
Citation: Han, B.; Ren, C.; Wang, W.;

Li, J.; Gong, X. Computational

Prediction of Protein Intrinsically

Disordered Region Related

Interactions and Functions. Genes

2023, 14, 432. https://doi.org/

10.3390/genes14020432

Academic Editors: Chenglong Yu,

Shuo Chen, Shuai Li and

Hsin-Hsiung Huang

Received: 31 December 2022

Revised: 2 February 2023

Accepted: 5 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Review

Computational Prediction of Protein Intrinsically Disordered
Region Related Interactions and Functions
Bingqing Han 1, Chongjiao Ren 1, Wenda Wang 1, Jiashan Li 1 and Xinqi Gong 1,2,*

1 Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China,
Beijing 100872, China

2 Beijing Academy of Intelligence, Beijing 100083, China
* Correspondence: xinqigong@ruc.edu.cn

Abstract: Intrinsically Disordered Proteins (IDPs) and Regions (IDRs) exist widely. Although without
well-defined structures, they participate in many important biological processes. In addition, they are
also widely related to human diseases and have become potential targets in drug discovery. However,
there is a big gap between the experimental annotations related to IDPs/IDRs and their actual number.
In recent decades, the computational methods related to IDPs/IDRs have been developed vigorously,
including predicting IDPs/IDRs, the binding modes of IDPs/IDRs, the binding sites of IDPs/IDRs,
and the molecular functions of IDPs/IDRs according to different tasks. In view of the correlation
between these predictors, we have reviewed these prediction methods uniformly for the first time,
summarized their computational methods and predictive performance, and discussed some problems
and perspectives.
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1. Introduction

Intrinsically disordered proteins (IDPs) refer to proteins that cannot be stably folded
into a unique three-dimensional structure under physiological conditions [1–4], and they
appear in the form of a conformational ensemble in solution [5]. IDPs/IDRs are widespread,
and their proportion increases with the complexity of organisms [3,6], especially in eukary-
otes [7,8]. In the eukaryotic proteome, more than 40% of proteins are intrinsically disordered
or contain more than 30 amino acids of intrinsically disordered regions (IDRs) [1]. The
research [9,10] show that, in the PDB dataset, the proportions of proteins/chains contain-
ing IDRs to total numbers of proteins/chains are about 50% and 55%, respectively (as
shown in Table 1). Most of these IDRs are short disordered regions (SDRs), accounting
for about 90% of all IDRs. Although there is no well-defined three-dimensional structure,
IDPs/IDRs have normal biological functions and are widely involved in transcription,
regulation, translation, cell signal transduction, protein aggregation, protein phosphoryla-
tion, small molecule storage, and other important biological processes [4]. Furthermore,
disordered segments often act as flexible linkers between folded domains in multidomain
proteins [11]. They also participate in molecular recognition, molecular assembly, and
protein modification through protein–protein, protein–nucleic acid, and protein–ligand
interactions [12]. The discovery of disordered proteins is a challenge to the traditional
protein “sequence–structure–function” paradigm. IDPs/IDRs usually have the primary
structural characteristics of low sequence complexity [13], high repeatability, low content
of hydrophobic amino acid residues, and high content of charged and polar amino acid
residues [4]. Their dynamic conformation allows proteins to interact with multiple tar-
gets [14], and they have the biological advantages of easy binding, spatial superiority,
and high coordination. In addition, IDPs/IDRs are widely related to human diseases,
such as cancer, genetic diseases, cardiovascular diseases, amyloidosis, neurodegenerative
diseases, synucleinopathies, and Alzheimer’s disease [15–17], which makes them potential
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targets for drug discovery [18–20]. Undoubtedly, we cannot ignore these relatively large
and functionally important IDPs/IDRs in the proteome [21]. Understanding these pro-
teins will help us to further understand the importance of disordered proteins and their
molecular mechanisms involved in physiological and pathological processes and help us
to understand some human diseases and develop drugs.

Table 1. Disorder residues in the datasets.

Dataset [9] PDBS25 Seven-Body
Proteins

Nine-Body
Proteins

No. of proteins 37,395 19 15
No. of chains 1223 133 135
No. of residues 16,492,809 239,527 82,152 28,467
No. of proteins with
disorder 19,101 14 7

No. of chains with disorder 696 93 63
Proteins/Chains with
disorder (%) 51.08 56.91 69.92 46.67

No. of SDRs 28,829 1100 74.03 46.67
No. of LDRs 3553 68
No. of IDRs 32,382 1168
SDRs in IDRs (%) 89.03 94.18
No. of disordered residues 12,138 4910 1485
Disordered residues (%) 5.07 5.98 5.22

In the dataset of Monzon et al., SDRs are IDRs with length 5+ and <30, and LDRs are IDRs with length ≥ 30. In
PDBS25, SDRs are IDRs with length ≤ 30, and LDRs are IDRs with length > 30. PDBS25 (PDB-Select-25) is a PDB
subset selected from the PDB database with homology < 25% and covering the PDB as completely as possible.

However, IDPs/IDRs and their interactions and functions in those currently anno-
tated by experiments are few, and there is still a big gap with their actual number. For
example, some studies have shown that only 0.1% of the 147 million proteins sequenced
have experimental annotations of intrinsic disorder [22]. This is mainly because the experi-
mental identification is time-consuming and it is difficult to carry out in a high-throughput
way [15]. Based on the importance of IDPs/IDRs and the huge gap between the experimen-
tal annotations and the actual number, many computational methods related to IDPs/IDRs
have been proposed. According to the different tasks, they can be divided into IDP/IDR
predictors, predictors of binding modes of IDPs/IDRs, predictors of binding sites (regions)
of IDPs/IDRs, and predictors of functions of IDPs/IDRs. Although the specific tasks
to be implemented are different, these predictors have some associations. For example,
the predictors of the binding sites of IDPs/IDRs often use the output results of IDP/IDR
predictors as input information, and these predictors designed for different tasks all focus
on the disordered regions and use similar feature sets and models. Some predictors can
even implement multiple tasks at the same time. For example, flDPnn [23] couples disorder
prediction and function prediction. These predictors can realize high-throughput prediction
and make up for the shortcomings of experimental identification. From the perspective
of computational method types, they include scoring function-based method, machine
learning-based method, meta predictor, and template-based method.

In view of the correlation between these predictors, we first reviewed these prediction
methods designed for different targets, including IDP/IDR prediction, the prediction of
binding modes of disorder, the prediction of disordered binding regions, and the prediction
of the functions of a disorder. We have summarized the computational methods used by
these predictors and their predictive performance and discussed the problems to be solved
and aspects to be improved in different tasks.

2. Predictions of Intrinsic Disorder

IDPs/IDRs exist widely. The data show that there are a large number of proteins with
disorder in the PDB. The content of proteins/chains with disorder in the PDB database has
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been studied in the existing literature (as shown in Table 1). The dataset of Monzon et al. [9]
and PDBS25 [10,24] show that in the PDB database, the proteins/chains with disorder
accounted for 51.08% and 56.91% of the total proteins/chains, respectively. Among them,
disordered residues accounted for 5.07% of the total residues. However, the influence of the
number of chains of the proteins on disorder has not been explored in the existing literature,
and we have made simple statistics on this. We selected the non-homologous nine-body
proteins and seven-body proteins in PDB, respectively, which are resolved by using the
X-ray diffraction method, with high refinement resolution, and each chain length is more
than 100. We produced statistics on their disorder. As shown in Table 1, for seven-body
proteins and nine-body proteins, the disordered residues accounted for 5.22% and 5.98%,
respectively. This simple statistic shows that disorder may have some relationship with
chain numbers of proteins, which requires further research and verification in combination
with disorder prediction.

Many experimental techniques have been used to identify IDPs/IDRs, such as nu-
clear magnetic resonance (NMR) [25], X-ray crystallography [26], circular dichroism (CD)
spectroscopy [27], small-angle X-ray scattering (SAXS), and single-molecule fluorescence
resonance energy transfer (smFRET) [15], of which the first two are the most important [15].

At present, some special databases have provided annotations of IDPs/IDRs, including
MobiDB [28], DisProt [21], IDEAL [29], etc. DisProt [21] is one of the most commonly used
databases of disordered proteins, which mainly includes manually extracted IDPs/IDRs
verified by NMR and X-ray crystal diffraction experiments. MobiDB [28] includes both
disorder prediction and annotation. In addition, experimentally verified or predicted IDR
annotations are also included in some core databases, such as InterPro [30], UniProt [31],
PDB (missing electron identities in X-ray analytical structure or the highly structurally
varied regions in the nuclear magnetic resonance model) [32,33], and PDBe [34]. These data
have been used to develop some computational methods for identifying IDPs/IDRs, which
is helpful for experimental verification and thus promotes the discovery and expansion of
data [34].

However, the experimental method is long-period and expensive, which is diffi-
cult to conduct in a high-throughput way [15], and there are also technical problems,
and the gap between experimentally annotated proteins and non-annotated proteins is
growing rapidly [35]. Therefore, it is necessary to develop the computational method for
IDP/IDR prediction.

The first predictor was proposed by Williams 1979 [36]. In the following decades,
many computational methods have been proposed for IDP/IDR prediction. These methods
can be divided into two categories: one is at the protein level, which is used to predict
whether an unknown protein or protein region contains disordered regions [37], and the
other is at the amino acid residue level, given an unknown protein sequence to predict the
probability to be disordered/ordered of the residues at each position of the sequence. At
present, most studies are mainly conducted for the second category, and the prediction
results can be further used to determine whether the whole protein is IDP or whether the
protein contains disordered regions.

Some reviews have summarized and analyzed the development of IDP/IDR pre-
dictors from different perspectives [15,22,38–46]. For example, He et al. [41] introduced
the prediction methods before 2009, summarized these different methods, analyzed their
strengths and shortcomings, and discussed the difficulties and future development direc-
tion of disorder prediction. Meng et al. [46] not only reviewed some prediction methods
from 2003 to 2015 but also summarized the predictors of the molecular functions of dis-
order. Liu et al. [15] reviewed the prediction methods from 2001 to 2017, classified and
summarized their advantages and disadvantages, and made a comprehensive comparison
of the predictive performance of the predictors based on CASP10 and the widely used
benchmark datasets. Considering that the previous evaluation methods are based on the
dataset level, Katuwawala et al. [22] evaluated the performance of 13 popular disorder
predictors at the protein level for the first time. Katuwawala et al. [45] also released a
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new benchmark dataset, focusing on the prediction of protein and nuclear acid-binding
proteins, and studied the impact of sequence similarity and experimental verification anno-
tation on prediction quality. In recent years, the research on disorder predictors has been
further developed.

