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Abstract: The bulb formation of Lilium is affected by many physiological and biochemical phenomena,
including flower bud differentiation, starch and sucrose accumulation, photoperiod, carbon fixation,
plant hormone transduction, etc. The transcriptome analysis of flower buds of Lilium hybrid ‘Siberia’
at different maturity stages showed that floral bud formation is associated with the accumulation
of anthocyanins. The results of HPLC-MS showed that cyanidin is the major anthocyanin found in
Lilium ‘Siberia’. Transcriptome KEGG enrichment analysis and qRT-PCR validation showed that two
genes related to flavonoid biosynthesis (LhANS-rr1 and LhDFR) were significantly up-regulated. The
functional analysis of differential genes revealed that LhMYB114 was directly related to anthocyanin
accumulation among 19 MYB transcription factors. Furthermore, the qRT-PCR results suggested that
their expression patterns were very similar at different developmental stages of the lily bulbs. Virus-
induced gene silencing (VIGS) revealed that down-regulation of LhANS-rr1, LhDFR, and LhMYB114
could directly lead to a decrease in anthocyanin accumulation, turning the purple phenotype into
a white color. Moreover, this is the first report to reveal that LhMYB114 can regulate anthocyanin
accumulation at the mature stage of lily bulbs. The accumulation of anthocyanins is an important
sign of lily maturity. Therefore, these findings have laid a solid theoretical foundation for further
discussion on lily bulb development in the future.

Keywords: anthocyanin; bulb; Lilium ‘Siberia’; full-length transcriptomics; MYB transcription
factor; VIGS

1. Introduction

Lilies (Lilium, spp.), a group of monocotyledonous ornamental plants, are widely
grown for commercial purposes. They significantly contribute to the global ornamental
industry and are utilized for commercial bulb and flower production, including outdoor
and indoor fresh-cut flowers and potted plants, and for landscaping in private gardens [1,2].

Anthocyanins, a type of flavonoid, are secondary metabolites, exist in many horticul-
tural plants, and have multiple biological roles [3], such as growth inhibition of tumors [4],
as well as anti-inflammation and -oxidation [5]. Furthermore, anthocyanins act as plant-
coloring substances, play a vital role in defense mechanisms, and protect the plants from
UV damage [5]. The rate of anthocyanin synthesis in the plant, membrane transport, and
utilization or degradation are the main factors to influence the final anthocyanin concentra-
tion in ripe fruits [6,7]. Anthocyanin biosynthesis in fruits may be regulated by the activities
of their metabolism-related enzymes, such as L-phenylalanine ammonia-lyase (PAL), cin-
namate 4-hydrogenase (C4H), 4-coumarate: coenzyme A Ligase (4CL), chalcone synthase
(CHS), UPD-3-O- glycosyltransferase (UFGT), and glutathione S-transferase (GST) [8–11].
In the anthocyanin biosynthesis pathway, the phenylalanine is converted into cinnamic
acid by PAL [12,13]. The 4CL and CHS enzymes are derived from polyketone synthases
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(PKSs) [14] and are involved in the synthesis of naringin chalcone [15]. Likewise, the main
function of the UFGT enzyme is to stabilize anthocyanin biosynthesis by attaching the sugar
portion to anthocyanin glycogens, and it is a rate-limiting gene involved in anthocyanin
biosynthesis [16]. The GST enzyme is very important for anthocyanin transportation in
plants, and the results show that it is a key factor in the expression of anthocyanin-based
red coloration in bracts [17].

With the cloning of anthocyanin-related transcription factors, anthocyanin biosynthe-
sis in plants has been formally studied [18]. In plants, anthocyanin synthesis is mainly
related to three elements, including two R2R3-MYB type TF, two basic helix-loop-helix
type TF (bHLH), and one WD40 repeat TF [19], and their interaction [20]. Anthocyanins
have been widely studied in Arabidopsis, pear, rice, maize, apple, petunia, and lily [21].
The overexpression of R2R3-MYB type TFs in Arabidopsis, including MYB114, MYB113,
MYB90, and MYB75, enhanced anthocyanin accumulation [22]. Furthermore, in an ex-
periment on red-skinned pear, it was revealed that PyMYB114 could inhibit anthocyanin
biosynthesis, which was similar to the function in tobacco and strawberry [23]. Further
research suggests that ethylene response factors interacted with PyMYB114 to regulate
anthocyanin biosynthesis in red-skinned pears [24]. The transcriptome data on Hydrangea
macrophylla revealed that MYB114 acted as a negative regulation transcription factor in
anthocyanin synthesis [25]. A WD40 repeat gene (OsTTG1) regulated anthocyanin biosyn-
thesis in rice [26]. ZmC1 (MYB-type C1) and ZmR (bHLH R) are two TFs; their up-regulation
controlled anthocyanin biosynthesis in maize [27]. In apples, most MYB TFs positively
regulated anthocyanin biosynthesis, except for MdMYB16 [28]. MdMYB114’s transcription
level was increased with the deepening of apple color, and overexpression promoted the
production and accumulation of anthocyanin in callus [29].

