing knowledge of each level. Each layer uses a grid search-based 

weight searching approach to find the optimal accuracy while minimizing computation time and 

additional layers. We have used eight publicly available benchmark datasets collected from differ-

ent sources to test the proposed model’s efficiency. Accuracy results in test operations were ob-

tained as follows: 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 0.952, 0.961, and 0.980. The proposed 

model has also been compared to 16 distinct models, indicating that it can accurately predict 4mC. 

Keywords: DNA N4-Methylcytosine; deep learning; word embedding; grid search; natural  

language processing 

 

1. Introduction 

DNA methylation is an epigenetic modification in which chromatin structure, DNA 

orientation, DNA integrity, inactivation of the X chromosome, regulation of gene expres-

sion, cell differentiation, cancer development, and DNA–protein interactions are altered, 

keeping the original gene sequence unmodified. This modification plays a significant role 

in developmental and pathological processes, such as aging, carcinogenesis, genomic im-

printing, transposable elements repression, X chromosome inactivation, etc. [1–3]. On the 

other hand, changes in DNA methylation cause several illnesses including tumorigenesis, 

abnormalities of imprinting, cardiovascular diseases, autoimmune diseases, neurological 

diseases, cancer, etc. [1,4]. N4-Methylcytosine (4mC) occurs at the C4 position of cytosine 

in both prokaryotic and eukaryotic cells. It is responsible for participation in the re-

striction–modification system to provide a bacterial immune response against occupied 

DNA, as well as DNA repair, expression, or replication. As for experimental methods 
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and data, current knowledge about other biological functions of 4mC is insufficient, 

and the dataset used to identify 4mC and studies related to 4mC is limited [5]. Alt-

hough there are several approaches to identifying 4mC methylation, such as mass 

spectrometry, methylation-precise PCR, single-molecule real-time (SMRT) sequenc-

ing, and 4mC-Tet-assisted bisulfite, those experiments on the functional or biological 

behavior of 4mC sites are expensive, time-consuming, and fail to identify 4mC areas 

with time efficiency when applied to large sequencing data [5–8]. Recently, machine 

learning approaches have been applied to identify 4mC sites with promising outcomes. 

Machine learning-based approaches have enhanced 4mC identification research and have 

been highly successful in predicting 4mC sites. The success of machine learning-based 

techniques (i.e., their predictive power) in distinguishing 4mC sites from non-4mC sites 

is highly dependent on the quality of the extracted features [1]. Deep learning is also used 

extensively in studying proteins, DNA sequences, and RNA sequences as a powerful and 

popular tool in machine learning [9]. Ensemble methods in machine learning have also 

been used in several studies to detect 4mC sites. Although the state-of-the-art methods 

have continuously yielded promising findings, their lack of generalizability necessitates 

the creation and development of new prediction algorithms to accurately detect 4mC sites. 

Therefore, a reliable prediction model for detecting 4mC sites at a large scale in a gene 

is highly desirable to fully understand the biological role of 4mC, as 4mC may play a 

supporting role in genetic stabilization, regeneration, and development. The following 

summarizes the aims and major contributions of this research work to achieving the ob-

jectives: 

1. To develop a grid search-based weighted average ensemble (WAE) system for iden-

tifying DNA N4-Methylcytosine where learned information is transmitted along 

from a layer to the next (details are provided in Section 4). 

2. The model applies multi-configuration 1D CNN to perform the ensemble method in 

each layer to improve prediction efficiency and find the best results, in addition to 

transferring learning knowledge from one layer to another. 

3. A grid search-based weighted average ensemble (WAE) technique has been applied 

to find the optimal accuracy at each layer. 

4. We trained the model with eight large publicly accessible datasets and compared its 

performance with the existing models. 

The remaining paper is organized as follows. Section 2 describes tasks related to the 

determination of DNA N4-methylcytosine, existing methods, and available techniques. In 

Section 3, we give details about our proposed methodology. Section 4 contains the exper-

imental results, as well as a discussion of the proposed model. Section 5 ends with a con-

clusion and future work. 

2. Literature Review 

To identify 4mC sites, several experimental studies have been conducted. We evalu-

ated existing works in this section by analyzing these related works, and the limitations 

of these works are identified and documented in depth below. 

S. Zhang et al. (2022) [10] proposed a multi-source feature and gradient boosting de-

cision tree-based identification model of DNA N4-methylcytosine sites. They proceeded 

by extracting features from original sequences using multi-source feature representation 

methods, which include the mononucleotide binary and K-mer frequency, dinucleotide 

binary and position-specific frequency, ring-function hydrogen-chemical properties, di-

nucleotide-based DNA properties, and trinucleotide-based DNA properties. Following 

this, a gradient boosting decision tree was used to find the optimal feature set and to re-

move redundant information. Finally, a support vector machine was utilized to predict 

whether a site was 4mC or not. 
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Yu. Lezheng et al. (2022) [11] proposed a convolutional recurrent neural network 

model to identify DNA N4-methylcytosine. For representing DNA sequences, they con-

sidered one-hot and dictionary encoding methods. Following that, three representative 

deep learning algorithms with different network architectures for classification were cho-

sen, including a convolutional neural network (CNN), a recurrent neural network (RNN), 

and a recurrent neural network (RNN) with bidirectional long-short-term memory cells 

(BiLSTM). 

L. Wang et al. (2022) [12] proposed 4mCPred-FSVM, a tool that uses a fuzzy model 

to identify DNA N4-methylcytosine sites. They used position-specific trinucleotide pro-

pensity to construct the feature vectors, which were then fed into the FSVM (fuzzy sup-

port vector machine) to build the final model. 

J. Jin et al. (2022) [13] proposed a deep learning model for predicting DNA N4-

methylcytosine sites in the mouse genome. This network architecture is composed of three 

major segments: (A) the adaptive embedding module, (B) the GRU module, and (C) the 

classification module. The adaptive embedding module was created to tokenize an origi-

nal DNA sequence and obtain appropriate embeddings adaptively using the encoding 

matrix. Following that, the GRU module was then utilized to extract long and short distant 

information in sequence. The classification module used a max-pooling layer to determine 

which feature in each GRU unit is the most relevant or important. 

J. Khanal et al. (2021) [3] proposed a deep learning model to identify DNA N4-

methylcytosine sites in the Rosaceae genome, relying on distributed feature representa-

tion. In the first stage, the K-mer (k = 3) feature encoding technique was used to represent 

each DNA sequence as a fixed length of words. Then, the ‘word2vec’ embedding method 

was applied to map each word to its corresponding vector form. The authors used convo-

lutional neural networks (CNN) in the second stage to classify 4mCs and non-4mCs based 

on selected features. 

