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Abstract: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal
lung developmental disorder caused by the arrest of fetal lung formation, resulting in neonatal death
due to acute respiratory failure and pulmonary arterial hypertension. Heterozygous single-nucleotide
variants or copy-number variant (CNV) deletions involving the FOXF1 gene and/or its lung-specific
enhancer are found in the vast majority of ACDMPV patients. ACDMPV is often accompanied by
extrapulmonary malformations, including the gastrointestinal, cardiac, or genitourinary systems.
Thus far, most of the described ACDMPV patients have been diagnosed post mortem, based on
histologic evaluation of the lung tissue and/or genetic testing. Here, we report a case of a prenatally
detected de novo CNV deletion (~0.74 Mb) involving the FOXF1 gene in a fetus with ACDMPV
and hydronephrosis. Since ACDMPV is challenging to detect by ultrasound examination, the
more widespread implementation of prenatal genetic testing can facilitate early diagnosis, improve
appropriate genetic counselling, and further management.

Keywords: lethal lung developmental disorder; hydronephrosis; alveolar capillary dysplasia; 16q24.1;
prenatal diagnosis; genome sequencing

1. Introduction

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV, OMIM
#265380) is a rare, lethal lung developmental disorder (LLDD) in neonates [1].

Histopathologically, ACDMPV is characterized by the presence of abnormal intra-
pulmonary shunt vessels (“misaligned pulmonary veins”) adjacent to the arteries, which
show frequent marked thickened muscular walls [2,3]. The alveoli may be enlarged with
thickened septa and few capillaries that are not positioned correctly within the wall of the
alveolus [2].

Clinically, ACDMPV manifests with severe respiratory distress and pulmonary arterial
hypertension refractory to therapy [2,4,5]. The first symptoms of ACDMPV usually occur
within the first 24–48 h after birth, and newborns die within a few days to weeks after
disease presentation [2,6]. Only a few cases of late milder ACDMPV manifestation and
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longer survival have been reported [7–13]. For patients with atypical presentation of
ACDMPV, lung transplantation can be considered [11].

ACDMPV can be associated with extrapulmonary malformations involving cardio-
vascular or gastrointestinal systems [2,6]. Patients may also have urogenital anomalies of
variable severity, including hydronephrosis [2,6].

Congenital hydronephrosis is characterized by significant dilatation of the renal pelvis,
with subsequent urinary stasis caused by posterior urethral valves, vesicoureteral reflux,
or obstruction at the level of the pelvic-ureteral and vesicoureteral junction [14,15]. While
hydronephrosis may coexist with various genetic diseases, including ACDMPV, it is more
frequently detected as an isolated condition [15]. Hydronephrosis occurs in 1–2% of
pregnancies and is one of the most common defects detected during routine prenatal
ultrasound evaluation in the second or third trimester [16]. In approximately 80% of cases,
hydronephrosis is transient and resolves in early life with conservative management [16].
However, the likelihood of spontaneous resolution depends on the severity of the anomaly
and, in some cases, surgical intervention is needed within the postnatal period [16].

Heterozygous single-nucleotide variants (SNVs) or copy-number variant (CNV) dele-
tions involving FOXF1 and/or its lung-specific enhancer at 16q24.1 have been detected
in ~90% of cases with ACDMPV [4,17,18]. The pLI score of 0.96 indicates that it is almost
completely intolerant to loss-of-function [19].

FOXF1 encodes a forkhead-box family transcription factor [20] that plays a crucial role
in the branching of lung tubular structures through the sonic hedgehog (SHH) signaling
in epithelial cells [21,22]. Its expression in the lung is regulated by a distant lung-specific
enhancer region located ~270 kb upstream to FOXF1 [18]. This enhancer, along with the
FOXF1 promoter, is shared by FOXF1 and the lncRNA gene FENDRR [23].