The buildup of anthocyanin in lily varieties causes the difference in floral color [30].
Several genes and TFs are involved in the anthocyanin synthesis of lily. In the Lilium
cultivar ‘Montreux’, LhMYB6 and LhMYB12 were isolated, which interacted with LhbHLH2
protein and positively regulated anthocyanin biosynthesis [31]. During flower development,
LhMYB12 could directly activate the promoters of chalcone synthase and dihydroflavonol
4-reductase in Asiatic hybrid lily [32]. The new allele of the LhMYB12, named LhMYB12-
Lat, determined the presence or absence of splatters on the tepal of the Asiatic hybrid
lily [33]. However, R3-MYB TFs usually play a native role in repressing anthocyanin
biosynthesis [34]. For example, the transient expression of the LvMYB1 gene suggests that
it inhibits anthocyanin biosynthesis in lily flowers [35].

In this study, a LhMYB114 transcription factor was isolated from Oriental hybrid
Lilium ‘Siberia’ based on the transcriptome data. Our study suggested that it can effectively
regulate the genetic expression of ANS and DFR via the VIGS system, thereby affecting the
accumulation of anthocyanins in the floral bud of the Lilium bulb.

2. Materials and Methods
2.1. Experimental Material

The floral buds of Lilium hybrid ‘Siberia’ were sampled at six development stages
according to the size of bulb circumference (Figure 1), where anthocyanin accumulation
gradually increased from stage C to stage F. We finally focused on the last two stages
(Figure 1E,F) for transcriptomics sequencing, named stage E and F.

2.2. Anthocyanidin Identification

Samples were more than 5 g. All samples were homogenized in a homogenizer and
stored at −18 ◦C. The samples were mixed with the HCl (0.5% v/v) and 70% methanol
buffer to a volume of 50 mL, and this process was repeated 3 times. Then, the samples
were shook for 1 min and extracted for 30 min by ultrasonication. It was hydrolyzed in
a boiling water bath for 1 h, and then cooled in constant volume. Standing and taking
the supernatant, it was filtered with 0.45 aqueous phase filter membrane, and stored at
4 degrees for test. The injection volume of 20 µL was passed through the chromatographic
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column C18. The mobile phase A is an aqueous solution containing 1% formic acid, and the
mobile phase B is a 100% acetonitrile solution at 0.25 mL/min flow rate. It was detected by a
wavelength of 530 nm at LC-QTOF (USA, Agilent 6545B). Delphinidin, cyanidin, petunidin,
pelargonin, and mallow pigment were used as an internal standard for quantitation.
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Figure 1. The appearance and morphology of Lilium bulb and bud at different developmental
stages (A–F). (A) The bulb diameter is 3 cm; (B) the bulb diameter is 6 cm; (C) the bulb diameter is
10 cm; (D) the bulb diameter is 14 cm; (E) the bulb diameter is 16 cm; (F) the bulb diameter is 22 cm.
The data represent the average of three biological replicates.

2.3. Transcriptomic Sequencing and Differential Gene Expression Analysis

Total RNA was extracted from the samples of two developmental stages (Figure 1E,F)
using RNAprep pure Plant Kit (Tiangen, Beijing, China; Code:DP360) according to the
manufacturer’s protocol. HiScript® II 1st Strand cDNA Synthesis Kit (+gDNA wiper)
(Vazyme, Nanjing, China) was used as reverse transcription kit. The quantity and quality
of the cDNA were assessed by using a NanoDrop ND2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). cDNA library construction and transcriptome sequencing
were performed by Novogene Technologies Co., Ltd. (Beijing, China). The quality of the
sample libraries was determined by an Agilent 2100 Bioanalyzer and Qubit2.0. Finally, the
well-constructed library was sequenced using an Illumina NovaSeq 6000 platform (Beijing
Novogene Technology, Beijing, China). The R package DESeq2 (version 1.10.1) was used
to identify differential expression analysis of two groups (E&F), and the gene expression
values were calculated as reads aligned to the fold change of the normalized (RPKM)
expression values by Ballgown (version 2.14.1). FDR was used to judge the threshold of
p value. DEGs mainly depended on multiples hypotheses, such as the p-value threshold,
false discovery rate (FDR) (≤0.05) and (log 2 FoldChange ≥ 1), which were considered as
the significance of each gene expression difference.

