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Abstract: Gene families, which are parts of a genome’s information storage hierarchy, play a signifi-
cant role in the development and diversity of multicellular organisms. Several studies have focused
on the characteristics of gene families, such as function, homology, or phenotype. However, statistical
and correlation analyses on the distribution of gene family members in the genome have yet to be
conducted. Here, a novel framework incorporating gene family analysis and genome selection based
on NMF-ReliefF is reported. Specifically, the proposed method starts by obtaining gene families from
the TreeFam database and determining the number of gene families within the feature matrix. Then,
NMF-ReliefF is used to select features from the gene feature matrix, which is a new feature selection
algorithm that overcomes the inefficiencies of traditional methods. Finally, a support vector machine
is utilized to classify the acquired features. The results show that the framework achieved an accuracy
of 89.1% and an AUC of 0.919 on the insect genome test set. We also employed four microarray gene
data sets to evaluate the performance of the NMF-ReliefF algorithm. The outcomes show that the
proposed method may strike a delicate balance between robustness and discrimination. Additionally,
the proposed method’s categorization is superior to state-of-the-art feature selection approaches.
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1. Introduction

Gene families are groups of genes that have evolved from a common ancestor, and
share similar sequences and functions [1]. They are a crucial aspect of genetics and ge-
nomics, and their study can provide valuable insights into the evolution, function, and
regulation of genes [2]. Additionally, they are enormous units of information and estima-
tion of genetics, contributing significantly to the development and diversity of multicellular
organisms. They are also integral to the genomic information storage hierarchy [3]. In
evolution, the expansion and contraction of gene families is caused by various factors,
including natural selection, genetic drift, and gene duplication. The adaptive gene family
expansion occurs when natural selection favors more gene copies [4]. On the other hand,
genetic drift can lead to the contraction of a gene family over time due to random changes
in the frequencies of the genes in the population. The accumulation of loss-of-function
mutations frequently leads to adaptive shrinkage of gene families [5]. Environmental
factors are also responsible for gene loss [6]. Gene duplication, where a gene is copied, and
the copies are free to evolve independently, can also lead to the expansion of a gene family.
When a nonsense mutation stops gene transcription prematurely, it becomes permanent in
the population, resulting in its loss.

Due to variances in gene acquisition and loss rates, the copy number of homologous
gene families varies significantly among species. It is well known that gene copy number
variation can be responsible for the phenotypic novelties of particular species. For example,
there are now several ways of identifying insect eating patterns [7–9]. A recent study found

Genes 2023, 14, 421. https://doi.org/10.3390/genes14020421 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14020421
https://doi.org/10.3390/genes14020421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-4320-9846
https://orcid.org/0000-0002-6841-0095
https://doi.org/10.3390/genes14020421
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14020421?type=check_update&version=3


Genes 2023, 14, 421 2 of 15

that human physical features may be predicted using whole-genome sequencing data [10].
However, there has been no advancement in the method of analysis from the standpoint of
the gene family. Therefore, we concentrated on extracting species traits at the gene family
level to achieve this goal.

Ortholog databases are intensively used to analyze species traits at the gene fam-
ily level. The orthodox dichotomy has proved useful, although it has inherent limita-
tions [11]. Commonly-used databases include OMA [12], OrthoDB [13], TreeFam [14], and
eggNOG [15]. In principle, tree-based methods are preferable because they involve explicit
evolutionary models that allow the classification of orthologs, co-orthologs, in-paralogs,
and out-paralogs [16]. TreeFam, which belongs to the tree-based method, has fewer erro-
neously assigned genes than the above database [17]. Here, we defined gene families with
the TreeFam tool. TreeFam is a database of phylogenetic trees of gene families identified
from animal genomes. It aims to establish a curated resource that provides reliable infor-
mation on ortholog and paralog assignments and the evolutionary history of gene families.
Curated families are introduced in stages, similar to Pfam, based on seed alignments and
trees. TreeFam provides curated trees for 690 families and automatically produces trees
for an additional 11,646 families. These comprise about 128,000 genes from nine fully se-
quenced animal genomes and over 45,000 more animal proteins from UniPort [18]; around
40–85 percent of proteins are encoded from fully sequenced animal genomes. The seed
families for TreeFam-B are taken from PhIGs clusters. They are expanded by a seed-to-full
procedure to form whole families. Manual curation makes TreeFam-B families become
TreeFam-A families, which can also be curated later.