A. Wahab et al. (2021) [5] proposed an identification model of N4-methylcytosine 

using deep learning, and natural language processing. The K-mer (k = 2, 3, 4) feature en-

coding technique was used to transfer the combination of nucleotides (A, C, G, T) into the 

sequence of words in this model. The ‘word2vec’ embedding method was applied to pre-

sent each word in the vector form. A continuous bag-of-word (CBOW) approach was em-

ployed to train the word2vec model. Finally, a CNN was used to classify the 4mC and 

non-4mC sites. Three different k-fold cross-validations (three-fold, five-fold, and ten-fold) 

were applied to carry out the preeminent identification. 

G. Fang et al. (2021) [6] proposed a word2vec based deep learning network to predict 

DNA N4-methylcytosine sites. Using the word2vec embedding method, each feature de-

rived from K-mers (K = K = 3, 4, 5, 6) was presented in vector form. The feature matrix 

sequence was then fed into 3-CNN to categorize the 4mCs and non-4mCs.  

M. Tahir et al. (2021) [9] proposed an intelligent and robust computational prediction 

model for DNA N4-methylcytosine sites via natural language processing. The authors ex-

amined two input sequence representations. The initial encoding method was one-hot en-

coding, which encoded each DNA sequence with (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 

0, 0, 1) for A, C, G, and T, respectively. The distributed feature representation learnt by 

the word2vec model, on the other hand, was the second encoding approach. Then, new 

word representation was fed into the convolution neural network (CNN) model. The 

CNN model has various layers, including a convolution layer, pooling layer, ReLU layer, 

normalization layer, dropout layer, fully connected layer, etc. 

H. Zulfiqar et al. (2021) [14] proposed Deep-4mCW2V, where a sequence-based pre-

dictor was used to identify N4-methylcytosine sites. In this model, the training data were 

first converted into numerical feature vectors using the “word2vec” technique. Following 

this, the feature vectors were fed into the 1-D CNN for classification. A 10-fold CV was 

applied to split the entire dataset into 10 groups of relatively equal size. 

D.Y. Lim et al. (2021) [15] developed the iRG-4mC tool, which is based on the CNN-

LSTM model. The DNA sequence was encoded using a combination of one-hot encoding 
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and nucleotide chemical properties in the proposed system (NCP). The final sequence was 

transmitted into the LSTM for feature optimization, and three fully connected layers were 

used for the final outcome. 

M.M. Hasan et al. (2020) [8] proposed a model named i4mC-Mouse to identify DNA 

N4-methylcytosine sites in the mouse genome using multiple encoding schemes. The au-

thors used six encoding techniques, namely K-space nucleotide composition (KSNC), K-

mer nucleotide composition (K-mer), mononucleotide binary encoding (MBE), dinucleo-

tide binary encoding (DBE), electron–ion interaction pseudopotential (EIIP), and dinucle-

otide physicochemical composition (DPC), to represent a DNA sequence as fixed-length 

feature vectors. The WR feature selection method was used to remove the noisy feature. 

Finally, five machine learning classifiers were employed to differentiate between 4mC and 

non-4mC sites, namely random forest (RF), Bayesian network (NB), support vector ma-

chine (SVM), K-nearest neighbor (KNN), and AdaBoost (AB). A 10-fold cross-validation 

was applied to partition the whole data into training and testing sets. 

A. Wahab et al. (2020) [16] proposed a model named DNC4mC-Deep to identify DNA 

N4-methylcytosine sites based on different encoding schemes by using deep learning. 

Deep learning techniques were used to classify a DNA sequence that was represented as 

a fixed length of feature vectors. To generate methylcytosine samples, six types of feature 

encoding methods were used: binary encoding (BE), DNC (2-mer), TNC (3-mer), multi-

variate mutual information (MMI), nucleotide chemical property (NCP), and nucleotide 

chemical property and nucleotide frequency (NCPNF). 

Z. Zhao et al. (2020) [17] proposed a model of DNA N4-methylcytosine sites via 

boost-learning various types of sequence features. The DNA sequence was first encoded 

with one-hot binary (OHB), sequential nucleotide frequency (SNF), K-nucleotide fre-

quency (KNF), K-spectrum nucleotide pair frequency (KSNPF), and PseDNC. Top-ranked 

features from the XGBoost training procedure were chosen. Finally, the chosen features 

were used to train the support vector machine (SVM) classification model. A K-fold cross-

validation (K = 10) was used to split the dataset into training and test sets. 

J. Khanal et al. (2019) [18] proposed an identification model of N4-methylcytosine 

sites in prokaryotes using a convolutional neural network. In this model, every DNA se-

quence was represented as a binary vector using a one-hot encoding technique. The K-

fold cross-validation technique was used to split the datasets into the training and testing 

sets and, finally, CNN was employed to classify the 4mCs and non-4mCs sequences. 

B. Manavalan et al. (2019) [19] proposed a sequence-based meta-predictor for accu-

rate DNA 4mC site prediction using effective feature representation. They began by gen-

erating 56 probabilistic features using four ML algorithms: SVM, random forest [RF], gra-

dient boosting [GB], and extremely randomized tree [ERT], as well as seven feature en-

codings: K-mer composition, binary profile [BPF], dinucleotide binary profile encoding 

[DPE], local position-specific dinucleotide frequency [LPDF], ring-function-hydrogen-

chemical properties [RFHC], and dinucleotide physicochemical composition. They subse-

quently fed these probabilistic features into a SVM to construct a final prediction model. 

Limitations: All the aforementioned models are unable to expand their current 

knowledge from their resources. We have proposed a multilayer dynamic system in 

which the learning knowledge flows from layer to layer, and every layer can achieve an 

optimal accuracy that enhances the overall model’s performance. The related studies cov-

ered in this section is summarized in Table 1 with respect to diverse attributes. 
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Table 1. Brief description of related studies adopted from the Refs. [3,5–13,15–19]. 

Authors Contributions Datasets Performances 

S. Zhang et 

al. (2022) 

[10] 

1. Applied three types of feature extraction 

methods to extract sequence information. 

2. Used a gradient boosting decision tree 

(GBDT) to select the important features and 

remove redundant information. 

3. Used six benchmark datasets to test the per-

formance of the model. 