Although most genetic changes in ACDMPV arise de novo, a small fraction of FOXF1
variants have been inherited from the mosaic mother [24]. Most of CNVs arise de novo
on the maternal chromosome 16; to date, only five (~10%) CNV deletions have been
reported to have arisen de novo on the paternal chromosome [13,18,25,26]. Of note, it
has been speculated that loss of FOXF1 and FENDRR on the paternal chromosome causes
more severe cardiac defects, leading to fetal death or spontaneous miscarriage [25]. The
involvement of FOXF1 in the pathogenetics of ACDMPV has been demonstrated in mouse
models, in which haploinsufficiency of Foxf1 manifested in lung immaturity [27,28].

Thus far, a couple hundred cases of ACDMPV have been described worldwide. The
vast majority of diagnoses have been made post mortem, based on histopathological
evaluation and/or genetic testing, and only seven cases of ACDMPV have been detected
prenatally [18,29–33]. Here, we present a patient with hydronephrosis and 16q24.1 CNV
deletion identified in prenatal genetic testing, indicating the diagnosis of ACDMPV.

2. Materials and Methods
2.1. Human Subjects

Material was collected from the patient (amniocytes, peripheral blood, lung, and
kidney tissue) and his parents (peripheral blood) after receiving informed consent in
accordance with the Declaration of Helsinki. The study protocol was approved by the
Ethics Committee at Poznan University of Medical Sciences.

2.2. Histopathological Evaluation

Histopathological evaluation was performed on slides from formalin-fixed paraffin-
embedded kidney and lung tissue specimens obtained at autopsy.

2.3. Molecular Analyses

For invasive prenatal studies, DNA was extracted from amniocytes using the Sherlock
AX DNA isolation kit (A&A Biotechnology, Gdansk, Poland), according to manufacturer’s
instructions. Array comparative genomic hybridization (aCGH) in the fetus was performed
using the 60K CytoSure Constitutional v3 microarray (Oxford Gene Technology, Oxford, UK).
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For further genetic testing, DNA was extracted from the peripheral blood of the
newborn and his parents using Gentra Purgene Blood Kit (Qiagen, Germantown, MD,
USA). Parental and proband DNA samples were tested for the presence of the CNV
deletion using junction-specific PCR with DreamTaq DNA Polymerase (Thermo Scientific,
Waltham, MA, USA), followed by Sanger sequencing to map the deletion breakpoints. To
determine the parental origin of the detected CNV deletion, trio-based genome sequencing
(GS) was performed using NEBNext® Ultra™ II FS DNA Library Prep Kit for Illumina
(New England BioLabs, Inc. Ipswich, MA, USA) and paired-end sequenced (2 × 150 bp)
on NovaSeq 6000 (Illumina, San Diego, CA, USA). The parental origin of the observed
chromosomal abnormality was determined by analyzing the informative single-nucleotide
polymorphisms (SNPs) within the deletion region.

3. Results

The male proband was the third child of non-consanguineous Caucasian parents with
no familial history of ACDMPV, hydronephrosis, or other anomalies.

The non-invasive serum screening test revealed a higher risk of trisomy 21 (1:108) with
pregnancy-associated plasma protein A (PAPP-A) of 0.71 MoM, free β human chorionic
gonadotropin (free β-hCG) of 2.28 MoM, crown rump length (CRL) of 71.5 mm, and nuchal
translucency (NT) of 2.4 mm (<95th percentile). A second-trimester ultrasound performed
at 20 weeks of gestation revealed bilateral pyelectasis, and amniocentesis was performed
for molecular analysis.

A ~0.74 Mb CNV deletion encompassing FOXF1 (OMIM #601089), FOXC2 (OMIM
#602402), FOXL1 (OMIM #603252), FENDRR (OMIM #614975), MTHFSD (OMIM #616820),
LINC01081 (OMIM #614977), and LINC01082 (OMIM #614977) was identified prenatally
at 20 weeks of gestation, using aCGH and confirmed by GS (Figure 1A). The proximal
and distal breakpoints of the deletion map at chr16:85,952,700/85,952,726 (hg38), within
AluSz and chr16:86,694,061/86,694,087 (hg38) within AluY, respectively (Figure S1). The
exact position of breakpoints is unknown due to 26 bp microhomology at the deletion
junction site. Analysis of parental samples and the informative polymorphic markers
showed that the deletion arose de novo on maternal chromosome 16 (Table S1). Given
the pathogenic nature of the identified 16q24.1 CNV deletion, the family was counselled
regarding a suspected diagnosis of ACDMPV and poor prognosis.