2.1. Methods

According to the literature [15,46], the computational methods of IDP/IDR predic-
tion can be divided into four categories, including the scoring function-based method,
the machine learning-based method, the meta predictor, and the template-based method.
According to the above classifications, we introduced the predictors belonging to different
categories below. We have summarized some recent (after 2017) predictors in the Table 2,
including their method categories, classifiers, features, whether to use evolutionary in-
formation, and applicable IDR types. As shown in Table 2, most of these methods are
based on machine learning, especially on deep learning, which benefits from the increase
in annotations and the development of deep learning technology. All of the websites of
these methods have been last accessed on 29 December 2022. It can be seen from the table
that most methods can predict all types of IDRs (without distinguishing in advance), while
some need to select predicting LDRs or SDRs in advance, such as IUPred3 [47], and some
are more suitable for predicting one type of IDRs such as DisoMine [48].

2.1.1. Scoring Function-Based Methods

This method is based on the physicochemical characteristics of amino acid residues to
form a function or formula for calculating the disorder tendency [46]. These physicochemi-
cal properties include specific amino acid composition, electrostatic charge, hydrophobicity,
residue–residue contact, predicted secondary structure tendency and solvent accessibil-
ity, etc. Such methods include GlobPlot [49], NORSp [50], IURed [51,52], FoldIndex [53],
FoldUnfold [54,55] etc., most of which were concentrated before 2007.

Some methods take into account the lack of secondary structure in IDRs and use
the structure information to calculate the disorder tendency. For example, GlobPlot [49]
calculates the parameter P = RC− SS describing disorder tendency through RC and SS,
where P, RC, and SS are the propensity for a given amino acid to be in disordered state,
‘random coil’ and ‘secondary structure’. The basic algorithm behind GlobPlot is a sum
function Ω of P. NORSP [50] calculates the secondary structure content of the sequence
window by combining the predicted secondary structure, membrane helices, and coiled-
coil information. The region whose structure content is lower than the given threshold is
identified as disordered.

There are some methods used to construct algorithms from the perspective that IDRs
have different amino acid compositions compared to ordered residues. For example,
IUPred [51,52] is based on the assumption that the disordered protein has a special amino
acid composition, which prevents it from forming a stable conformation. This method
calculates the pair interaction energy from known coordinates, where the energy of each
residue is estimated based on the amino acid type, amino acid composition and its sequence
neighborhood. Thus, the disordered residues can be predicted as corresponding regions
with unfavorable estimated energy. IUPred2 [56] implements several minor bug fixes based
on IURed. IUPred3 [47] improves predictive performance through multiple new smoothing
functions and a new dataset consisting of experimentally verified ordered/disordered
regions. The FoldIndex method [53] is based on the mean residue hydrophobicity 〈H〉 and
net charge of the sequence |〈R〉|. The index FoldIndex is calculated by a linear formula of
〈H〉 and |〈R〉|, and its negative value corresponds to IDPs.
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Table 2. The summary of IDP/IDR predictors.

Predictor Publication Year Web Sites Category Type of IDRs Classifier Features
Whether to Use

Evolutionary
Information

IUPred2A 2018
http://iupred2a.elte.hu
accessed on 29 December

2022
SF G No

SPOT-Disorder-
Single 2018

http://sparks-lab.org/
jack/server/SPOT-

Disorder-Single accessed
on 29 December 2022

ML G residual CNNs,
LSTM Binary one-hot matrix No

SPOT-Disorder2 2019

https://sparks-lab.org/
server/spot-disorder2/

accessed on 29 December
2022

ML G LSTM IncReSeNet

Evolutionary
information including

PSSM, HMM profile and
predicted structural

properties from
SPOT-1D.

Yes

RawMSA 2019
https://bitbucket.org/

clami66/rawmsa 29
December 2022

ML G LSTM, BRNN, CNN MSA Yes

fIDPnn 2021

http://biomine.cs.vcu.
edu/servers/flDPnn/

accessed on 29 December
2022

ML G DNN

Secondary structure
predictions, disorder
predictions, disorder
predictions, PSSM,

conservation scores,
prediction of disordered

function generated by
DisoRDPbind, DFLpred

and fMoRFpred.

No

flDPlr 2021 ML LR Same as flDPnn No

IUPred3 2021
https://iupred3.elte.hu

accessed on 29 December
2022

SF
Can be divided into

IUpred long and
IUPred short

No

http://iupred2a.elte.hu
http://sparks-lab.org/jack/server/SPOT-Disorder-Single
http://sparks-lab.org/jack/server/SPOT-Disorder-Single
http://sparks-lab.org/jack/server/SPOT-Disorder-Single
https://sparks-lab.org/server/spot-disorder2/
https://sparks-lab.org/server/spot-disorder2/
https://bitbucket.org/clami66/rawmsa
https://bitbucket.org/clami66/rawmsa
http://biomine.cs.vcu.edu/servers/flDPnn/
http://biomine.cs.vcu.edu/servers/flDPnn/
https://iupred3.elte.hu
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Table 2. Cont.

Predictor Publication Year Web Sites Category Type of IDRs Classifier Features
Whether to Use

Evolutionary
Information

DisoMine 2022
https://bio2byte.be/

disomine/ accessed on
29 December 2022

ML More suitable for
LDRs GRU

Secondary structure
predictions, backbone

and side-chain dynamics
predictions and early

folding propensity
predictions

No

In the ‘Category’ column, ‘SF’ represents the scoring-based method, ‘ML’ represents the machine learning-based method, ‘Meta’ represents the meta predictors. In the ‘Type of IDRs’
column, ‘G’ represents that the predictors can predict the general IDRs.

https://bio2byte.be/disomine/
https://bio2byte.be/disomine/
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The principle of scoring function-based methods is clear, and their formula is concise.
The prediction results of these methods are easy to explain and can build trust in researchers’
decision-making, but there are also shortcomings. Most of these methods are not complex
and predict disorder by a simple linear formula or a given threshold. In some cases, they
are difficult to fit the actual situation, resulting in predictive performance that is generally
not as good as machine learning-based methods and meta-predictors.

2.1.2. Machine Learning-Based Methods

In recent years, with the vigorous development of machine learning algorithms, many
IDP/IDR predictors based on machine learning have been proposed. The machine learning-
based methods use sequence-related features as inputs to predict the tendency of each
residue in the sequence to be disordered. Furthermore, machine learning-based methods
can be divided into classification models and sequence labeling models [15].

1. Classification models

For classification models, information relating to the target residues and their neighbor
residues (the subsequences covered by the sliding window with the target position as the
center) is usually represented as a fixed-length feature vector, which is input into some
traditional machine learning models such as support vector machine (SVM), Random
Forest (RF), logical regression (LR), fully connected neural network, and other models,
and the final model is obtained by training with a large number of positive and negative
samples; thus, the tendency of each residue to be disordered can be predicted. Input
features mainly include (i) sequence information such as amino acid composition (AAC);
(ii) evolutionary information such as Position-Specific Substitution Matrix (PSSM), hidden
Markov model (HMM) profile; (iii) structural information, such as the predicted secondary
structure [57,58].

The research of Romero et al. [59] shows that IDRs with different lengths have different
features. That is, the short and long disordered regions of proteins have different prefer-
ences for different amino acid residues. Predictors trained on a specific type of IDRs cannot
predict other types of IDRs well. Therefore, there are some predictors specific to certain
types of IDRs (such as LDRs, IDRs with length ≥ 30 residues; and SDRs, IDRs with length
< 30 residues). For example, POODLE-L [60], DRAai-L [57], PONDR VL3 [61], PONDR
VL3H [61], PONDR VL3P [61], PONDR VL3E [61], SLIDER [8], and PONDR VL-XT [13,62]
are specially designed to predict LDRs, POODLE-S [63], and DRAai-S [57] are specially
designed to predict SDRs.

PONDR VL-XT [13,62] trains three different neural networks for the N terminal, C
terminal, and internal region based on specific datasets, and the final result is the prediction
result of each predictor in its corresponding region. Its input features include flexibil-
ity, hydropathy, coordination number, net charge, and specific amino acid composition.
PONDR VL3 [61] combines local sequence complexity K2 entropy, amino acid frequency
and flexibility as input features and uses an ensemble of neural networks as prediction mod-
els, which is better than the VL2 version that uses a simpler regression-based model [64].
Considering that VL3 uses a rather small dataset, VL3H [61] enhances the training set by
adding homologous proteins of disordered sequences. Other settings include the features
and models that are the same as VL3. VL3P [61] adds PSSM to improve the predictive
performance. VL3E [61] combines VL3H and VL3P and uses ensemble neural networks
to make final predictions through majority voting. Considering the lack of methods to
directly predict whether LDRs are included at the protein level, SLIDER [8] uses a set of
empirically selected features, including the physicochemical properties of amino acids,
sequence complexity, and amino acid composition as inputs, and ridge regression model as
the prediction model, which can accurately and quickly predict proteins with LDRs.

For the methods designed for SDRs, POODLE-S [63] defines seven regions from the
N-terminal based on the fact that amino acid composition has different tendencies in the
N-terminal, C-terminal and internal regions; each of the regions correspond to specific
physicochemical features as input and an SVM as a prediction model. DRAai-S [57] selected



Genes 2023, 14, 432 8 of 32

features related to disorder from the amino acid index (AA index) database AAindex and
used RF as the classifier.

Due to the poor performance of methods specially designed for LDRs/SDRs when
predicting other types of IDRs, there are some general IDP/IDR predictors that do not
specifically distinguish between LDRs and SDRs. This general method can be further
divided into two categories, one is to combine the predictors specially designed for LDRs
or SDRs for final prediction, and the other is to train all types of IDRs at the same time
during training so that the predictors are universal [15]. The first type of methods includes
PONDR VSL1 [65], PONDR VSL2 [66], SPINE-D [67], MFDp [68], etc. For example, PONDR
VSL1 [65] and VSL2 [66] try to merge the LDR predictors and SDR predictors for the first
time. VSL1 and VSL2 are two-level models; that is, two special predictors are established
and optimized, respectively, for LDRs and SDRs at the first level, and the two special
predictors are combined by the second-level meta predictors. SPINE-D [67] includes
two hidden layers and an additional layer to smooth the prediction. First, a three-state
prediction is performed at the residue level: ordered residues, residues belonging to
SDRs, and residues belonging to LDRs. Then, by adding the probabilities belonging to
SDRs and LDRs, the prediction is simplified to a two-state prediction. The input features
of SPINE-D include residue-level and window-level information, wherein residue-level
information includes physical parameters, PSSM, predicted secondary structure, predicted
solvent accessibility, and predicted torsional angle fluctuation; window-level information
includes amino acid composition, local composition complexity and predicted secondary
structure content.