2.4. Assay of Quantitative PCR

The real-time quantitative PCR (qRT-PCR) was performed on an ABI Q1 Real-Time
PCR System with 10 µL mixture according to the following procedures: 95 ◦C for 1 min,
40 cycles of 95 ◦C for 15 s, and 60 ◦C for 30 s. The primers were designed using the software
Primer Premier 6.0 and are listed in Table S1. Lilium × formolongi EF-1a was selected as
a reference gene and the relative expression was analyzed with the 2−∆∆Ct method [36].
Three independent biological as well as technical replications were used.
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2.5. Virus-Induced Gene Silencing in Lilium

Silencing of the targeted gene (LhMYB114, LhANS-rr1, or LhDFR) by VIGS was per-
formed as described earlier [37,38]. According to the experiment protocol, a 200–500 base
pair (bp) fragment, specific to the target gene, was designed and cloned into the pTRV2
vector (primers are listed in Table S1) using a One-step Cloning Kit (Vazyme, Nanjing,
China), which was named 35S:LhMYB115, 35S:LhANS-rr1, and 35S:LhDFR. The blank
vector of TRV1, TRV2, and the target genes inserted into TRV2 were transformed individ-
ually into the Agrobacterium GV3101 strain. Then, monoclonal bacteria were picked up
and inoculated in a 100 mL LB medium containing antibiotics, then grown overnight at
28 ◦C in a shaker. Agrobacterium cells were collected and resuspended in infiltration buffer
(10 mM MgCl2, 200 µM acetosyringone, and 10 mM 2-(N morpholino) ethane sulfonic acid
(pH 5.6) to a final OD600 of 1.8). Equal volumes of TRV1 and TRV2 (the control), as well as
the TRV1 and TRV2 with target genes, were mixed together and kept in the dark for 3–6 h
at room temperature before infiltration. The buds were infiltrated using a needleless 1 mL
syringe and grew at room temperature for seven days. Then, the flower buds continued
vernalization in a refrigerator at 4 ◦C under dark for 15 days.

2.6. Electron Microscopy and Morphological Observation

To evaluate the features of apical meristem structure, the apical meristem from Lilium
bulbs was cut for scanning electron microscopy (SEM) at 6 developmental stages. The
cutting sections were soon fixed in 2.5% glutaraldehyde, and then dehydrated in a se-
ries of graded ethanol, as previously described [39]. The samples were observed and
photographed with an SEM SU-8010 (Hitachi Ltd., Tokyo, Japan) (Figure S1).

2.7. Statistical Analysis

All data are presented as the mean ± standard deviation (SD) of at least three inde-
pendent replicates. All statistical analyses in this paper were performed with SPSS (version
22.0, USA) software. The significant and extreme differences were confirmed if p-values
were <0.05 and <0.01, respectively.

3. Results
3.1. The Chromatographic Analysis of Purple Anthocyanin in Flower Buds

To identify the major anthocyanin compound in Lilium flower buds, five types of
anthocyanins were used as standard, including delphinidin, cyanidin, petunia, pelargonin,
and mallow (Figure 2). Cyanidin was detected as the major anthocyanin compound in
Lilium flower buds, as suggested by the results of HPLC-MS.

3.2. Identification of DEGs Related to Flavonoid Biosynthesis

Based on transcriptome data, putative DEGs from E and F groups identified about
8944 DEGs (Figure 3C), including 4557 transcripts showing up-regulation and 4387 transcripts
showing up-regulation. The Arabidopsis genome acted as an internal reference. Interestingly,
we detected that the sixteen expression genes related to flavonoid biosynthesis were dramat-
ically changed. All the differential expression patterns and gene annotations are shown in
the heatmap between E and F groups (Figure 3A). Lilium anthocyanins mainly comprised
cyanidins; the metabolic pathway is presented in Figure 3B. The quantitative PCR verifica-
tion showed that the expressions of anthocyanin-related genes were highly consistent with
transcriptome analysis, and F3H, LhDFR, and LhANS-rr1 were up-regulated (Figure 3D).
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DEGs involved in anthocyanin biosynthesis. The heatmap was generated based on the normalized
log2 (FoldChange) > 1 values for each DEG. Green and red scales represent relatively low or high
expression, respectively. (B) Schematic diagram of metabolic pathway for cyanidin. (C) Volcano plot
of the total differentially expressed genes in both E and F groups using the threshold of p < 0.05 and
|log2FoldChange| > 1. The x-axis represents the log2 (fold change) values for gene expression, and
the y-axis represents the −log10 (p value). (D) The qRT–PCR validation of the DEGs involved in
anthocyanin biosynthesis. Expression data are the represent as the mean values of three biological
replicates± SD. Yellow color represents significant up-regulation of genes, while blue color represents
insignificant changes.