C. elegans (3108 samples) 
Acc: 0.851, Mcc: 0.703, 

Sn: 0.872, Sp: 0.83 

D. melanogaster (3538 samples) 
Acc: 0.859, Mcc: 0.717, 

Sn: 0.868, Sp: 0.849 

A. thaliana (3956 samples)  
Acc: 0.801, Mcc: 0.602, 

Sn: 0.793, Sp: 0.81 

E. coli (776 samples) 
Acc: 0.881, Mcc: 0.763, 

Sn: 0.886, Sp: 0.877 

G. subterraneus (1812 samples) 
Acc: 0.859, Mcc: 0.719, 

Sn: 0.862, Sp: 0.856 

G. pickeringi (1138 samples) 
Acc: 0.901, Mcc: 0.802, 

Sn: 0.898, Sp: 0.905 

Yu. Lezheng 

et al. (2022) 

[11] 

1. Focused on three types of deep learning 

architectures: convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), 

and convolutional recurrent neural networks 

(CNN-RNNs). 

2. Analyzed several important factors, such as 

model architecture and its hyperparameters 

(the number of filters, kernel, pooling, and 

BiLSTM sizes, etc.), encoding methods, and 

attention mechanisms. 

3. Introduced UMAP and Deep SHAP to better 

analyze and understand deep learning models. 

C. elegans (3108 samples) 
Acc: 0.839, Mcc: 0.678, 

Recall: 0.84 

D. melanogaster (3538 samples) 
Acc: 0.894, Mcc: 0.789, 

Recall: 0.903 

A. thaliana (3956 samples) 
Acc: 0.874, Mcc: 0.749, 

Recall: 0.896 

L. Wang et 

al. (2022) 

[12] 

1. Fuzzy support vectors were used to design 

the machine learning model. 

2. Trinucleotide positional preference was used 

to convert the DNA sequence into a numerical 

vector that fully extracts the information from 

the benchmark dataset. 

3. Analyzed model architecture and 

hyperparameters (for example, the number of 

filters, kernel, pooling, and BiLSTM sizes), 

encoding methods, and attention mechanisms. 

4. Applied a grid search algorithm to find the 

best parameters. 

C. elegans (3108 samples) 
Acc: 0.875, Mcc: 0.750, 

Sn: 0.873, Sp: 0.876 

D. melanogaster (3538 samples) 
Acc: 0.871, Mcc: 0.743, 

Sn: 0.874, Sp: 0.868 

A. thaliana (3956 samples) 
Acc: 0.828, Mcc: 0.756, 

Sn: 0.824, Sp: 0.834 

E. coli (776 samples) 
Acc: 0.962, Mcc: 0.923, 

Sn: 0.962, Sp: 0.961 

G. subterraneus (1812 samples) 
Acc: 0.901, Mcc: 0.804, 

Sn: 0.909, Sp: 0.893 

G. pickeringi (1138 samples) 
Acc: 0.911, Mcc: 0.824, 

Sn: 0.914, Sp: 0.910 

J. Jin et al. 

(2022) [13] 

1. The adaptive embedding approach that has 

been proposed may automatically change the 

original input feature to better represent the 

prediction task. 

2. An effective network of bidirectional gated 

recurrent units was applied to efficiently extract 

the complete and meaningful representation of 

the full DNA sequence from both near and far 

information. 

G. subterraneus (1812 samples) 
Acc: 0.825, Mcc: 0.651, 

Sn: 0.8, Sp: 0.85 

J. Khanal et 

al. (2021) [3] 

1. Applied a word embedding method to 

capture the high-level input features. 
F. vesca (25,922 samples),  

Acc: 0.869, Auc: 0.940, 

Sn: 0.897, Sp: 0.860 
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2. Double-layer 1D CNN was applied to process 

the captured features. 
R. chinensis (14,502 samples) 

Acc: 0.854, Auc: 0.937, 

Sn: 0.871, Sp: 0.885 

A. Wahab et 

al. (2021) [5] 

1. Used word2vec embedding to transfer the 

sequences into the form of vectors. 

2. Fed the vectors of word embedding into 

CNN by applying grid search-based algorithm. 

C. elegans(12,726 samples). 
Acc: 0.935, Auc: 0.973, 

Sn: 0.956, Sp: 0.899 

G. Fang et 

al. (2021) [6] 

1. Used word2vec encoding and one-hot 

encoding to conduct comparative tests on the 

same dataset. 

2. Designed a deep learning framework to com-

bine a three-CNN module to extract the hidden 

high-level features and more biological fea-

tures. 

C. elegans(17,808 samples). 
Acc: 0.932, Auc: 0.971, 

Sn: 0.950, Sp: 0.916 

H. Zulfiqar 

et al. (2021) 

[7] 

1. Applied a word embedding method to 

capture the high-level input features. 

2. Double-layer 1D CNN was applied to process 

the captured features on the basis of 10-fold 

cross-validation. 

E. coli (776 samples) 
Acc: 0.861, Mcc: 0.670, 

Sn: 0.876, Sp: 0.773 

D.Y. Lim et 

al. (2021) 

[15] 

1. Applied LSTM to solve the vanishing 

gradient problem by adding extra interactions. 

2. Hyper-parameter tuning was applied to 

optimize filter sizes, number of filters, number 

of convolution layers, pool sizes, stride length, 

and dropout values. 

F.vesca (12,942 samples) 
Acc: 0.859, Mcc: 0.706, 

Sn: 0.835, Sp: 0.882 

R. chinensis (6232 samples) 
Acc: 0.865, Mcc: 0.714, 

Sn: 0.854, Sp: 0.875 

M. Tahir et 

al. (2021) [9] 

1. Applied “word2vec” to automatically extract 

features from DNA sequences and feed the vec-

tors into CNN. 

2. Compared to the state-of-the-art methods for 

all six benchmark datasets and independent da-

tasets. 

C. elegans (3108 samples) 
Acc: 0.87, Auc: 0.937, Sn: 

0.887, Sp: 0.857 

D. melanogaster (3538 samples) 
Acc: 0.882, Auc: 0.938, 

Sn: 0.894, Sp: 0.870 

A. thaliana (3956 samples) 
Acc: 0.840, Auc: 0.902, 

Sn: 0.894, Sp: 0.829 

E. coli (776 samples) 
Acc: 0.868, Auc: 0.946, 

Sn: 0.873, Sp: 0.866 

G. subterraneus (1812 samples) 
Acc: 0.886, Auc: 0.949, 

Sn: 0.888, Sp: 0.884 

G. pickeringi (1138 samples) 
Acc: 0.925, Auc: 0.968, 

Sn: 0.912, Sp: 0.938 

M.M. Hasan 

et al. (2020) 

[8] 

1. Employed six encoding schemes to cover var-

ious aspects of DNA sequences. 

2. Optimized the successive features via the WR 

feature selection method. 