As for the second type, for example, svmPRAT [69] encodes the characteristics of
the target residues and their neighbor residues as feature vectors with fixed lengths and
adopts a flexible sequence window coding scheme, that is, weighting according to the
distance between the adjacent residues and central residues. SvmPRAT combines PSSMs,
BLOSUM62, and the predicted secondary structure as the feature set and uses SVM with the
second-order exponential (soe) as the kernel. The results show that this flexible coding has
some value in the disorder prediction problem. DisPredict [12] uses input features, includ-
ing the amino acid type, physicochemical properties, PSSM, predicted secondary structure,
predicted solvent accessibility, predicted backbone dihedral torsion angles fluctuations,
and new Monogram and Bigram features calculated from PSSM, which uses single SVM
with RBF kernel as the classifier. The fIDPnn [23] method uses some tools to generate the
structure and function information to encode the sequence features, integrates the profiles
at the residue, window, and protein levels, and then inputs the features into the deep
learning model (DNN) for prediction. The innovation of fIDPnn lies in the introduction of
the prediction of the functions of disorder and feature coding at the protein level as input
information, which contributes greatly to the predictive performance. FlDPlr [23] uses
the same framework as fIDPnn, in which the deep neural network is replaced by an LR
model, it still shows good predictive performance, which indicates that good predictive
performance mainly depends on the input profile and the features.

Although these methods have achieved great predictive performance, they only con-
sider the dependence between the local residues, lack characterization of global sequence
information, and do not utilize the global correlation between the residues.

2. Sequence labeling models

The input of the sequence labeling models is an unlabeled sequence (not only the
information of the target residues and their neighbor residues), and the output is a sequence
labeled with a disorder tendency; that is, each residue in the sequence is predicted. Such
methods often use some deep learning technologies, such as Recurrent Neural Networks
(RNNs), Convolutional Neural Networks (CNNs), Conditional Random Field (CRF), Long
Short-Term Memory (LSTM), etc. AUCpreD [58], DISpro [70], OnD-CRF [71], DeepCNF-
D [72], SPOT-Disorder [35], SPOT-Disorder-Single [73], SPOT-Disorder2 [74], DisoMine [48],
etc., belong to this category of methods. For example, AUCpreD [58] trains Deep Convo-
lutional Neural Fields (DeepCNF) by maximizing AUC, which is conducive to dealing



Genes 2023, 14, 432 9 of 32

with the problem of an unbalanced distribution in the disordered and ordered residues.
Because the sequence profile generation takes time, AUCpreD has two prediction modes
depending on whether the sequence profile is used. SPOT-Disorder [35] first applied LSTM
to disorder prediction, using evolutionary information, predicted structural properties
and physicochemical properties as input. The first layer of the network was a recurrent
feed-forward layer followed by two LSTMs. Although SPOT-Disorder did not carry out
specific training, it was able to process residues in disordered regions with different lengths
and had the ability to predict functional sites in disordered regions. This success could be
attributed to the ability of LSTM to recognize non-local interactions. Considering that the
existing methods are divided into those that only rely on the single sequence and those that
rely on evolutionary sequence profiles generated by multiple sequence alignment (MSA),
the latter is more accurate but time-consuming. SPOT-Disorder-Single [73] focuses on
improving the accuracy of prediction without relying on evolutionary information, using
a binary one-hot matrix as the input and an ensemble of ResNets with LSTM networks
as the prediction model. SPOT-Disorder-Single is more accurate than SPOT-Disorder in
predicting proteins with few homologous sequences. The input features of SPOT-Disorder2
are similar to SPOT-Disorder, whose neural network topology is composed of various
models combining Squeeze-and-Excitation networks (IncReSeNet), LSTM and Full Connect
(FC). Compared with SPOT-Disorder, SPOT-Disorder2 [74] provides substantial and consis-
tent improvements, this is mainly due to the improvement of the neural network model.
Different from other predictors whose inputs are pre-determined features, rawMSA [75]
takes the whole MSA as the text input of the neural network, which is mapped from amino
acid letters to floating point vectors by an embedding layer. Considering that previous
predictors did not use sequence-dependent emergent properties, DisoMine [48] uses GRU
to predict LDRs based on protein dynamics, predicted secondary structure and predicted
early folding.

Different from the classification models, the sequence labeling models can effectively
use the global sequence information rather than only the local sequence information.

The methods based on machine learning use more complex models and show better
predictive performance, but their corresponding interpretability is insufficient. In addition,
some of these methods use evolutionary profiles, such as PSSM and HMM profiles, whose
generation is time-consuming and increases the running time of the model [58].

2.1.3. Template-Based Methods

These methods search for homologous proteins with known structural information
(i.e., templates) and predict the disorder of unknown proteins [15,46]. These methods
include PrDOS [76], DISOclust3 [77], GSmetaDiscorder3D [78], etc. PrDOS [76] consists
of two predictors, one based on local amino acid sequence information and the other
based on template protein. The latter is based on the conservative assumption of intrinsic
disorder in the protein family. PSI-BLAST is used for sequence alignment, and the weighted
average of the alignment results that meet the conditions is used to predict whether the
residues are disordered. GSmetaDiscorder3D [78] considered different fold recognition
methods and used genetic algorithms to optimize the weight of a single method based on
alignment quality. DISOclust3 [77] uses a multi-template modeling method and improves
performance through additional sequence–structure alignment methods.

Template-based methods are easy to explain, but in general, it may be difficult to find
high-quality templates for prediction, and it is generally required to use in combination
with other methods.

2.1.4. Meta-Predictors

Considering that different predictors use different sequence features, prediction mod-
els, and training sets [79], which are complementary, these methods combine the outputs
generated by different disorder predictors as inputs to produce the final prediction results.
Compared with the single-component predictor, the meta-predictor can further improve the
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predictive performance. Combination methods include simple voting, linear combination,
or a nonlinear combination, such as the machine learning model. For example, MD [80],
MetaDisorder [78], disCoP [81], DisMeta [82], PONDR-FIT [79], Spritz [83], MFDp [68],
ESpritz [84], metaPrDOS [85], MFDp2 [86], DISOPRED3 [87], MobiDB-lite [88], etc., are
meta-predictors. For example, PONDR-FIT [79] is a combined predictor based on PONDR
VLXT, PONDR VL3, PONDR VSL2, IUPred, FoldIndex, and TopIDP. MetaDisorder [78]
considers the results of 13 disorder predictors, and the final prediction was weighted by
the accuracy of these methods. For each target residue, PONDR-FIT [79] inputs the pre-
diction results of six predictors of this residue and surrounding residues into the artificial
neural network to obtain the final prediction. The disCoP [81] aggregates the outputs of
seven single predictors through 11 sliding window-based features and inputs them to the
binomial deviance loss-based regression model to achieve consensus prediction.

These methods can often produce better predictive performance due to the combina-
tion of different disorder predictors. The disadvantages of these kinds of methods are the
large number of calculations required and the long running time.

2.2. Predictive Performance

Some performance measures are widely used for evaluating the predictive perfor-
mance of predictors, including area under ROC curve (AUC), balanced accuracy (BAC or
Acc), Matthews correlation coefficient (MCC), and F1-score (F1-s). AUC is defined as the
area enclosed by the coordinate axis and the ROC curve, which returns a value between 0
and 1. Others are defined as follows:

BAC = 1
2

(
TP

TP+FN + TN
TN+FP

)
MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

F1− s = 2· precision×recall
precision+recall

where TP (true positive) is the number of correctly predicted disordered residues; TN
(true negative) is the number of correctly predicted ordered residues; FP (false positive)
is the number of ordered residues that are predicted as disordered; FN (false negative) is
the number of disordered residues that are predicted as ordered; precision and recall are
defined as follows:

precision = TP
TP+FP

recall = TP
TP+FN

Critical Assessment of protein Structure Prediction (CASP) 5 first carried out a community-
based assessment of disorder prediction in 2002, among which six groups predicted disor-
der [89]. As a part of the CASP experiment, the disorder prediction evaluation continued
until CASP10 [90], in which 28 disorder predictors were evaluated. Critical Assessment
of protein Intrinsic Disorder prediction (CAID) is a biannual blind test to determine the
latest level of prediction of IDRs and residues involved in binding. The first CAID experi-
ment evaluated 32 disorder predictors on 646 protein datasets from DisProt, among which
the best method is to use deep learning technology, which is significantly better than the
physicochemical methods [18].

According to different sources of negatives, CAID involves two datasets when evalu-
ating disorder prediction: one is the DisProt dataset, where the negatives are all residues
outside the annotation regions, and another is the DisProt-PDB dataset, where the negatives
are restricted to the PDB observed residues. CAID also gives the calculation results of met-
rics at residue level (per-residue classification) and protein level (per-protein classification),
respectively. The residue level is used to view the dataset as a whole, and the protein level
is used to calculate the metrics of each protein and take the average value. We compared
the performance of the predictors with different datasets and measures calculation methods.
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As shown in Table 3, the per-residue classification performance of the predictors is better
than per-protein classification, whether in the DisProt dataset or the DisProt-PDB dataset.
This is further verified by the use of the Wilcoxon signed-rank test: different evaluation
methods show significant differences in MCC and BAC (p-value < 0.05) on both datasets,
which means that per-residue and per-protein classification are different in MCC and BAC.
This difference may be due to the fact that some proteins, such as DP01898, DP01324,
etc., are difficult to predict, on which almost all predictors secure FMax close to 0, thus
reducing the average level of performance. The different performance of the predictors
on different proteins suggests that some proteins may need to be paid extra attention
to improve the adaptability of the predictors. The performance of the predictors on the
DisProt-PDB dataset is generally better than that in the DisProt dataset, especially the
per-residue classification performance on the two datasets has significant differences in
BAC, MCC, and F1 (p values = 2.026 × 10−7, 6.328 × 10−9 and 1.2 × 10−10, respectively)
verified by Wilcoxon signed-rank test. This may be due to incomplete annotation, which
increases the number of false positives [18].