3.3. MYB Gene and Cluster Analysis

Based on full-length transcriptomics, 28 kinds of TFs were enriched, such as C3H,
MYB-ralated, C2H2, bHLH, GRAS, FAR1, and AP2/EFF-ERF, etc. Among them, MYB
and bHLH were mainly involved in anthocyanin biosynthesis. The number of MYBs
reached 33, and bHLH reached 54 (Figure 4A). We finally selected the MYB transcription
factor as the research object, which was the largest one related to anthocyanin synthesis.
The results showed that 19 major MYB TFs were related to the differential expression in
DEGs, including 8 up-regulated genes and 11 down-regulated genes. Furthermore, only
LhMYB114 was involved in the regulation of anthocyanin biosynthesis (Figure 4B). The
result of the evolutionary tree with Arabidopsis showed that it was the homologous genes,
with many anthocyanin-biosynthesis-related genes, such as Atmyb123, Atmyb114, Atmyb113,
Atmyb90, and Atmyb75, in Arabidopsis (Figure 4C).
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Figure 4. Genetic expressions of MYB genes and cluster analysis in transcriptome data. (A) The
numbers and families of top 28 TFs enriched in flower bud. (B) The heatmap analysis of MYB
DEGs through transcriptome data. The heatmap was generated based on the normalized log2

(FoldChange) > 1 values for each DEG. The color scale at the right represents gene expression values
(the red corresponds to genes with high expression and the green corresponds to genes with low
expression). (C) The cluster analysis map of R2R3-MYB proteins. The cluster analysis tree was
completed using MEGA 5.0 software with the Arabidopsis MYB genes as reference. The aim gene of
LhMYB114 is highlighted in red color.
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3.4. LhMYB114 Gene Cloning and Phylogenetic Analysis

We cloned the LhMYB114 gene from Lilium ‘Siberia’, which includes 214 amino acid
sequences and TA insert to pGXT vector for sequencing. The results of structural alignment
showed that it belonged to the members of MYB gene family (PLN03212), including R2-
R3 repeat domain and the bHLH binding domain (Figure 5). The R2R3-MYB related to
anthocyanin pigmentation patterns was highly homologous with LhMYB114 (Figure 5A).
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3.5. The Expression Analysis of Three Key Genes Associated with Anthocyanin Metabolism in
Flower Buds

We analyzed the expression patterns of three key genes in different development
stages, i.e., LhMYB114, LhANS-rr1, and LhDFR. The results showed the expression patterns
of the three genes were significantly similar (Figure 6).

3.6. Silencing Flavonoid-Biosynthesis-Related Genes Reduced Anthocyanin Accumulation

To determine whether three key genes were essential for anthocyanin accumulation in
flower buds, we knocked down LhMYB114, LhANS-rr1, and LhDFR by VIGS. Agrobacterium
strains of pTRV1 and pTRV2 were mixed in a ratio of 1:1, and buds were infected by syringe
and grown for approximately 7 dpi at 25 ◦C in the dark. Then, we turned it to 7–8 ◦C
ice storage to continue germination for the experiment. The leaf of gene-silenced buds
was white around the injection site at 15 dpi, whereas that of control leaf continued to be
purple in color (Figure 7A). The PCR amplification results suggested that the target band
of RNA1 and RNA2 could be detected in new grown buds of the positive control (empty
vector) and gene-silenced plants (pTRV2-LhMYB114, LhANS-rr1, and LhDFR vector), but
there were no bands in the negative control (buffer) (Figure 6B). The phenotype and testing
results showed that TRV had successfully invaded the buds of Lilium and replicated and
transferred in vivo. The qRT-PCR results suggested that the expression of three key genes
was evidently reduced in gene-silenced buds compared with control buds (empty vector)
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at 15 dpi (Figure 8A–F). Other genes in the cyanidin pathway were up-regulated, except
for the three major genes, which was the opposite of positive regulation (Figure 8G). These
results suggested that three key genes played a vital role in anthocyanin accumulation in
Lilium buds.
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The six main genes (C4H, 4CL, CHS, CHI, F3H, and UFGT) expressed in TRV-LhMYB114, TRV-
LhANS-rr1, TRV-LhDFR, and empty vector. The values are means ± SDs (n = 3). Lowercase letters 
(a−f) indicate statistically significant differences at p < 0.05. 
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cumulation in buds, to improve the quality of Lilium buds. In the present study, the re-
sults reveal that three genes of LhANS-rr1, LhDFR, and LhMYB114 are closely related to 
anthocyanin biosynthesis in lily buds. Our results (according to VIGS) suggested that 
three key genes might be closely related to anthocyanin accumulation in floral buds of 
lilies. 