G. subterraneus (1812 samples) 
Acc: 0.816, Auc: 0.920, 

Sn: 0.807, Sp: 0.825 

A. Wahab el 

al. (2020) 

[16] 

1. Applied six encoding techniques. 

2. Applied a grid search algorithm to obtain the 

optimal model. 

F. vesca (12,942 samples) 
Acc: 0.815, Auc: 0.89, Sn: 

0.878, Sp: 0.753 

R. chinensis (6232 samples) 
Acc: 0.783, Auc: 0.87, Sn: 

0.801, Sp: 0.765 

Cross-species (17,722 Samples) 
Acc: 0.780, Auc: 0.85, Sn: 

0.849, Sp: 0.706 

Z. Zhao et 

al. (2020) 

[17] 

1. Applied embedded feature selection scheme 

to rank with the feature relevance scores. 

C. elegans (3108 samples), 
Acc: 0.826, Mcc: 0.653, 

Sn: 0.849, Sp: 0.804 

D. melanogaster (3538 samples) 
Acc: 0.843, Mcc: 0.686, 

Sn: 0.854, Sp: 0.832 
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2. Extracted the sequence properties of contigu-

ous nucleotides as features to characterize the 

sequences. 

A. thaliana (3956 samples) 
Acc: 0.794, Mcc: 0.589, 

Sn: 0.783, Sp: 0.805 

E. coli (776 samples) 
Acc: 0.843, Mcc: 0.686, 

Sn: 0.861, Sp: 0.825 

G. subterraneus (1812 samples) 
Acc: 0.847, Mcc: 0.694, 

Sn: 0.836, Sp: 0.857 

G. pickeringi (1138 samples). 
Acc: 0.877, Mcc: 0.754, 

Sn: 0.863, Sp: 0.891 

J. Khanal et 

al. (2019) 

[18] 

1. Selected the best performing hyper-

parameters using the grid search method. 

2. Extracted the features of the 4mC sites from 

DNA sequence automatically using the CNN 

model. 

C. elegans (3108 samples) 
Acc: 0.842, Mcc: 0.694, 

Sn: 0.894, Sp: 0.825 

D. melanogaster (3538 samples) 
Acc: 0.853, Mcc: 0.686, 

Sn: 0.864, Sp: 0.853 

A. thaliana (3956 samples), 
Acc: 0.797, Mcc: 0.621, 

Sn: 0.803, Sp: 0.792 

E. coli (776 samples) 
Acc: 0.859,Mcc: 0.687, Sn: 

0.881, Sp: 0.788 

G. subterraneus (1812 samples) 
Acc: 0.860, Mcc: 0.703, 

Sn: 0.851, Sp: 0.843 

G. pickeringi (1138 samples) 
Acc: 0.871, Mcc: 0.750, 

Sn: 0.857, Sp: 0.893 

B. Ma-

navalan et 

al. (2019) 

[19] 

1. Applied a feature representation learning 

scheme and generated 56 probabilistic features 

based on 4 different ML algorithms and 7 

feature encodings covering diverse sequence 

information, including compositional, 

physicochemical, and NT position-specific 

information. 

2. Compared the performance of the proposed 

predictor with those of three state-of-the art 

predictors. 

C. elegans (3108 samples) 
Acc: 0.826, Auc: 0.892, 

Sn: 0.840, Sp: 0.812 

D. melanogaster (3538 samples) 
Acc: 0.842, Auc: 0.904, 

Sn: 0.831, Sp: 0.854 

A. thaliana (3956 samples) 
Acc: 0.792, Auc: 0.861, 

Sn: 0.761, Sp: 0.822 

E. coli (776 samples) 
Acc: 0.848, Auc: 0.911, 

Sn: 0.869, Sp: 0.827 

G. subterraneus (1812 samples) 
Acc: 0.855, Auc: 0.856, 

Sn: 0.854, Sp: 0.904 

G. pickeringi (1138 samples) 
Acc: 0.891, Auc: 0.951, 

Sn: 0.884, Sp: 0.898 

3. Materials and Methods 

3.1. Dataset Construction 

The benchmark and independent datasets in this paper are collected from different 

sources [3,5,6,8,9,16–19] to measure the efficiency of the proposed model for a fair com-

parison with current predictors. These datasets contain eight different species, namely 

Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D. melanogaster), Arabidopsis 

thaliana (A. thaliana), Escherichia coli (E. coli), Geoalkalibacter subterraneus (G. subterra-

neus), Geobacter pickeringii (G. pickeringi), Fragaria vesca (F. vesca), and Rosa chinensis (R. 

chinensis). All samples are 41 bp long, with the 4mC site in the middle. The threshold of 

CD-HIT was adjusted at 80% in order to eliminate redundant sequences and to prevent 

the predictor from overfitting. As a result, the number of negative samples will outnum-

ber the number of positive samples. An identical number of negative samples were picked 

at random from the eight species in order to equalize the positive and negative samples. 

Therefore, these datasets can be written in the following form: 

i i iS S S+ −=    Where 1,2,3,4,.......,8i =  (1) 
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where 
iS  represents the total number of positive and negative samples for the eight spe-

cies. The eight positive datasets from the various species are included in the subsets 
iS +

( 1,2,3,4,.......,8)i = ; 
iS −  ( 1,2,3,4,.......,8)i =  contains the negative samples. In set 

theory, the union is represented by the symbol  . Table 2 lists the specifics of the eight 

benchmark datasets. 

Table 2. The number of positive and negative samples collected from each of the eight species. 

Dataset Name iS +  
iS −  

i i iS S S+ −=   

Caenorhabditis elegans (C. elegans) 1154 1154 2308 

Drosophila melanogaster (D. melanogaster) 1769 1769 3538 

Arabidopsis thaliana (A. thaliana) 1978 1978 3956 

Escherichia coli (E. coli) 388 388 776 

Geoalkalibacter subterraneus (G. subterraneus) 906 906 1812 

Geobacter pickeringii (G. pickeringi) 569 569 1165 

Fragaria vesca (F. vesca) 4321 4321 8642 

Rosa chinensis (R. chinensis) 2421 2421 4842 

3.2. Feature Representation 

A DNA sequence is represented as a fixed length of feature vectors which can be 

classified by deep learning algorithms. We used the K-mer approach to break the genomic 

sequence into fixed-length words (3-mer). It is a standard feature encoding algorithm 

widely used in various prediction tasks. When K = 2, we call this method dinucleotide 

composition (DNC), and when K = 3, we call this method trinucleotide composition 

(TNC). In this study, we have used K = 3. Trinucleotide composition in K-mers is com-

monly used to predict DNA N4-methylcytosine (4mC) using deep learning approaches, 

because 4mC modification tends to occur in specific patterns within DNA sequences, and 

these patterns are often related to the surrounding trinucleotide context of the 4mC site. 