Table 3. Predictive performance of disorder predictors in CAID1.

Predictor
DisProt

(Per-Protein)
DisProt

(Per-Residue)
DisProt-PDB
(Per-Protein)

DisProt-PDB
(Per-Residue) Fully IDPs

BAC MCC F1-S BAC MCC F1-S BAC MCC F1-S BAC MCC F1-S BAC MCC F1-S

SPOT-Disorder2 0.712 0.308 0.486 0.725 0.349 0.469 0.753 0.356 0.643 0.836 0.706 0.784 0.711 0.409 0.452
SPOT-Disorder1 0.706 0.295 0.475 0.723 0.33 0.434 0.761 0.33 0.649 0.846 0.696 0.788 0.72 0.416 0.458
RawMSA 0.692 0.29 0.449 0.714 0.328 0.445 0.736 0.299 0.612 0.815 0.635 0.745 0.773 0.546 0.578
AUCpreD 0.704 0.283 0.466 0.712 0.318 0.433 0.738 0.334 0.623 0.816 0.662 0.756 0.678 0.431 0.453
DISOPRED-3.1 0.674 0.267 0.427 0.674 0.258 0.393 0.703 0.306 0.581 0.796 0.613 0.724 0.563 0.246 0.214
Predisorder 0.671 0.263 0.429 0.691 0.301 0.435 0.697 0.303 0.579 0.788 0.619 0.717 0.701 0.479 0.5
IUPred2A-short 0.674 0.256 0.424 0.688 0.29 0.42 0.693 0.27 0.567 0.773 0.574 0.691 0.609 0.413 0.351
IUPred-short 0.675 0.256 0.424 0.688 0.288 0.418 0.7 0.27 0.574 0.775 0.571 0.693 - - -
AUCpreD-np 0.681 0.254 0.441 0.699 0.301 0.424 0.722 0.297 0.601 0.797 0.615 0.725 0.602 0.293 0.303
SPOT-Disorder-
Single 0.676 0.251 0.44 0.71 0.315 0.432 0.73 0.29 0.608 0.817 0.646 0.751 0.661 0.452 0.448

MobiDB-lite 0.668 0.247 0.423 0.688 0.289 0.42 0.673 0.274 0.55 0.764 0.583 0.683 0.621 0.437 0.379
fIDPnn 0.668 0.247 0.44 0.72 0.37 0.483 0.713 0.252 0.591 0.782 0.576 0.701 0.776 0.569 0.598
IsUnstruct 0.667 0.244 0.425 0.689 0.288 0.418 0.691 0.272 0.574 0.779 0.585 0.7 0.667 0.411 0.432
IUPred-long 0.654 0.243 0.395 0.686 0.287 0.418 0.679 0.244 0.54 0.783 0.588 0.704 - - -
ESpritz-X 0.669 0.241 0.427 0.689 0.288 0.418 0.712 0.272 0.586 0.778 0.566 0.695 0.595 0.321 0.3
VSL2B 0.663 0.24 0.421 0.684 0.277 0.408 0.674 0.264 0.549 0.774 0.581 0.695 0.736 0.468 0.505
IUPred2A-long 0.654 0.24 0.396 0.685 0.285 0.416 0.669 0.242 0.529 0.776 0.584 0.697 0.639 0.42 0.406
JRONN 0.657 0.238 0.404 0.672 0.263 0.401 0.657 0.258 0.528 0.751 0.546 0.661 0.628 0.397 0.381
ESpritz-N 0.647 0.236 0.389 0.664 0.259 0.4 0.661 0.268 0.524 0.751 0.554 0.662 0.63 0.426 0.393
fIDPlr 0.647 0.22 0.409 0.693 0.33 0.452 0.689 0.23 0.562 0.761 0.537 0.671 0.771 0.468 0.505
DynaMine 0.654 0.22 0.4 0.66 0.24 0.384 0.657 0.245 0.527 0.739 0.505 0.641 0.5 0 0
DisoMine 0.643 0.206 0.42 0.698 0.299 0.424 0.693 0.205 0.558 0.78 0.55 0.693 0.77 0.421 0.455
PyHCA 0.64 0.198 0.39 0.66 0.241 0.385 0.642 0.226 0.5 0.731 0.494 0.629 0.629 0.411 0.387
S2D-1 0.61 0.19 0.35 0.633 0.203 0.361 0.603 0.218 0.456 0.724 0.494 0.617 - - -
DisEMBL-465 0.608 0.18 0.357 0.627 0.214 0.363 0.61 0.209 0.485 0.694 0.426 0.57 0.522 0.204 0.085
S2D-2 0.618 0.173 0.365 0.624 0.183 0.347 0.649 0.19 0.511 0.703 0.386 0.591 0.643 0.288 0.337
FoldUnfold 0.62 0.169 0.386 0.642 0.211 0.365 0.665 0.176 0.553 0.736 0.462 0.636 0.724 0.256 0.281
ESpritz-D 0.632 0.167 0.4 0.703 0.307 0.428 0.67 0.152 0.534 0.778 0.544 0.69 0.706 0.342 0.389
GlobPlot 0.57 0.136 0.3 0.587 0.143 0.312 0.549 0.16 0.394 0.641 0.328 0.48 0.5 0 0
DisEMBL-HL 0.563 0.135 0.269 0.577 0.172 0.286 0.661 0.132 0.531 0.641 0.262 0.535 0.544 0.288 0.163
DisPredict-2 0.557 0.06 0.31 0.599 0.152 0.326 0.58 0.061 0.435 0.625 0.24 0.491 0.632 0.33 0.356
DFLpred 0.473 0.02 0.033 0.503 0.022 0.025 0.368 0.024 0.046 0.504 0.043 0.027 0.5 0 0

The maximum value of each metric in each dataset is marked in bold. In the first four datasets, predictor thresholds
are optimized on MCC.

For the AUC, flDPnn secures the best AUC = 0.814 in the DisProt dataset, and the ten
top-ranking methods all secure AUC ≥ 0.74. While on the DisProt-PDB dataset, SPOT-
Disorder2 secures the best AUC = 0.92, and the ten top-ranking predictors all perform
AUC ≥ 0.86. According to the AUC value and Table 3, some current disorder predictors
have provided high-quality predictions. Using different performance measures, some meth-
ods, including SPOT-Disorder2, fIDPnn, RawMSA, and AUCpreD, continue to perform
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well and always rank in the top five [18]. These four predictors are all based on deep learn-
ing, and most (except for flDPnn) are sequence labeling models. Their good performance
may be due to the deep learning technology, which can extract complex relationships. In
addition, the sequence labeling models can fully utilize global sequence information to
capture the interdependence between distant residues. Although it does belong to the
sequence labeling model, flDPnn also extracts protein-level information, which contains
global sequence information.

In addition to IDR prediction, the prediction of fully disordered proteins is a challenge
that deserves separate attention. Table 3 also shows the performance of the predictors in
identifying fully disordered proteins (at least 95% of residues are predicted or annotated
as disordered) evaluated by CAID1. FlDPnn and RawMSA show advantages in identify-
ing fully IDPs and secure F1-s = 0.598, 0.578, respectively, while the third-best predictor
performs F1-s = 0.505.

From Table 3, we can see that although some methods can show relatively continu-
ous good performance, none of them can always hold high-quality performances under
different evaluation methods. Therefore, it is necessary to fully consider the use purpose
and the characteristics of predictors in practical application. For example, RawMSA has
obvious advantages in predicting full IDPs, and some methods (such as flDPnn) have a
shorter running time.

2.3. Problems and Perspectives

At present, IDP/IDR predictors have reached a relatively mature state [18], but there
are still some problems to be solved and areas to be improved.

In terms of data, the information provided by different experimental techniques
to detect IDPs/IDRs is slightly different [15]. Because the structure state of a protein
is a continuum, including ordered, collapsed disordered, and extended disordered, the
definition of disorder is not accurate yet [81]. Due to these different experimental techniques
and unclear definitions, there is a lack of a unified experimental standard to identify
disorders [18]. It is clear that IDPs/IDRs identified by various experimental technologies
are more reliable. At present, the number of IDPs/IDRs identified by these nonuniform
experimental methods is limited [15]. At the same time, another problem with the data is the
acquisition of negative samples (i.e., ordered residues) [18]. The quality of negative samples
in the benchmark dataset needs to be improved, and higher-quality order annotations are
needed. At the same time, the current benchmark dataset lacks a fully structured protein,
and the prediction quality is sensitive to it [45]. This protein can also be included in the
training set to reduce the false positive rate [45,81]. For the prediction of IDPs/IDRs, it is
necessary to establish a more comprehensive and accurate benchmark dataset.

In terms of software upgrading, the results of CAID1 show that the execution time of
different methods can differ by four orders of magnitude [18], indicating that there is also a
large space for optimization in the running time.

With regard to prediction targets, existing methods cannot well identify fully dis-
ordered proteins [18] and proteins with a large amount of disorder, such as disordered
protein-binding proteins [45]. Therefore, predictors can be specially trained to identify
these proteins. The above analysis shows that the disorder predictors may need more
detailed training to adapt to different types of IDPs/IDRs. On the other hand, most of the
current methods only focus on two classifications: ordered and disordered. Only a few
methods have considered the semi-disorder of proteins, such as SPINE-D, SPOT-Disorder,
and SPOT-Disorder2. Some studies have proposed the hypothesis that protein may exist in
one of three forms: ordered(fully-folded), collapsed disordered (molten globule-like), or
extended disordered (random coil-like) [61,91]. In addition, another study [92] proposed
the Protein Quarter model; that is, the protein conformation is divided into four specific
conformations: ordered forms, molten globules, premolten globules, and random coils.
There are differences in the conformations of IDPs/IDRs, but there are few predictors that
focus on such detailed classification of IDPs/IDRs.
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As for the quality evaluation of disorder prediction, the current disorder prediction
does not include quality assessment (QA) scores. Quality assessment tools can show which
disorder predictors are more reliable. Ideally, correctly predicted disordered residues
correspond to higher QA scores, and incorrectly predicted residues have lower QA scores.
The recently developed QUARTER [93] and its improved version QUARTERplus [94]
can evaluate the quality of 10 different disorder predictors. This QAtool needs further
development to help users make better use of various disorder predictors.