The fetus developed hydrops and placental hypertrophy at 28 weeks of gestation.
Due to anhydramnios and the risk of developing mirror syndrome, labor induction was
performed at 34 weeks of gestation. The child was born with a weight of 4000 g, length
of 48 cm, and Apgar score of 1. The newborn had major respiratory distress consistent
with ACDMPV, and due to the irreversible nature of this disease, the family decided to
accompany the child in palliative care. The child passed away within the first hour of life
with comfort care, without intensive resuscitation.

Postmortem examination demonstrated a premature male infant with a right foot
contracture, generalized edema, and fluid in the pleural and peritoneal cavities. Kidney
evaluation showed bilateral pelvicalyceal dilatation and multiple cortical renal cysts, which
are characteristic of renal dysplasia. Microscopic evaluation of the lungs showed immature
lung parenchyma, arrested in the late canalicular stage of lung development, with abnormal
thin-walled shunt vessels (“misaligned pulmonary veins”) accompanying hypertrophic
pulmonary arteries in the same adventitial sheath. Diminished capillaries in the alveolar
septa were also present. Overall, histopathological findings were consistent with the
spectrum of ACDMPV.
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Figure 1. Schematic representation of the copy-number variant (CNV) deletions at 16q24.1 locus.
(A) Genome sequencing display on Integrated Genome Viewer (IGV) showing a heterozygous
~0.74 Mb CNV deletion (chr16:85,952,700/85,952,726-86,694,061/86,694,087, hg38) in the assessed
patient (LLDD006.3). (B) Comparison of ACDMPV-related CNV deletion identified in our patient
during prenatal testing (LLDD006.3) with six previously described patients with prenatal ACDMPV
diagnosis and 16q24.1 CNV deletion (P1 [29], P2 [31], P3 [32], P4 [18], P5 [18], P6 [33]). CNV deletions
that arose on the maternal chromosome 16 are marked in red; CNV deletions with unknown parental
origin are marked in black. The FOXF1 gene is marked by a blue frame.

4. Discussion

In most cases, ACDMPV is first considered at birth, based on respiratory failure
and pulmonary arterial hypertension [2]. However, similar clinical symptoms can also
be related to other conditions, including those from the LLDD spectrum or idiopathic
pulmonary arterial hypertension [6]. Thus, differential diagnosis requires confirmation by
the detection of characteristic histopathological features in lung tissue, considered as a gold
standard in ACDMPV diagnostics [1,2], or genetic testing. Because affected neonates are
usually unstable for open lung biopsy, most ACDMPV diagnoses are made post mortem
during lung autopsy [2].

With increasing availability, molecular testing is becoming an important tool for
identification of ACDMPV-related abnormalities [6]; however, it is usually time consuming
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(may take several weeks and newborns die before a diagnosis is confirmed). Thus, we
recommend rapid genetic testing that would allow for earlier diagnosis (days rather than
weeks) and influence the decision-making process in critically ill infants.

While routine ultrasound pregnancy screening enables early identification of severe fe-
tal malformations, ACDMPV lung abnormalities are mainly undetectable from intrauterine
imaging. Thus, ACDMPV is rarely suspected prenatally. To date, only seven patients with
prenatally-detected ACDMPV (Figure 1B) have been reported, including six with 16q24.1
CNV deletion [18,29–33]. Due to the severity of the malformations, infants passed away
soon after birth, or the parents elected to terminate the pregnancy after genetic confirmation
of ACDMPV [18,29–33].