In K-mer analysis, the K-mer size is the length of the substring that is extracted from the 

DNA sequence for analysis. Trinucleotide composition specifically refers to K-mers of 

length 3, where the substring consists of three adjacent nucleotides. By using trinucleotide 

composition in K-mers of length 3, we can capture information about the surrounding 

nucleotides in a DNA sequence that are most relevant for predicting 4mC modification. 

This is because the presence of 4mC is known to be influenced by the nucleotides that 

immediately precede and follow the modification site. Therefore, analyzing trinucleotide 

composition allows the model to capture these important contextual features in the data. 

In addition, using trinucleotide composition in K-mers of length 3 also reduces the total 

number of K-mers that need to be considered in the analysis, compared to using larger K-

mer sizes. This can improve the efficiency of the analysis and reduce the computational 

requirements for training the deep learning model. In TNC, all samples of 41 nt produce 

39 components with the equation of L − k + 1. Here, L stands for the sequence length, and 

k stands for the K-mer value as an integer [11–24]. ATG, TGC, GCG, and CGA are the four 

3-mers that can be tokenized from the DNA sequence “ATGCGA,” for instance. 

3.3. Distributed Feature Representation 

We converted each K-mer word into a 100-dimensional vector format in attempt to 

acquire discriminating information between the two classes. We used a word embedding 

approach known as word to vector (word2vec) to transfer the sequences into vector form. 

This technique generates an optimal set of feature vectors based on the distributional hy-

pothesis. Each word (K-mer) in word2vec is represented by an n-dimensional vector. 

Here, (L-2) × n array shapes represent the length of each sequence. It is a two-layer neural 

network that processes text by vectorizing words. It receives input as a text corpus, and 
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its output is feature vectors representing words in that corpus. This technique decreases 

computational complexity and reduces the noise, ultimately leading to improved perfor-

mance in the resultant computational model [3,6,25,26]. Either the continuous bag-of-

words (CBOW) approach or the skip-gram method can be used to apply the word2vec 

model. The current word ( ( ))w t  or input is employed in the skip-gram model to predict 

the surrounding window of context words. The CBOW technique, in contrast, makes an 

attempt to infer the target word from its nearby (context) words [3]. A five-window 

CBOW model was developed using the following inputs: 

2

2, 0

( )
k k

w t k
= 

+  (2) 

The skip-gram is more practical and produces better results for infrequent words. We 

used CBOW for word2vec training since in our study we are interested in frequent words. 

Each word sequence (3-mer) was fed into a word2vec model with two layers. Each se-

quence of length L was represented by an array of form (L-2) 100, and each word had its 

own 100-dimension (D) vector representation. As an illustration, the words “ATG” and 

“TGC” were each represented as a 100-(D) vector of letters 

1 2 3 100[0.14 ,0.32 ,0.33 ,...........,0.11 ]  and 
1 2 3 100[0.32 ,0.14 ,0.31 ,...........,0.23 ] , re-

spectively. Table 3 provides a list of the word2vec training parameters. The abovemen-

tioned three steps are illustrated in Figure 1a. 

 

Figure 1. (a) (Unit A) Dataset contraction, feature representation, and distributed feature represen-

tation block. 

Table 3. Training parameters used in word2vec. 

Parameters word2vec Model 

Training Method CBOW 

Corpus 

C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, G. picker-

ingi, F. vesca, and  

R. chinensis. 

Context word 3-mer 

Vector size 100 

Window size 5 

Minimum count 5 

Negative sampling 5 

Epochs 25 
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3.4. Proposed Deep Learning Model 

In the final step, the weighted average ensemble technique is adopted on the training 

and testing set to identify 4mC and minimize generalization error. It combines the predic-

tions from multiple models, where the contribution of each model is weighted propor-

tionally to its capability or skill. As the basic learning model for this work, we used a 1D 

CNN (deep feed forward neural network) that included several parameters to tune. Af-

terwards, the convolution neural network (CNN) model was fed the feature vectors as 

input. Convolution layer, pooling layer, activation layer, normalizing layer, dropout 

layer, fully connected layer, etc., are some of the layers in the CNN model. The training 

phase involves adjusting the hyper-parameters. The number of convolution layers, the 

number of filters within each convolution layer, the size of these filters, and the dropout 

rate are the hyper-parameters of each CNN. Table 4 displays the ranges of these parame-

ters. Each CNN in the proposed approach is composed of a pair of one-dimensional con-

volution layers. Each basic learning model has 16 and 32, 32 and 42, and 42 and 64 filters 

in the first and second layers, respectively. Each model’s first and second layers have fil-

ters with sizes of 3 and 5, 5 and 7, and 7 and 9, respectively. A ReLU activation function is 

applied after each convolution layer. Each convolution layer was followed by a dropout 

layer with a rate of 0.7 in order to address the overfitting issue. Each model’s two convo-

lution layers’ best features are given to a dropout layer with a probability of 0.5, 0.3, and 

0.6 separately, followed by a fully connected layer with one node and a sigmoid function 

for prediction. Furthermore, the activation layer predicts whether a given DNA sample 

contains N4-methylcytosine or not, depending on the target class. This layer’s output is 

normalized to lie within the interval [0,1]. The detailed configurations of the proposed 

4mCCNN model are shown in Table 5. This model utilizes a stratified prediction tech-

nique. Based on the same training dataset, the three models at each level categorize the 

same test set. After each layer’s classification is complete, the correctly classified data is 

added to the pre-training data and compared with the predefined target values in the 

original data set and inserted into the next layer. In the next iteration, the misclassified 

data is used as new test data. This process continues until all models have improved per-

formance (TP and TN = 0). However, a complicated aspect of using weighted average 

ensemble is choosing the relative weight for each ensemble member to achieve the optimal 

accuracy in each layer. At each layer, a grid search method is used to find the optimal 

weights for the model, resulting in more “accurate” predictions. The whole approach is 

called a grid search-based multilayer dynamic system (GS-MLDS). These steps are illus-

trated in Figure 1b. The working procedure is demonstrated in Algorithm 1. The overall 

accuracy for GS-MLDS can be calculated using the following formula: 

Number of train data in layer, i : Number of train data in layer ( 1)i −  + Number of 

TP, TN in layer ( 1)i − . 

Test data in layer, i : Number of FP, FN in layer ( 1)i − . 

Where i  = layer number; i  = 1, 2, 3, …., n. 