In terms of application expansion, the disorder predictors can be integrated into
other tasks. For example, in protein tertiary structure prediction methods, there are few
special treatments for disordered regions, such as labeling or removing possible disordered
regions. Therefore, we can consider integrating disorder prediction into protein three-
dimensional structure prediction [81]. Similarly, disorder predictors can be combined with
PPI prediction, phosphorylation site prediction and other tasks.

3. Interaction Prediction of IDPs/IDRs

IDPs can interact with a wide range of molecules, such as proteins, nucleic acids, and
lipids, and mediate many important biological processes, including signal transduction
and regulation [95–98]. Hub proteins, defined as proteins that interact with a large number
of proteins in the PPI network, have a higher tendency to be disordered than other pro-
teins [64,99]. The structural flexibility of IDRs enables them to ideally adapt to the binding
surface of their target domain [100] so that they can interact with many partners and fold
into different conformations when combined with different partners [101]. This conforma-
tional plasticity provides IDPs/IDRs with more extensive special functional advantages
than the functional model of ordered proteins, thus complementing the inherent functions
of ordered proteins [101–103].

In most of these interactions, IDPs/IDRs adopt stable binding structures; that is, the
disordered proteins in the free state adopt well-defined structures in the binding form, that
is, coupled folding upon binding [104,105]. In recent years, some IDPs have been found to
be able to form “fuzzy complexes”; that is, IDPs are still in a disordered state after binding
ligands to form complexes. Most fuzzy complexes are formed by a disordered protein and
a structural protein, while the more extreme case is that both are disordered proteins [106].

The interaction information of IDRs/IDRs is stored in various specific datasets. Dis-
Bind [107] stores the protein-binding sites of IDPs supported by experiments. FuzDB
provides a wealth of examples of experimentally determined fuzzy interactions [108].
Eukaryotic Linear Motive (ELM) resource mainly involves IDP-ordered protein interac-
tions [109], in which experimental verified short linear motifs are stored, including 317 motif
types and 3934 separate motif instances [110]. DIBS [95] stores the complexes formed by
IDPs and globular/ordered partner proteins and provides corresponding dissociation con-
stants, linear motifs involved in binding, functional annotation, etc. As a sister database of
DIBS, MFIB [109] stores IDP-only complexes and their structural and functional annotations.

3.1. Prediction of Binding Modes of Intrinsically Disordered Proteins

In previous research (before 2020) focusing on computational methods, most of them
only considered the disorder-to-order in the binding modes but could not characterize the
continuum of interaction modes [104].

In order to predict the binding modes, Miskei et al. [104] constructed three data sets,
including 828 regions of disorder-to-order, disorder-to-disorder, and context-dependent
transitions (both disorder and order forms exist in the complex), that is, DOR, DDR, and
CDR, respectively. They developed the FuzPred method based on the local sequence biases
(the local biases between the site R and its flanking region on the disorder, composition and
hydrophilicity), predicting the binding modes without any information about the partner.
FuzPred applied a binary logistic model to predict the probability of transition from
disorder to order pDO(Ai) and disorder to disorder pDD(Ai) (pDD(Ai) = 1− pDO(Ai)) for
a given residue Ai. Ai with higher pDO(Ai) is more likely to belong to DOR, and those with
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lower values are more likely in DDR. When pDO(Ai) and (1− pDO(Ai)) are comparable,
Ai belongs to CDR. The FuzPred method provides a continuous scale to characterize the
binding modes of disordered regions [104].

Furthermore, based on conformational entropy, Fuxreiter [111] proposed a classifi-
cation scheme of IDR interactions using the FuzPred method. Specifically, the FuzPred
method is used to calculate the transition probability distribution of disorder-to-order or
disorder-to-disorder and its Shannon entropy, which defines the entropy of the binding
mode (Sbind). The “entropy” of the binding mode tells us to what extent the binding
mode is clearly defined (the fuzzy binding mode has a high entropy value, and the con-
sistent binding mode has a low entropy value) and to what extent it will change with the
cell conditions.

3.2. Prediction of Binding Sites (Regions) of IDPs/IDRs

IDRs are rich in binding sites, which can play many important biological functions,
including signal transduction and regulation by interacting with different molecules. IDRs
can interact extensively with proteins, DNA, RNA, lipids, and various small molecules [12].
However, only a few hundred interactions have been annotated in experiments, and this
gap has promoted the development of computational methods for disordered binding
sites [112,113]. Different partners of IDRs may lead to different characteristics of binding
sites. Therefore, a number of predictors have been developed, targeting specific types of
binding partners of disordered proteins.

At present, most methods focus on protein–protein interactions, although predictors
aiming at disordered DNA, RNA, and lipid binding regions have also been developed. The
development of these predictors will help to accelerate the PPI discovery process, such as
MoRF prediction has been used for this purpose [101]. The features used by predictors
for binding sites of disorder are similar to IDP/IDR prediction, including amino acid
composition, sequence complexity, flexibility, physicochemical properties of amino acids,
evolutionary information, structural information, etc. In addition, most predictors for
binding sites also use disorder predictions as input features.

According to the different types of binding sites, predictions can be further divided into
MoRF prediction, SLiM prediction, prediction of disordered protein-binding regions, LIP
prediction, etc. The latest review [64,114] investigated about 20 computational predictors
for disordered binding regions, most of which are targeted at MoRFs, and discussed the
future development direction of these tools. Nowadays, the predictors of disordered
binding regions have been further developed, and we investigated and analyzed them.

3.2.1. Methods

1. Prediction of MoRFs

Molecular recognition features (MoRFs) are short binding regions located in long IDRs
(most of which are 5–25 residues in length, up to 70 residues in length), undergo disorder-
to-order transitions when binding with proteins and peptides, and stabilize by binding
with partners [115–119]. Due to their flexible structures, MoRFs can accurately combine
with their partners and play an important role in signal transduction and regulation [119].
The MoRF region can be divided into four types: α-MoRFs, folding into helices; β-MoRFs,
folding into β chains; γ-MoRFs, folding into coils and complex-MoRFs, folding into regions
with multiple secondary structures [64]. Compared with flanking IDRs, the amino acid
composition and physicochemical properties of MoRFs show different tendencies, such as
containing higher concentrations of large hydrophobic side chains.

In recent years, some MoRF predictors have been developed successively. The first
method is α-MoRFpred [116,120], proposed in 2005 to predict α-MoRFs. First, α- MoRFpred
uses heuristics to detect potential MoRF regions and then develops a neural network to
identify real MoRFs in potential MoRFs based on features such as disorder predictions,
secondary structure predictions, and amino acid index. Similar to disorder prediction,
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MoRF prediction methods can be divided into scoring function-based method, machine
learning-based method and meta predictor.

For the scoring function-based methods, a representative example is Retro-MoRFs,
which combines sequence alignment and disorder prediction for the first time to improve
the reliability of identifying MoRFs. This takes into account the sequence similarity between
the MoRFs to be predicted and the known MoRFs or their reversed sequences [100].

Machine learning-based methods can be further divided into traditional machine
learning-based methods and deep learning-based methods. For the traditional machine
learning-based methods, the models used include SVM, Naïve Bayes algorithm, and neural
network, among which the most used model is SVM (As shown in Table 1, nine predic-
tors used SVM). For example, MoRFpred [117], MFSPSSMpred [121], MoRFCHiBi [122],
DISOPRED3 [87], fMoRFpred [101], Predict-MoRFs [123], MoRFPred-plus [124], etc., are all
methods based on traditional machine learning. The first one covering all types of MoRFs
is the MoRFpred [117], released in 2012. Since then, all MoRF predictors have targeted all
types of MoRFs without specific distinction. MoRFpred collects a training data set in which
the disordered regions are dependent on the disorder prediction; later, some predictors
also used this data set for training [64]. Considering the sequence similarity between
MoRFs, MoRFpred combines the annotation generated by sequence alignment with the
prediction generated by SVM. The input features of SVM are PSSM, the physicochemical
properties of amino acids, disorder prediction, predicted flexibility, and solvent accessibility
prediction. FMoRFpred [101] uses a scheme similar to MoRFpred; they both choose SVM
as a classifier and have similar feature sets. MFSPSSMpred [121] and DISOPRED3 [87]
predict MoRFs based on SVM and use sequence-derived features and evolution profiles as
input [56]. MoRFCHiBi [122] trained two SVMs, one based on the similarity between MoRFs
and the other based on the comparison of amino acid composition between MoRF and its
flanking regions. MoRFCHiBi uses the Bayes rule to connect the tendency scores generated
by two SVMs to obtain the final prediction, which does not depend on the evolutionary
information and the output of other predictors but has good predictive performance [119].
MoRFpred-plus [124] uses two SVM-based propensity scores for prediction. One calculates
the composition and similarity of the assumed MoRF region and flank region, and the
other calculates the features around a given residue based on the HMM profile. The final
prediction of MoRFpred-plus is generated by the two propensity scores.

At present, there are few methods based on deep learning, which need to be further
developed. For example, MoRFCNN [119] trained three CNNs using the three feature sets
of protein sequences, one from MoRFMPM and the other two from MoRFCHiBi. The results
of three CNNs are combined to obtain MoRFCNN prediction. In the MoRFCNN method,
the sliding window method is still used to extract a Nwin × N f ea (here Nwin, N f ea refer to
the number of windows and features) dimension feature vector of each residue instead of
inputting the entire sequence into the model to use the global information.

The meta predictors consider the complementarities between different predictors and
combine single predictors to produce better predictions than component predictors, such
as MoRFCHiBi_Light [100], MoRFCHiBi_Web [100], OPAL [125], and OPAL+ [126]. Specifically,
MoRFCHiBi_Light [100] uses the Bayes rule to combine MoRFCHiBi scores with the disorder
prediction generated by ESpritz [84], which is more accurate than MoRFCHiBi. MoRFs are
more conservative than other parts of IDRs, so MoRFCHiBi_Web [100] combines MoRFCHiBi
prediction, disorder prediction from ESpritz and score generated by the PSSM profile
through the Bayes rule to generate the final prediction. Compared with MoRFCHiBi_Light,
MoRFCHiBi_Web also uses evolutionary information, so it performs better and runs slower
than MoRFCHiBi_Light. OPAL [125] combines the outputs of two predictors with an average
method. One is MoRFCHiBi, and the other is a predictor using an SVM based on the
structural information of the flanks around MoRFs. Considering that MoRFs with different
lengths have different characteristics and the existing methods use a single model to predict
MoRFs with different lengths, OPAL+ [126] trains four separate models for MoRFs with
different lengths. Finally, OPAL+ combines the four predictor scores, MoRFPred-plus
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scores and MoRFchibi scores to obtain the MoRF tendency score of each residue in the
query region.