During the process of bulb development, the flower bud of a lily becomes larger with 
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ordinated expression of genes, which encode the anthocyanin biosynthetic pathway en-
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Figure 8. Relative expression levels of three key genes under different VIGS treatments. (A) Down-
regulation of LhANS-rr1 and LhDFR expression in LhMYB114-silenced bud. (B) Down-regulation of
LhMYB114 and LhDFR expression in LhANS-rr1-silenced bud. (C) Down-regulation of LhANS-rr1 and
LhMYB114 expression in LhDFR-silenced bud. (D) Down-regulation of LhMYB114, LhANS-rr1 and
LhDFR expression in LhMYB114+LhANS-rr1-silenced bud. (E) Down-regulation of LhMYB114, LhANS-
rr1 and LhDFR expression in LhMYB114+LhDFR-silenced bud. (F) Down-regulation of LhMYB114,
LhANS-rr1 and LhDFR expression in LhMYB114+LhDFR+LhANS-rr1-silenced bud. (G) The six main
genes (C4H, 4CL, CHS, CHI, F3H, and UFGT) expressed in TRV-LhMYB114, TRV-LhANS-rr1, TRV-
LhDFR, and empty vector. The values are means ± SDs (n = 3). Lowercase letters (a,b) indicate
statistically significant differences at p < 0.05.

4. Discussion

The color is an important attribute that determines the quality of flowers [40,41]. The
purple color with the development and vernalization in lily buds, which is due to the
accumulation of anthocyanins, has become an important target in lily breeding [42]. The
anthocyanin accumulation of the bud is not only an indicator of bulb maturity, but also
crucial for the development of the bulb and improvements in cold storage resistance [43].
Therefore, it is necessary to analyze the biosynthetic process involved in anthocyanin
accumulation in buds, to improve the quality of Lilium buds. In the present study, the
results reveal that three genes of LhANS-rr1, LhDFR, and LhMYB114 are closely related to
anthocyanin biosynthesis in lily buds. Our results (according to VIGS) suggested that three
key genes might be closely related to anthocyanin accumulation in floral buds of lilies.

During the process of bulb development, the flower bud of a lily becomes larger with
the expansion of bulb size, and anthocyanin accumulation simultaneously occurs. The
coordinated expression of genes, which encode the anthocyanin biosynthetic pathway
enzymes, usually controls the anthocyanin accumulation through a ternary MYB-bHLH-
WD40 (MBW) transcription complex [44]. Anthocyanin accumulation mainly happens
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in lily tepals and causes bicolor, bud blush, splatter spots, or raised spots [45,46]. The
anthocyanin-accumulation-pathway-related genes in flower buds were significantly en-
riched in all DEGs. Previous studies showed that a single enzyme-coding structural gene
might be involved in anthocyanin biosynthesis, including C4H, 4CL, CHS, CHI, UFGT, F3H,
DFR, and ANS genes. Among the unigenes encoding six CCoAOMT, UDPG, HCT, C4H,
4CL, CHS, CHI, F3H, LhDFR, LhANS-rr1, and UFGT, the results suggested that the FPKM
values of the three CCoAOMT, LhANS-rr1, and LhDFR unigenes were higher in the purple
buds of bulbs than in the white buds, whereas the FPKM values of three CCoAOMT, UDPG,
HCT, C4H, 4CL, CHS, CHI, F3H, and UFGT were not (Figure 3A). Meanwhile, the qRT
PCR results confirmed that the expression of F3H, LhANS-rr1, and LhDFR was significantly
up-regulated (Figure 3D). Furthermore, we clone the LhDFR and LhANS-rr1 genes from
Lilium hybrid ‘Siberia’. The cDNAs in NCBI blast show that both have their alleles in Lilium
speciosum (LsDFR-ws and LsANS-rr1), which proved that they were related to anthocyanin
biosynthesis [47].