( + )
1=

( )

i

Test

n

i
TP TN

TA
S S S+ −


=

+
  (3) 

where TA , ( + )iTP TN , and 
TestS  represent the total accuracy, total number of correctly 

classified data in each layer, and total number of testing data, respectively. Furthermore, 

S +
, and S

−
 represent the total number of 4mC and non 4mC sites, respectively. 
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Table 4. Hyper-parameters tuning demonstration. 

Parameters Range 

The number of convolutional layers (1, 2, 3, 4, 5) 

The number of filters in each convolutional layer (16, 32, 42, 64) 

The size of filters of the convolutional layers (3, 5, 7, 9) 

Dropout rate (0.2, 0.4, 0.5, 0.6) 

Table 5. The detailed architecture of the proposed CNN. 

Layer (Model: 1) Layer (Model: 2) Layer (Model: 3) 

Input; Shape (39, 100) Input; Shape (39, 100) Input; Shape (39, 100) 

Conv 1D (16, 3, 1) Conv 1D (32, 5, 1) Conv 1D (42, 7, 1) 

Conv 1D (32, 5, 1) Conv 1D (42, 7, 1) Conv 1D (64, 9, 1) 

Dropout (0.5) Dropout (0.3) Dropout (0.6) 

Dense (1) Dense (1) Dense (1) 

Sigmoid Sigmoid Sigmoid 

In Table 5, the Conv1D ( , , )f s t  is a one-dimensional convolution operator where 

, ,f s  and t  stand for the number, size, and stride of filters, respectively. The operator 

Dropout ( )p  represents a dropout layer with a probability of p . Dense ( )n  is a densely 

connected layer with n  nodes. Finally, the sigmoid function is then used to determine if a 

sequence has a 4mC site or not. 

 

Figure 1. (b) (Unit B (Classification Block)) Grid search-based multilayer dynamic system (GS-

MLDS) to predict 4mC sites. 
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Algorithm 1: Proposed Algorithm 

Input: 

The DNA sequence dataset. 

Output: 

Classify 4mC and non-4mC 

  1. Begin 

  2. Remove the redundant sequences. 

  3. If total number of ( )iS +   total number of ( )iS −  then 

  5.          Randomly select the equal number of ( )iS +  and ( )iS −  

  6.  Else  

  7.          
i i iS S S+ −=         [Where 1,2,3,4,.......,8i = ] 

  8.  End If 

  9.  Transform each DNA sequence into a fixed length of word. 

 10.  Convert each word into n-dimensional vector form. 

 11.  Split the dataset into training ( )TrainS  and testing ( )TestS  set. Where ( )TrainS  > ( )TestS . The ratio between 
iS +   

        and 
iS −  of each data set is the same as in the entire dataset. 

 12.  Tuning the base classifiers with numerous hyper-parameters. 

 13.  Apply training set to fit each classifier. 

 14.  Integrate the base classifiers and apply gird search to choose the relative weight for each ensemble member. 

 15.  Predict new data. 

 16.  For i  = 2 to n  do 

 17.                If TN and TP 0  then  

 18.                 TrainS  = TrainS  ( 1)i −  + Number of TP, TN in layer ( 1)i −  

 19.                
TestS  = Number of FP, FN in layer ( 1)i −           [Where i  = layer number] 

 20.                Repeat Step 13 to 15. 

 21.        Else 

 22.                Calculate total accuracy using the following formula: 

                                           

( + )
1=

( )

i

Test

n

i
TP TN

TA
S S S+ −


=

+
           [Where   = 1, 2, 3,……., n] 

 23.        End If 

 24.  End For 

 25.  Stop 

4. Result and Discussion 

The effectiveness of a machine learning model is evaluated using a performance ma-

trix. The “scikit-learn” library’s matrix module contains the methods required to compute 

performance evaluation metrics. The model’s performance is calculated using a confusion 

matrix. The confusion matrix produces four results based on the datasets: TP (true posi-

tive), TN (true negative), FP (false positive), and FN (false negative). The confusion matrix 

results of our proposed GS-MLDS are shown graphically in Figure 2a,b. The accuracy, 

precision, true positive rate, false positive rate, true negative rate, and false negative rate 

[18] are calculated by employing the following equations: 
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                        Accuracy 1
R R

R R

+ −
+− += − + −
+

 (4) 

                        Precision 
R

R R

+

= + −
+ +

 (5) 

                        Sensitivity/True Positive Rate/Recall 1
R

R

+
−= − +  (6) 

                        False Positive Rate 
R

R R

−
+= − −
++

 (7) 

                        Specificity/True Negative Rate 1
R

R

−
+= − −  (8) 

                        False Negative Rate = 
R

R

−
+
−  (9) 

where 𝑅+ is the total number of 4mC investigated, while 𝑅−
+ is the number of 4mC incor-

rectly classified as non-4mC sequences. Here, 𝑅− is the total number of non-4mC investi-

gated, while 𝑅+
− is the number of non-4mC incorrectly classified as 4mC. 
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(b) 

Figure 2. (a) Comparison between TP and FN, (b) Comparison between TN and FP. 

True positive and true negative are represented as TP and TN in Figure 2a,b above, 

with the correct number of identified sequences related to 4mC and non-4mC, respec-

tively. False positive and false negative denoted are as FP and FN, respectively, and indi-

cate the false number of identified sequences for 4mC and non-4mC. We have split each 

dataset 80:20, where 80% is the training set and 20% is the testing set. The total number of 

4mC sites correctly identified by this proposed model for C. elegans, D. melanogaster, A. 

thaliana, E. coli, G. subterraneus, G. pickeringi, F. vesca, and R. chinensis datasets are 226 out 

of 231, 337 out of 354, 379 out of 396, 75 out of 78, 177 out of 182, 112 out of 114, 852 out of 

865, and 476 out of 485, respectively. The non-4mC sites correctly identified by this pro-

posed model for the same datasets are 222 out of 231, 331 out of 354, 352 out of 396, 74 out 

of 78, 179 out of 181, 108 out of 114, 799 out of 864, and 461 out of 484, respectively. 

ROC curves are a tool that aids in the understanding of probabilistic forecasts for 

binary (two-class) classifications of predictive modeling problems. The ROC curve 

demonstrates how well a classification model performs at different thresholds. ROC is a 

probability curve. TPR and FPR are used to plot the ROC curve, with TPR on the y-axis 

and FPR on the x-axis. Compared to the existing model, the proposed model outperforms 

it at classifying and testing datasets when the ROC curve has a lower x-axis and a higher 

y-axis value. The level or measurement of separability is represented by AUC. The entire 

two-dimensional region from (0, 0) to (1, 1) below the entire ROC is measured by AUC. A 

model with a higher AUC predicts 0 s as 0 s and 1 s as 1 s more frequently. The AUC ROC 

values are graphically presented in Figure 3. 
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Figure 3. ROC curve and AUC of the proposed model. 