Meta predictors can produce better predictive performance than component predictors
but at the cost of higher computational cost and more running time.

In the MoRF predictors, the traditional machine learning-based method is still the
mainstream. Few of them use deep learning technology, and there is no sequence labeling
model. For existing predictors, it may be difficult to extract the interdependencies between
residues in the whole sequence.

2. Prediction of short linear motifs (SLiMs)

Short linear motifs (SLiMs) are short and conservative functional sites usually found in
the disordered region, with a length of 3–10 amino acids [100,124,127], which can promote
biological processes such as cell signal transduction, post-translational modification and
protein transportation [127]. Structurally, SLiMs often appear in IDRs at protein termini or
between domains and can adopt multiple conformations [128]. Unlike MoRFs, SLiMs exist
not only in IDRs but also in the globular protein domain [129]. Although SLiMs and MoRFs
overlap, the methods for identifying their locations can be different [124]. Compared with
MoRFs, SLiMs have a tendency for convergence evolution, and due to their short length,
they are more difficult to predict and prone to high false positives [122,124,127].

Some methods rely on the recognition of over-represented, convergently evolved
motifs found in different sequences that bind to common protein partners [101,128], such
as DILIMOT [130], SliMFinder [131], SliMDisc [132], etc.

The first de novo method to predict SLiMs specifically is SLiMPred [127], which
was proposed in 2012. Based on the types of amino acids, predicted secondary structure,
structural motif, solvent accessibility, and disorder, bidirectional RNN (BRNN) is built to
predict SLiMs. SLiMPred does not depend on PPI experimental data and can predict SLiMs
in ordered and disordered protein sequences at the same time. SLiMPred is a sequence
labeling model which gives the probability that each residue is a SLiM residue but cannot
identify long binding regions and distinguish SLiMs located in IDRs or globular proteins.
Unlike the sequence-based approach, PepBindPred [128] takes into account the protein-
protein docking scores and trains a BRNN using protein sequences, predicted secondary
structures, AutoDock Vina docking scores, and predicted disorder scores as inputs. Since
PepBindPred requires structural information, it may limit the scope of its application.

3. Prediction of disordered protein-binding regions

More generally, some predictors are aimed at the general disordered protein-binding
regions (DPBRs) in IDRs, which include MoRF regions. There are three predictors of DPBRs:
ANCHOR [11,133], DisoRDPbind [134,135], and ANCHOR2 [56]. ANCHOR is a scoring
function-based method focusing on the regions undergoing a disorder-to-order transition
that relies on the paired energy estimation method in IURed to calculate three different
scores. The final prediction of the binding tendency of residues in the putative disordered
region is a linear combination of these three scores. DisoRDPbind calculates the feature
vectors of each residue based on the sliding window, which are input into the LR model
after feature selection. DisoRDPbind combines regression-based prediction with functional
annotation found through sequence similarity to generate the final prediction. In addition
to the protein-binding sites of IDRs, DisoRDPbind also predicted the disordered DNA-
binding and RNA-binding sites for the first time, which was realized through three LR
models. ANCHOR2 is a scoring function-based method that uses a simple and explicable
formula based on energy estimation to predict the disordered binding region.

4. Prediction of Linear interacting peptides (LIPs)

LIPs are fragments in protein sequences that undergo disorder-to-order transitions
when binding with proteins and nucleic acids [118]. Compared with MoRFs, DPBRs
and SLiMs, LIPs are a broader category and a superset of them [118]. CLIP [118] is
the first method to predict LIPs from protein sequences. CLIP combines three types of



Genes 2023, 14, 432 17 of 32

inputs to predict: coevolutionary information, predicted disorder and physicochemical
properties of amino acids. Specifically, RF and SVM are trained based on coevolutionary
information and the physicochemical properties of amino acids, respectively. The outputs
of these two models, together with the disorder prediction and the disorder content of each
sequence, are input into the LR model as feature sets to generate LIP prediction. Unlike
other predictors, CLIP uses coevolutionary information, which has proven to be useful in
ablation experiments. Although without special training, CLIP can also predict SLiMs and
MoRFs well compared with other top-performing predictors specially designed for these
binding regions.

5. Prediction of Disordered lipid-binding residues (DLBRs)

Considering the growth of experimental annotations of Disordered lipid-binding
residues (DLBRs) and the importance of lipid–IDR interaction, Katuwawala et al. [112]
first proposed a predictor especially for DLBRs, DisoLipPred. DisoLipPred is based on the
deep BRNN, mainly including four modules: bypass module, sequence profile module,
deep neural network, and rescaling module. The bypass module inputs the disordered
residues predicted by SPOT-Disorder into the depth neural network after being processed
by the sequence profile module, while the predicted ordered residues bypass the depth
neural network. The rescaling module combines the predictions of the depth network and
the ordered residues to obtain the final output. The deep neural network contains the
network obtained by transfer learning, which is constructed by using the complete training
set without relying on partners.

Transfer learning enables DisoLipPred to make full use of interacting IDRs data, not
limited to lipid–IDR interaction, so as to improve the learning ability of the model for
DLBRs. The bypass module makes the model pay more attention to the difference between
disordered residues and disordered binding residues. They are the main innovation and
contribute to the performance of the model, especially the bypass module.

6. Prediction of Semi-disordered regions

Zhang et al. [136] defined the prediction of the semi-disordered state as a region
with a disorder or order probability of 50%. These semi-disordered regions are semi-
collapsed with some secondary structures, which are related to induced folding and protein
aggregation [35,136]. Although there is no specific training, experiments show that the
prediction of semi-disordered regions generated by SPINE-D, SPOT-Disorder, and SPOT-
Disorder2 can be used to identify MoRFs. The test results on the dataset show that the
semi-disordered regions predicted by SPOT-Disorder2 are more accurate in identifying
MoRFs than some methods designed directly for identifying MoRFs.

7. Prediction of protein-binding residues

Most of the above predictors only focus on the disordered binding sites but cannot
correctly predict the binding sites in ordered proteins, that is, disorder-specific. Similarly,
ISIS [137], DeepPPISP [138] and other methods use ordered protein data for training but
cannot be applied to the prediction of disordered binding sites. For the defect that the
above predictors cannot predict the binding sites of two types of proteins at the same time,
Zhang et al. [115] proposed a novel fusion predictor called hybridPBRpred, which combines
disoRDPbind and SCRIBER to predict the binding sites of ordered and disordered proteins
at the same time.

In Table 4, we have summarized the predictors of disordered binding regions. All of the
websites of these methods have been last accessed on 29 December 2022. The development
process of these predictors for different prediction targets is not consistent. MoRF predictors
are developed first and are also the most researched (accounting for more than 50% of all
predictors). MoRF predictors are mostly based on machine learning methods, especially
SVM-based methods, and few use deep learning technology. SLiM predictors also started
early but only have some limited prediction methods. Other types of predictors appeared
later than 2015, with only 1–3 prediction methods for each type. Perhaps due to the late
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start, these predictors use some advanced deep learning technologies, such as transfer
learning. Although the predictors shown in Table 1 are designed for specific types, they
also have the ability to predict other types of binding sites. For example, DisoLipPred can
effectively predict MoRFs and SLiMs.

3.2.2. Predictive Performance

CAID evaluated the prediction of binding sites in IDRs using the binding regions
annotated by DisProt [18]. In Table 5, predictor thresholds are optimized on MCC. Similar
to disorder prediction, per-protein classification performance is worse than per-residue
performance in MCC, and the difference between them is further verified by Wilcoxon
signed-rank test (p-value < 0.05). For the prediction of disordered binding sites, there
are also some targets (such as DP01108) that are difficult to predict, which may need
extra attention in the future. As shown in Table 5, the best MCC of per-protein and
per-residue classification are 0.062 and 0.199, respectively, so there is a large room for
improvement in the performance of the predictors for disordered binding sites. We noticed
that DisoRDPbind-DNA, DisoRDPbind-RNA, and DisoRDPbind do not perform well,
which may be caused by the mismatch between the target prediction object of the predictors
and the actual prediction object.

Among the 11 submitted methods, the CAID evaluation results show that the top five
methods with the best performance are ANCHOR-2, DisoRDPbind, MoRFCHiBi (light and
web), and OPAL. These five predictors, except ANCHOR-2, which is based on the scoring
function-based method, are all based on machine learning, and especially three of them are
meta predictors. Among them, ANCHOR-2 and DisoRPbind secure the best performance,
which is probably because they are not limited to short binding regions during training
and can adapt to broader prediction targets of CAID.

They can differ by three orders of magnitude in execution times, and the running time
is inversely proportional to the performance. The ANCHOR-2 with the best performance
requires the shortest running time; this is probably because it is a scoring function-based
method and does not involve complex models and calculations.

3.2.3. Problems and Perspectives

First, there is room for improvement in the predictive performance of the predictors.
The CAID evaluation results show that the disordered binding region is still difficult to
predict, and it is necessary to develop updated and better predictors of binding regions.

In terms of data, more precise experimental annotations of binding sites are needed.
The test data used in CAID1 come from the DisProt database, in which the binding anno-
tations retrieved from the literature have more ambiguity than the disorder annotations,
and the specific location of the binding regions is usually incorrect [18]. In addition, the
data used by many MoRF predictors for training is dependent on the predicted disordered
regions rather than the disorder identified by experiments [64]. The acquisition of nega-
tive samples is also a challenge, the same as the disorder prediction, and higher quality
annotations of non-binding residues are required.

There are some limitations in the prediction target. At present, most of the methods
are developed for MoRFs. In addition to MoRFs, the disordered binding sites also include
many other types. In the protein-binding residues, SLiMs and DPBRs are both included.
The existing methods for predicting disordered protein-binding regions mainly focus on
the sites where the disorder-to-order transition occurs. There are also some regions where
disorder-to-disorder and context-dependent transitions occur. Only a few methods, such as
FuzPred, take these two binding modes into account. In addition, IDPs/IDRs can interact
with DNA, RNA, lipids, etc., but there are relatively few predictors for such binding sites,
which need further development. Moreover, most predictors can only predict one type of
binding regions but cannot predict multiple types of binding regions at the same time.
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Table 4. Summary of the prediction methods of disordered binding sites.