There are three main downstream metabolic pathways of anthocyanins, i.e., cyanidin,
pelargonium, and delphinidin, in plants. Though ANS and DFR genes do not specifically
regulate anthocyanin biosynthesis, they are the key genes in the cyanidin biosynthesis
pathway [48]. Previous studies proved that the structural genes, including DFR, ANS, and
3GT, directly determine the flower color formation in lilies [49]. In our findings, the results
of qRT-PCR showed that their expression levels were significantly different at different
development stages of Lilium bulbs (Figure 6B,C). Further explanation suggested that they
might be involved in anthocyanin accumulation in floral lily buds.

MYB TFs regulate the phenylpropanoid pathway, including lignin, flavonoids, and
other metabolites, in plants [50]. The MBW complex related to anthocyanin biosynthesis is
regulated by MYB TFs [51]. It is important that MYB is the most abundant TF related to
anthocyanins. We analyzed all the DEGs and found that there were 19 major MYB tran-
scription factors. One of them, named LhMYB114, was involved in anthocyanin synthesis
(Figure 4). The LhMYB114 sequencing blast results suggest that it is the allele gene of
Lilium regale LrMYB15 for transcription factor R2R3-MYB [52]. The Cluster analysis results
also show that LhMYB114 is homologous with anthocyanin-related genes in Arabidopsis
thaliana, including AtMYB123, AtMYB5, AtMYB114, AtMYB113, AtMYB90, and AtMYB75.
Most R2R3-MYB TFs can promote anthocyanin biosynthesis by up-regulating the expres-
sion level in plants [53]. Our results show that the LhMYB114 expression level increases
significantly in the mature stage of lily bulb development (Figure 6A).

The structural genes may be regulated by a single MYB transcription factor or the MBW
complex [54]. VIGS mediated by Agrobacterium tumefaciens is a powerful tool to reveal gene
functions in plants, which are difficult to transform, such as lily, potato, etc. [55]. Thus, to
prove the regulatory response relationship among them, gene transient silencing is carried out
by virus-induced gene silencing (VIGS). The pTRV1 and pTRV2 gene vector-infiltrated flower
buds suggested an obvious white phenotype compared with empty vector (pTRV1 and pTRV2)
at 15 dpi, including 35S:LhMYB114, 35S:LhANS-rr1, 35S:LhDFR, 35S:LhMYB114+35S:LhANS-
rr1, 35S:LhMYB114+35S:LhDFR, and 35S:LhMYB114+35S:LhANS-rr1+LhDFR (Figure 8A). The
fading phenotype of LhMYB114 and LhANS-rr1 was more typical than that of LhDFR after
VIGS experiments (Figure 7A). At the same time, the qRT-PCR results from six groups showed
that the gene expression levels were significantly down-regulated in the new growth buds
(Figure 8A–F). This indicated that the three genes were positive regulators of anthocyanin
synthesis. Their upstream genes were correspondingly up-regulated, such as C4H, 4CL, CHS,
CHI, and F3H (Figure 8G). The quantitative data proved that three genes were the key factors
in regulating anthocyanin accumulation through the cyanidin pathway in the floral buds of
lilies. It also laid a foundation for us to analyze the relationship between anthocyanins and
vernalization in the future.
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5. Conclusions

In this study, it was revealed that the maturation of lily bulbs is closely associated
with the amount of anthocyanin accumulation. Therefore, anthocyanin accumulation
in flower buds is a very important marker in the development of lily bulbs, and the
concentration of anthocyanins directly decides on the ripeness of bulbs. In addition,
the maturity of lily bulbs will also directly decide on the time of bulb quality and lily
vernalization. The transcriptomics and VIGS analysis firstly revealed that LhMYB114,
LhANS-rr1, and LhDFR were the key genes for regulating the accumulation of cyanidin
in floral lily buds. Among them, LhMYB114 is an important regulatory transcription
factor during lily bulb maturation. In a word, the data in our article contribute to the
understanding for the molecular mechanism of anthocyanin biosynthesis and the judging
of bulb maturity in Lilium flower bud development.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14030559/s1, Figure S1: The microscopic view of
epical meristem of Lilium hybrid ‘Siberia’ at E and F stage, Table S1: The sequences of primers used
in the study, Technical terms: full name of genes.
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