In Figure 3, the blue dots represent the True Positive Rate (TPR) at different classifi-

cation thresholds, while the orange dots represent the AUC of this proposed model. The 

proposed model obtained AUC values of 96.97, 94.35, 92.30, 95.51, 98.07, 96.49, 95.49, and 

96.70 for the C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, G. pickeringi, F. 

vesca, and R. chinensis datasets, respectively. That is, the proposed model has 96.97%, 

94.35%, 92.30%, 95.51%, 98.07%, 96.49%, 95.49%, and 96.70% probability of distinguishing 

4mC from non-4mC for each dataset, respectively. The results of other performance eval-

uation matrices are shown in Table 6. 
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Table 6. Performance evaluation metrics result from the proposed approach (GS-MLDS) based on 

a different datasets. 

Dataset Name 

Parameters (%) 

ACC AUC Precision 
Recall 

/TRP 
FPR TNR FNR 

C. elegans  96.96 96.97 96.17 97.83 3.89 96.10 2.16 

D. melanogaster 94.35 94.35 93.61 95.19 6.49 93.50 4.80 

A. thaliana  92.29 92.30 89.59 95.70 11.11 88.88 4.29 

E. coli  95.51 95.51 94.93 96.15 5.12 94.87 3.84 

G. subterraneus  98.07 98.07 98.88 97.25 1.10 98.89 2.74 

M. pickeringi  96.49 96.49 94.91 98.24 5.26 94.73 1.75 

F. vesca  95.48 95.49 92.91 98.49 7.52 92.47 1.50 

R. chinensis 96.69 96.70 95.39 98.14 4.75 95.24 1.85 

The proposed predictor obtained accuracies greater than 90% for each dataset. This 

model enhances prediction accuracy through layer-by-layer classification techniques. To 

maximize the accuracy at each layer, we used a grid-based search technique to find the 

best variety of weights for each layer. For example, Table 7 demonstrate the classification 

performance of GS-MLDS in each layer. The precision values of this suggested model for 

each dataset are 96.17%, 93.61%, 89.59%, 94.93%, 98.88%, 94.91%, 92.91%, and 95.39%, re-

spectively. A model’s accuracy specifies how many identified objects are genuinely re-

lented. Precision can also be thought of as the likelihood that a randomly chosen item that 

is marked as “important” is a true positive, in addition to being a measurement of model 

performance. Recall and TNR values of more than 90% were obtained for each dataset 

using the proposed approach. The recall is determined as the proportion of positive sam-

ples that were correctly identified as positive to all positive samples. The recall measures 

how well the model can identify positive samples. The more positive samples that are 

identified, the larger the recall. This is often referred to as sensitivity or true positive rate. 

The specificity, also known as the true negative rate, is the likelihood of a negative test if 

it is actually negative. For each dataset, the corresponding false positive and true negative 

ratios are 3.89%, 6.49%, 11.11%, 5.12%, 1.10%, 5.26%, 7.52%, and 4.75%, respectively. For 

each dataset, the false negative and actual positive ratios are 2.16%, 4.80%, 4.29%, 3.8%, 

2.7%, 1.75%, 1.5%, and 1.85%, respectively. 

Table 7. Layer to layer classification performance of GS-MLDS. 

Dataset 

Name 

Layer 

No. 
Train Data, 𝒙𝒊 =  
𝒙𝒊−𝟏 + (𝑻𝑷, 𝑻𝑵)𝒊−𝟏 

Test Data, 𝒚𝒊 = 
(𝑭𝑷, 𝑭𝑵)𝒊−𝟏 

Method Total  

Accuracy, 

∑
(𝑻𝑷,𝑻𝑵)𝒊
𝒊𝒏𝒊𝒕𝒊𝒂𝒍, 𝒚

𝑵

𝒊=𝟏

 

 

AE 

(Average 

Ensemble) 

WAE 

(Weighted Average 

Ensemble) 

TP|TN FP|FN TP|TN FP|FN Weights 

C. elegans 

(17,808 

Instances) 

1 1846 462 124 338 196 266 0.3, 0.1, 0.2 42.42 

2 2042 266 78 260 118 148 0.0, 0.1, 0.3 67.96 

3 2160 148 23 237 88 60 0.0, 0.1, 0.2 87.01 

4 2248 60 12 225 46 14 0.1, 0.5, 0.2 96.96 

D. 

melanogaster 

(3538 

Instances) 

1 2830 708 362 346 384 324 0.2, 0.1, 0.3 54.23 

2 3214 384 194 152 197 127 0.2, 0.1, 0.0 82.06 

3 3411 197 66 86 87 40 0.0, 0.3, 0.2 94.35 

A. thaliana 

(3956 

Instances) 

1 3164 792 321 471 337 455 0.0, 0.4, 0.2 42.55 

2 3501 425 103 368 227 228 0.1, 0.3, 0.7 71.21 

3 3728 198 87 281 167 61 0.3, 0.5, 0.2 92.29 
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E. coli 

(776 

Instances) 

1 620 156 87 69 110 46 0.3, 0.5, 0.2 70.51 

2 730 46 37 32 39 7 0.2, 0.1, 0.4 95.51 

G. 

subterraneus 

(1812 

Instances) 

1 1449 363 123 240 200 163 0.1, 0.0, 0.3 55.00 

2 1649 64 55 185 99 64 0.1, 0.2, 0.5 82.36 

3 1748 7 36 149 57 7 0.1, 0.0, 0.2 98.07 

G. pickeringi 

(1165 

Instances) 

1 910 228 106 122 108 120 0.4, 0.1, 0.2 47.36 

2 1018 120 67 55 77 43 0.0, 0.2, 0.1 81.14 

3 1095 43 22 33 35 8 0.4, 0.2, 0.6 96.49 

F. vesca 

(25,922 

Instances) 

1 6913 1729 857 872 1184 545 0.2, 0.1, 0.3 68.47 

2 8097 545 127 745 343 202 0.1, 0.4, 0.6 88.31 

3 8440 202 53 692 124 78 0.1, 0.0, 0.2 95.48 

R. chinensis 

(14,502 

Instances) 