Target of Predictions Predictor Publication Year Web Site Category Classifier or
Combination Mode Features

MoRF regions

α-MoRFpred 2005 NA ML Neural network
Disorder predictions, secondary
structure predictions, and amino
acid index

Retro-MoRFs 2010 NA SF Sequence alignment and disorder
predictions

MoRFpred 2012
http://biomine.cs.vcu.edu/
servers/MoRFpred/ accessed
on 29 December 2022

ML SVM

Sequence alignment, PSSM,
physicochemical, properties of
amino acids, disorder predictions,
predicted flexibility, and solvent
accessibility prediction

MFSPSSMpred 2013 The website does not work as of
January 2019 ML SVM PSSM

MoRFCHiBi 2015
https://gsponerlab.msl.ubc.ca/
software/morf_chibi/ accessed
on 29 December 2022

ML SVM Similarity between MoRF sequences
and amino acid composition

DISOPRED3 2015
http:
//bioinf.cs.ucl.ac.uk/disopred
accessed on 29 December 2022

ML SVM Blosum62 matrix and PSSM

fMoRFpred 2016
http://biomine.cs.vcu.edu/
servers/fMoRFpred /accessed
on 29 December 2022

ML SVM

Putative annotation of intrinsic
disorder and secondary structure,
estimated B-factor, structural
stability, and unfolding energy.

MoRFCHiBiLight 2016
https://gsponerlab.msl.ubc.ca/
software/morf_chibi/ accessed
on 29 December 2022

Meta Bayesian rules MoRFCHiBi and Espritz

MoRFCHiBiWeb 2016
https://gsponerlab.msl.ubc.ca/
software/morf_chibi/ accessed
on 29 December 2022

Meta Bayesian rules MoRFCHiBi, Espritz, and the score
generated by the PSSM profile

http://biomine.cs.vcu.edu/servers/MoRFpred/
http://biomine.cs.vcu.edu/servers/MoRFpred/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
http://bioinf.cs.ucl.ac.uk/disopred
http://bioinf.cs.ucl.ac.uk/disopred
http://biomine.cs.vcu.edu/servers/fMoRFpred
http://biomine.cs.vcu.edu/servers/fMoRFpred
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
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Table 4. Cont.

Target of Predictions Predictor Publication Year Web Site Category Classifier or
Combination Mode Features

Predict-MoRFs 2016
https://github.com/
roneshsharma/Predict-MoRFs
accessed on 29 December 2022

ML SVM HMM

MoRFPred-plus 2018

https://github.com/
roneshsharma/MoRFpred-
plus/wiki/MoRFpred-plus
accessed on 29 December 2022

ML SVM Physicochemical properties and
HMM profile

OPAL 2018
http://www.alok-ai-lab.com/
tools/opal/ accessed on 29
December 2022

Meta An average method MoRFCHiBi and an SVM model
based on the structural information

OPAL+ 2018
http://www.alok-ai-lab.com/
tools/opal_plus/ accessed on 29
December 2022

Meta The common averaging
principle

Four SVMs trained for MoRFs with
different lengths, MoRFPred-plus
and MoRFchibi

MoRFCNN 2021 NA ML CNNs
Three feature sets, one from
MoRFMPM and two feature sets
from MoRFCHiBi.

SLiMs

SLiMPred 2012

http://bioware.ucd.ie/
~compass/biowareweb/
Server_pages/slimpred.php
accessed on 29 December 2022

ML Bidirectional RNN
Predicted secondary structure,
structural motif, solvent
accessibility and disorder

PepBindPred 2013

http:
//bioware.ucd.ie/~compass/
biowareweb/Server_pages/
pepbindpred.php accessed on
29 December 2022

ML Bidirectional RNN

Protein sequences, predicted
secondary structures, AutoDock
Vina docking scores, and predicted
disorder scores

https://github.com/roneshsharma/Predict-MoRFs
https://github.com/roneshsharma/Predict-MoRFs
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus
http://www.alok-ai-lab.com/tools/opal/
http://www.alok-ai-lab.com/tools/opal/
http://www.alok-ai-lab.com/tools/opal_plus/
http://www.alok-ai-lab.com/tools/opal_plus/
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php
http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php
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Table 4. Cont.

Target of Predictions Predictor Publication Year Web Site Category Classifier or
Combination Mode Features

DPBRs

ANCHOR 2009 http://anchor.enzim.hu
accessed on 29 December 2022 SF Paired energy estimation

DisoRDPbind 2015
http://biomine.cs.vcu.edu/
servers/DisoRDPbind/
accessed on 29 December 2022

ML Logistic regression

Functional annotation, amino acid
composition, sequence complexity,
prediction of disorder, prediction of
secondary structure, and
physicochemical properties of
amino acids

ANCHOR2 2018 http://iupred2a.elte.hu
accessed on 29 December 2022 SF Interactions and disordered

environment

LIPs CLIP 2022
http://biomine.cs.vcu.edu/
servers/CLIP/ accessed on 29
December 2022

ML RF and SVM

Coevolutionary information,
predicted disorder, disorder content
and physicochemical properties of
amino acids

DLBRs DisoLipPred 2022
http://biomine.cs.vcu.edu/
servers/DisoLipPred/ accessed
on 29 December 2022

ML Bidirectional RNN

Predicted secondary structure,
solvent accessibility, disorder,
disorder function, physicochemical
properties of amino acids

Semi-disorder

SPINE-D 2013
http:
//sparks-lab.org/SPINE-D/
accessed on 29 December 2022

ML Neural network

Physical parameters, PSSM,
predicted secondary structure,
predicted solvent accessibility,
predicted torsional angle
fluctuation, amino acid composition,
local composition complexity and
predicted secondary structure
content.

SPOT-Disorder 2017
http://sparks-lab.org/server/
SPOT-disorder/ accessed on 29
December 2022

ML LSTM
Evolutionary information, predicted
structural properties and
physicochemical properties

http://anchor.enzim.hu
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://iupred2a.elte.hu
http://biomine.cs.vcu.edu/servers/CLIP/
http://biomine.cs.vcu.edu/servers/CLIP/
http://biomine.cs.vcu.edu/servers/DisoLipPred/
http://biomine.cs.vcu.edu/servers/DisoLipPred/
http://sparks-lab.org/SPINE-D/
http://sparks-lab.org/SPINE-D/
http://sparks-lab.org/server/SPOT-disorder/
http://sparks-lab.org/server/SPOT-disorder/
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Table 4. Cont.

Target of Predictions Predictor Publication Year Web Site Category Classifier or
Combination Mode Features

SPOT-Disorder2 2019
https://sparks-lab.org/server/
spot-disorder2/ accessed on 29
December 2022

ML IncReSeNet, LSTM and
Full Connect Similar to SPOT-Disorder

protein-binding
residues hybridPBRpred 2020

http://biomine.cs.vcu.edu/
servers/hybridPBRpred/
accessed on 29 December 2022

Meta A hybrid approach SCRIBER and disoRDPbind

In the ‘Category’ column, ‘SF’ represents the scoring-based method, ‘ML’ represents the machine learning-based method, ‘Meta’ represents the meta predictors.

https://sparks-lab.org/server/spot-disorder2/
https://sparks-lab.org/server/spot-disorder2/
http://biomine.cs.vcu.edu/servers/hybridPBRpred/
http://biomine.cs.vcu.edu/servers/hybridPBRpred/
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Table 5. The performance of predictors of binding regions in CAID.

Predictor
Per-Protein Classification Per-Residue Classification

BAC MCC F1-S BAC MCC F1-S

DisoRDPbind-protein 0.652 0.062 0.137 0.697 0.198 0.214
ANCHOR-2 0.677 0.055 0.13 0.694 0.199 0.22
MoRFchibi-light 0.629 0.041 0.124 0.636 0.161 0.212
MoRFchibi-web 0.588 0.039 0.131 0.631 0.143 0.194
OPAL 0.482 0.039 0.141 0.652 0.151 0.186
DISOPRED-3.1-binding 0.725 0.036 0.095 0.569 0.099 0.169
ANCHOR 0.571 0.026 0.127 0.651 0.148 0.178
fMoRFpred 0.79 0.014 0.031 0.515 0.054 0.072
DisoRDPbind-DNA 0.804 0.004 0.005 0.502 0.052 0.008
DisoRDPbind-RNA 0.799 0.002 0.007 0.501 0.014 0.01
DisoRDPbind 0.194 0 0.131 0.5 0 0.119

The maximum value of each metric in each dataset is marked in bold.

In terms of the training strategy, most methods predict binding sites in all residues
without using known disorder annotation/prediction. For the prediction of binding sites
of IDRs, the regions that do not belong to IDRs can be excluded so that only the disordered
residues (annotation or prediction) can be used for training and predicting; thus disordered
binding sites and disordered residues can be better distinguished. DisoLipPred uses the
bypass module for the first time to achieve this purpose.

4. Prediction of IDPs/IDRs Functions

DisProt has annotated the functions of disordered regions, most of which are related
to binding functions. In addition to the binding function, some predictors have been
developed for the other functions of a disorder.

4.1. Methods
4.1.1. Prediction of Disordered Flexible Linkers (DFLs)

Disordered flexible linkers (DFLs) are IDRs that serve as flexible linkers/spacers
in multi-domain proteins or between structured constituents in domains [139]. DFLs
are important for many cellular processes, including amyloid fibril formation and the
movement between catalytic sites. DFLpred [139] is the first method to predict DFLs.
DFLpred uses the sliding window to calculate the features based on the amino acid type,
secondary structure prediction, disorder prediction and sequence complexity of each
residue and inputs the selected features into the LR model to obtain the propensity score.

4.1.2. Prediction of Disordered Moonlighting Regions (DMRs)

The high plasticity of IDRs makes it possible for them to combine with a variety
of ligands and perform different functions. Disordered moonlighting regions (DMRs)
are IDRs that carry out multiple functions [140]. Different from the predictors focusing
on specific functions, DMRPred [140] is the first method to predict DMRs. DMRPred
generates the features of each residue by calculating the information, including sequence
conservation, predicted relative solvent accessibility and disorder, etc., of the target residue
and its neighbors, which are input into the RF model to generate predictions.