The first prenatal deletion involving FOXF1 at 16q24.1 was identified in a fetus with
cystic hygroma, a single umbilical artery, and fetal hydrops [29]. Unfortunately, histopatho-
logical examination of the lungs was not performed [29]. In a patient with prenatally
detected pericentric inversion of chromosome 16, ACDMPV with atrioventricular septal
defect (AVSD) and intestinal arthrodesis was confirmed after birth [30]. In another pa-
tient with CNV deletion at 16q24.1 identified in prenatal screening, autopsy examination
confirmed ACDMPV with AVSD and bilateral superior vena cava [31]. Puisney-Dakhli
et al. described a fetus with a suspected single ventricular congenital heart malformation
in whom prenatal testing identified a CNV deletion at 16q24.1, and post mortem eval-
uation confirmed hypoplastic left heart syndrome and ACDMPV [32]. Another patient
with prenatally identified CNV deletion at 16q24.1q24.2 had esophageal dilation, kidney
malformation, lymphedema, AVSD, ventricular septal defect, and other abnormalities
within the cardiovascular system [33]. Two fetuses with hydronephrosis associated with
ACDMPV, caused by CNV deletions involving FOXF1 and its enhancer, have also been
described [18].

Here, we present another ACDMPV fetus with hydronephrosis seen on a prenatal
ultrasound screening (20th week of gestation) in whom, due to this finding and a higher
risk of trisomy 21 revealed in PAPP-A test earlier in pregnancy, invasive prenatal genetic
screening was pursued. The de novo ~0.74 Mb Alu-Alu mediated CNV deletion involving
FOXF1 on maternal chromosome 16 has been detected. Of note, the majority of de novo
ACDMPV deletions at 16q24.1 are Alu-mediated [34]. Based on the molecular findings
and the presence of extrapulmonary anomaly often associated with ACDMPV, the mother
was counselled regarding a suspected diagnosis of ACDMPV and about the postnatal
clinical course, with poor prognosis. The clinical symptoms of the disease appeared after
the child’s birth. The initial diagnosis of ACDMPV was confirmed post mortem, based on
characteristic histopathological lung findings.

This case informs that detection of hydronephrosis in routine prenatal screening
should prompt the physician to consider ACDMPV in differential diagnoses. A more
detailed examination of gastrointestinal and cardiovascular systems, e.g., heart echo later
in pregnancy, can be performed to screen for anomalies often associated with ACDMPV.

While the most commonly applied approaches for prenatal screening are karyotype
or microarray tests, GS is now increasingly being utilized [35]. The use of next-generation
sequencing (NGS) as a tool in prenatal testing allows for rapid and effective detection of
various molecular defects, including both CNVs and SNVs [36]. The major advantage of GS
is its potential to detect variants in protein-coding genes, as well as non-coding regions of
the genome, which improves the diagnostic yield of genetic testing and allows identifying
molecular causes of rare congenital fetal disorders with complex inheritance, including
LLDD. NGS-based prenatal testing can enable early disease diagnosis, which in turn may
improve counseling for parents and influence further management and goals of care [37].

In summary, we present the first Polish patient with ACDMPV and hydronephrosis,
in which prenatal genetic testing revealed a de novo CNV deletion at 16q24.1, involving
FOXF1. Since ACDMPV is very challenging to detect by ultrasound examination, the
more widespread implementation of prenatal genetic testing is warranted to facilitate early
diagnosis, allow accurate counselling, and provide appropriate medical management.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14030563/s1, Figure S1: Schematic representation of prox-
imal and distal breakpoints of the copy-number variant deletion and junction sites at 16q24.1.
(A). Proximal and distal breakpoints map at chr16:85,952,700/85,952,726 (hg38), within AluSz and
chr16:86,694,061/86,694,087 (hg38) within AluY, respectively. The exact position of breakpoints is
unknown due to 26 bp microhomology within the junction (marked in red). (B). Sanger sequencing
results showing the junction site. Table S1: List of identified informative single-nucleotide variants
within the copy-number variant deletion region, showing that it involves maternal chromosome 16.
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