1 3837 969 353 616 689 280 0.1, 0.4, 0.2 71.10 

2 4526 280 157 459 248 32 0.5, 0.3, 0.2 96.69 

Based on experimental results [27], we mentioned, “The appropriately categorized 

data from one layer may be utilized as a new training set for the following layer. In cir-

cumstances, such as these, this training set can reveal new hidden patterns in incorrectly 

classified data. That is, appropriately identified input from the preceding layer contributes 

to the model gaining new knowledge”. Although the prior version of the approach grad-

ually improves the accuracy in each layer based on an improved training set, one draw-

back of this method is that it does not provide guidance on how to achieve maximum 

accuracy in a layer. As a result, this is a time-consuming process due to the increased 

number of layers. Furthermore, our main concern in this research work is how to deter-

mine the maximum accuracy at each layer to limit the number of additional layers in order 

to improve the training set to extract new hidden patterns from its resources. We found 

that each layer’s best combination of weight sets can overcome this limitation. Other re-

searchers commonly used these eight datasets. We have tested the accuracy and com-

pared the proposed model with the existing models on the same independent datasets, as 

shown in Table 8. We directly submitted the independent datasets to the GS-MLDS. The 

proposed GS-MLDS yielded accuracies of 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 

0.952, 0.961, 0.953, and 0.980. The GS-MLDS outperformed other models with different 

ratios. GS-MLDS performs well due to the following factors: extending its learning 

knowledge from its resources to continue the classification process from one layer to an-

other layer, using multi-configured 1D CNN to perform ensemble methods at each layer, 

and using the grid search technique to determine the optimal combination of weights for 

each layer. 

Table 8. Comparison of GS-MLDS with another author’s model utilizing their datasets. 

Authors Splitting Ratio Dataset Name 
Authors Model  

Accuracy 

GS-MLDS 

Accuracy 

S. Zhang et al. (2022) [10] 10-fold 

C. elegans  0.851 0.978 

D. melanogaster 0.859 0.954 

A. thaliana 0.801 0.944 

E. coli 0.870 0.961 

G. subterraneus 0.859 0.950 

G. pickeringi 0.901 0.973 

Yu. Lezheng et al. (2022) [11] 10-fold 
C. elegans 0.894 0.978 

D. melanogaster 0.874 0.954 
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A. thaliana 0.839 0.944 

L. Wang et al. (2022) [12] 10-fold 

C. elegans  0.875 0.978 

D. melanogaster 0.871 0.954 

A. thaliana 0.828 0.944 

E. coli 0.962 0.961 

G. subterraneus 0.901 0.950 

G. pickeringi 0.911 0.973 

S. Zhang et al. (2022) [20] 10-fold 

C. elegans  0.851 0.978 

D. melanogaster 0.859 0.954 

A. thaliana 0.801 0.944 

E. coli 0.87 0.961 

G. subterraneus 0.859 0.950 

G. pickeringi 0.901 0.973 

J. Jin et al. (2022) [13] 10-fold G. subterraneus 0.825 0.950 

J. Khanal et al. (2021) [3] 5-fold 
F. vesca  0.869 0.948 

R. chinensis 0.854 0.952 

G. Fang et al. (2021) [6] 3-fold C. elegans  0.932 0.961 

A. Wahab et al. (2021) [5] 3-fold C. elegans  0.935 0.961 

M. Tahir et al. (2021) [9] 10-fold 

C. elegans  0.872 0.978 

D. melanogaster 0.882 0.954 

A. thaliana 0.840 0.944 

E. coli 0.868 0.961 

G. subterraneus 0.886 0.950 

G. pickeringi 0.925 0.973 

H. Zulfiqar et al. (2021) [14] 10-fold E. coli 0.861 0.961 

D.Y. Lim et al. (2021) [15] 10-fold 
F. vesca 0.859 0.953 

R. chinensis 0.865 0.953 

A. Wahab el al. (2020) [16] 10-fold 
F. vesca 0.815 0.953 

R. chinensis 0.783 0.953 

Z. Zhao et al. (2020) [17] 10-fold 

C. elegans  0.826 0.978 

D. melanogaster 0.842 0.954 

A. thaliana 0.794 0.944 

E. coli 0.843 0.961 

G. subterraneus 0.847 0.950 

G. pickeringi 0.877 0.973 

M.M. Hasan et al. (2020) [8] 80:20 G. subterraneus 0.816 0.980 

J. Khanal et al. (2019) [18] 10-fold 

C. elegans  0.842 0.978 

D. melanogaster 0.853 0.954 

A. thaliana 0.797 0.944 

E. coli 0.859 0.961 

G. subterraneus 0.860 0.950 

G. pickeringi 0.871 0.973 

B. Manavalan et al. (2019) [19] 10-fold 

C. elegans 0.826 0.978 

D. melanogaster 0.842 0.954 

A. thaliana 0.792 0.944 

E. coli 0.848 0.961 

G. subterraneus 0.855 0.950 

G. pickeringi 0.891 0.973 
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The benefits of the model that we have developed are as follows. This model can 

carry out the classification process from one layer to another by expanding its learning 

knowledge. During the classification phase, the learning knowledge is improved from its 

internal resources. Each layer determines the ideal weighting combination to produce the 

best results. Finally, the predictions from multiple CNN models are combined to reduce 

the variance of predictions and reduce generalization error. The limitations of our pro-

posed model are as follows. The computational time is high for a high dimensional da-

taset. Lots of training data is required. Furthermore, it cannot encode the position or ori-

entation of a DNA sequence and, finally, it needs more memory space. 

5. Conclusions and Future Work 

DNA 4mC is a crucial epigenetic modification that causes various diseases and is also 

a restriction–modification system. Therefore, accurately identifying 4mC sites is an essen-

tial step towards understanding the exact biological functions. This work presented an 

influential computational model named GS-MLDS for predicting 4mC and non-4mC sites. 

We have proposed a reusable knowledge model that aids in the transmission of a previous 

layer’s knowledge to the next layer. This study finds the optimal accuracy of each layer 

by applying a grid-based search technique to find the best weight set combinations in each 

layer. This study has experimented with eight different types of datasets. With an 80:20 

split between the training and testing sets, our proposed model attained accuracy levels 

of 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.978, 0.954, 0.948, 0.952, 0.953, and 0.980. The 

correct classification probability of 4mC and non-4mC of the proposed system has been 

pointed out by the AUC curve. That is, the proposed model has 96.97%, 94.35%, 92.30%, 

95.51%, 98.07%, 96.49%, 95.49%, and 96.70% probability of distinguishing 4mC from non-

4mC for each dataset, respectively. The suggested methodology has shown improved per-

formance compared to other machine learning models. Our proposed approach outper-

formed the state-of-the-art predictors for each dataset in terms of detecting 4mC sites in 

both balanced and unbalanced class labels. The study presented in the paper may be use-

ful for more pervasive bioinformatics applications. The goal of this research’s future work 

is to produce more semantic characteristics and create a model that has already been 

trained on a big dataset to address a similar issue. 
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