4.1.3. Prediction of Multi-Functions of Disorder

Most of the current predictors focus on predicting one function of IDRs, and only
a few predictors can simultaneously predict multiple functions of IDRs. For example,
DisoRDPbind is used to predict protein-binding, DNA-binding, and RNA-binding at the
same time. FlDPnn can simultaneously predict four functions: protein-binding, DNA-
binding, RDN-binding, and linker.
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4.2. Problems and Perspectives

Most of the current methods only focus on one kind of function, and the predictors that
can simultaneously predict multiple functions need to be further developed. According
to the DisProt annotation, the molecular functions of IDRs can be divided into six cate-
gories: entropic chains, display sites, chaperons, effectors, assemblers, and scavengers [114].
Therefore, the predictors can be extended to other molecular functions of IDRs.

5. Features Used by the Predictors

The research shows that the improved performance of the predictors mainly depends
on the input features and profile. Because of the importance of features and the commonality
of features used by different predictors, we discussed these features in a separate section.
Feature extraction includes information used and feature encoding methods.

The information used in features can be mainly divided into four categories. (i) Se-
quence information, which is obtained from a single-input sequence. This includes amino
acid composition (AAC), reducing amino acid composition (RAAC), physicochemical
properties of amino acids (aromaticity, net charge, flexibility, hydrophilicity, coordination
number, etc.), correlated contact potential, and the propensity of being at the endpoints
of a secondary structure segment, etc. This kind of information is obtained from a single
sequence, and the selection of features applies some fields of knowledge, such as low
complexity and low content of hydrophobic amino acid residues of the IDR sequence. Such
features do not require additional tools for calculation and are widely used in various
predictors. (ii) Evolutionary information includes the PSSM and HMM profiles generated
by MSA and the whole MSA as text input (such as rawMSA) and BLOSUM62. The use
of evolutionary information can improve the predictive performance when the number
of homologues is large, but MSA usually requires more search time. (iii) Structural infor-
mation, mainly generated by other tools, such as predicted secondary structure, torsional
angle fluctuation and solvent accessibility, early folding, etc. Because the definition of
disorder is related to structure, such information is also widely used. (iv) Prediction results
generated by the predictors related to disorder. For example, disorder function predictions
and binding region predictions usually use the results of disorder predictors as input. The
disorder predictors also use the results of the function predictors as input information, such
as flDPnn.

Classification models and sequence labeling models correspond to different feature
encoding methods. Classification models usually encode the relevant information of the
target residue into a fixed-length vector. The encoding mode can be divided into residue
level, window level, and protein level. Residue-level coding method only focuses on the
information of the target residue or a few residues around. The window-level coding
method uses a sliding window to cover the subsequence centered on the target residue
so as to characterize the information of this subsequence (such as taking the average
feature values of the subsequence, etc.). This is because the function and structure of the
target residue are affected by its neighboring residues. In practical applications, multiple
features can be encoded to be used simultaneously according to different window sizes.
In addition, another method (svmPRAT) uses a flexible window-based encoding scheme,
which weights the input information according to the distance between the adjacent residue
and the central residue. Encoding based on the protein level is relatively less used, which
includes calculating the average value of features on the whole sequence (such as the
disorder content) and the length of the sequence. In the ablation experiment of flDnn,
protein-level encoding proved to be very useful.

Sequence labeling models represent the whole sequence numerically rather than
focusing on local sequences. The numerical representation method can be divided into
using pre-calculated features and embedding methods, which use an embedding layer
so that the network automatically extracts features. Using pre-calculated features is to
encode each residue on the sequence based on the types of amino acids, the predicted
secondary structure, evolutionary profiles, and other information so as to form a feature
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matrix, and each dimension represents the feature vector of a residue. The embedding
method mainly comes from the technology in Natural Language Processing (NLP), such
as the training embedding layer, Word2Vec, and GloVe, and is also widely used in the
field of bioinformatics. The word embedding method automatically extracts the features of
the sequence through the neural network instead of manual empirical feature extraction
and selection. For example, rawMSA takes the whole MSA as the text input of the neural
network and uses the depth network to perform automatic feature extraction.

From the above summary, we can see that there are many available feature information
and encoding methods, but it is not always better to use more features, because too
many would cause information redundancy and noise. It is necessary to combine domain
knowledge and experiments to carry out feature engineering so as to effectively improve
the performance of the model. The use of evolutionary information can improve the
predictive performance in some cases, and the methods based on a single sequence are
suitable for large-scale screening and also conducive to the study of orphan proteins. The
use of evolutionary information has its advantages and disadvantages, but only a few
methods give the option of whether to use this information. At present, the existing
methods, even those based on deep learning, mostly rely on some features selected by
experience and pre-determined profiles to train the prediction model, which may lead to a
curse of dimension and difficulty in capturing potential information.

6. Future Prospects

In the above, we have discussed the problems and perspectives for different prediction
tasks, and we further summarized them in this section.

(i) In terms of datasets, these prediction tasks require more comprehensive and more
accurate datasets. At present, most of the predictors that perform better rely on machine
learning algorithms, and they are data-driven, especially the deep learning-based methods.
More data will help to further improve the predictive performance of the predictors. The
datasets also have some limitations and are not comprehensive enough. For example, in
disorder prediction, there is a lack of completely structured proteins, and the prediction
quality is sensitive to them. The datasets also have accuracy problems. For example, some
negative samples are originally from incomplete annotations and are not accurate enough.
The annotations of binding regions are ambiguous, and their specific position is inaccurate.

(ii) For different tasks, the predictors need to adapt to broader and comprehensive
prediction targets. For example, for IDP/IDR predictors, most of the current algorithms
only consider disorder and order. There are differences in the conformation of IDPs/IDRs;
however, few predictors focus on more detailed classification. The IDP/IDR predictors
perform poorly on some proteins, such as fully disordered proteins and proteins with
high disorder content and need to further adapt these proteins and improve the predictive
performance. For the prediction of disordered binding regions, most of the predictors are
developed only for a subset of binding sites—MoRFs—and only consider the sites where
the disorder-to-order transition occurs, while there are few methods for other types of
binding sites. For the prediction of the functions of disorder, most predictors only aim at
one function of IDPs/IDRs, rather than predict multiple functions at the same time and
only involve partial functions of IDPs/IDRs.

(iii) Quality assessment (QA) methods need further development. QA tools are
developed to predict which prediction of residue is reliable. However, at present, such QA
tools are few and only for partial disorder predictors, not for other types of predictors.

(iv) Models and training methods. In recent years, deep learning has flourished.
Some updated deep learning methods such as transformer, attention mechanism, and
pre-training model can be considered in the network architecture of predictors. These
methods have proven to be effective in the field of biological information [141–143], and
some are suitable for processing sequential data. In addition, except for its outstanding
performance in predicting the three-dimensional structure of proteins, AlphaFold has
also been effectively used for PPI prediction [144,145]. AlphaFold has proven to have the
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ability to predict disordered regions [146]. It is worth considering combining AlphaFold to
predict disordered regions, the interaction of IDPs/IDRs, and the molecular functions of
IDPs/IDRs.

(v) Use multi-task learning to solve different prediction tasks. Most of the models
mentioned above focus on single-task learning, but these tasks have some similarities, such
as using similar features and models, and are aimed at disordered regions. Therefore, in
view of the similarity of these tasks, multi-task learning [147] in machine learning can be
considered to improve learning efficiency and generalization.

As we all know, AlphaFold has made a breakthrough in predicting the three-dimensional
structure of proteins. However, for some orphan proteins, the prediction of antibody-
antigen interaction sites still cannot replace the experimental results, which forces us to
seek other methods to improve the prediction accuracy. In CASP15, there are many targets
containing potentially disordered regions, such as target H1129 (as shown in Figure 1). We
have combined the study of disorder with the prediction of the three-dimensional structure
of protein complexes through different methods. For the sequence to be predicted, we
first predicted its disordered regions and then checked whether the secondary structure
in the predicted three-dimensional structure conflicts with the predicted disorder, that
is, whether the predicted disordered region is a loop region in the predicted structure. If
there are more conflicts, it indicates that the structure may not be well predicted. Another
method is: in the evaluation of model quality, less attention was paid to the quality of
prediction structure in the disordered region, so a more reasonable prediction structure was
selected. This also improves the limitations of AlphaFold’s modeling of the loop domain
and the inaccurate prediction at the beginning and the end of the sequence. Introducing
the research of disordered proteins into the prediction of the three-dimensional structure of
proteins is more worthy of expectation in the future.
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Figure 1. A schematic view of the target H1129 in CASP15 (PDBID:8A8C) with potentially disordered
regions. The figure shows the three-dimensional structure of this protein. The potentially disordered
regions are marked with red or dotted lines in the figure, where red regions represent the regions of
the loop and are predicted to be disordered, and the dotted line represents the region with missing
coordinates in the PDB structure and is predicted to be disordered.
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7. Conclusions

The computational methods related to intrinsic disorder have been developed vig-
orously, especially the prediction of IDRs. Since the first predictor was proposed in 1979,
dozens of prediction methods have been developed, from the relatively simple scoring
function-based methods to the more complex machine learning-based methods and meta-
predictors. The development of these predictors has reached a relatively mature state, but
there are still some problems to be solved, which have been discussed above.

The prediction of binding modes of IDPs/IDRs pays attention to disorder-to-disorder,
disorder-to-order, and context-dependent transitions. There are few studies that consider all
of the above three transitions, while many studies only focus on the type of disorder-to-order.

IDPs/IDRs can interact extensively with proteins, DNA, RNA, lipids, and small
molecules. Different methods have been developed to predict the binding sites of IDRs
according to different types of binding sites. In addition to considering partner types,
protein-binding residues are divided into MoRFs, SLiMs, and general PBDRs. Although
many predictors of disordered binding sites have been developed, most of them only focus
on MoRF prediction. The predictors of binding sites need to be further improved in terms
of the predictive performance and the universality of prediction sites.

There are relatively few methods to predict the molecular functions of IDRs. In
addition to binding functions, existing predictors also predict the disordered flexible linkers
and disordered moonlighting regions. Most predictors are specially designed for one
function and seldom consider coupling disorder prediction and function prediction to
ensure the consistency of the results.
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