Treefam calculations yielded the distribution of gene family members. However, these
statistics have a high dimension, with too many gene families and a limited number of
species, making it challenging to find meaningful patterns. Feature selection algorithms
are often employed to reduce dimensionality to solve dimensional disasters. The reduction
of feature dimensionality is a fundamental principle of classification, which primarily at-
tempts to characterize the data set more accurately. It is accomplished by removing the data
set’s unneeded, undesirable, and irrelevant characteristics. The most commonly used di-
mensionality reduction algorithms at the moment are genetic algorithm (GA) [19], random
forest (RF) [20], clustering analysis (CA) [21], relief series algorithm (RSA) [22], princi-
pal component analysis (PCA) [23], and so on. Further, to solve the multi-classification
problem, the ReliefF algorithm is proposed [24]. ReliefF is one of the most significant
algorithms utilized in various financial applications. Recursive feature elimination (RFE),
one of the most popular feature selection approaches, is effective in data dimension re-
duction and efficiency increase [25]. Recent studies have shown that consensus-guided
unsupervised feature selection (CGUFS) performs well in feature selection for identifying
disease-associated genes [26]. Nonnegative matrix factorization (NMF) has been shown
to perform well in analyzing omics data. NMF assumes that the expression level of one
gene is a linear additive composition of metagenes. The elements in the metagene matrix
represent the regulation effects and are restricted to non-negativity [27]. We created an
entirely new classification approach in this research that is based on the well-known ReliefF
algorithm and nonnegative matrix decomposition (NMF) [28]. This work evaluates the
performance of the proposed technique using four publicly available microarray data sets,
each containing a large number of cases. The findings reveal that the proposed technique
has superior performance in terms of processing time and memory requirements to a
variety of mainstream classification methods.

Here, the feature extraction process was illustrated using the insect genome as an
example. We conducted data mining on insect gene families and examined the relationship
between insect feeding and gene families. Insect feeding habits are dietary preferences
acquired by insects throughout the long evolutionary process. Insect survival and repro-
duction are dependent on feeding choices. Various types and dietary ranges of insects
exist, and the same species have different eating behaviors. Herbivorous, carnivorous,
sacrificial, and omnivorous are insects’ dietary classifications [29]. Hundreds of insect
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genomes have been sequenced as whole-genome sequencing costs have been reduced
drastically [30]. Several gene families have been linked to energy function in comparative
genomics. The framework we developed to build an extremely accurate predictive classifier
also considered these gene families as potential characteristics. Finally, we demonstrate
a novel genetic method for analyzing the feeding habits of different species of insects, a
method that could also be applied to other biological groups.

2. Materials and Methods

We first downloaded and selected genome sequences containing the high-quality
annotation file. The longest sequence length in the genomic mRNA sequence is retained
and the rest of the alternative splicing is removed. Then, using the TreeFam software and
its database, we categorize the genome sequence of each species and construct a script to
count the classification results. Here, we design and implement a novel feature selection
algorithm, NMF-ReliefF. At last, the final classification model is obtained by training the
classifier on the reduced dimensionality feature matrix. Figure 1 illustrates the workflow
for the proposed predicting methods. The proposed framework of this research work was
done using MATLAB of version R2018a. The computer’s CPU is an Intel i5 dual-core 8400H
with a primary frequency of 2.80 GHz, and the memory size is 8 GB.
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Figure 1. The framework of feature selection algorithm on gene families. Our method consists of
four modules. (A) We collected genomes with annotation files from individual genomic databases
filtered by Scaffold N50. The longest sequence length in the genomic mRNA sequence is retained
and the rest of the alternative splicing is removed. (B) Using the TreeFam software and its database,
we categorize the genome sequence of each species and construct a script to count the classification
results. (C) Here, we design and implement a novel feature selection algorithm, NMF-ReliefF.
(D) The final classification model is obtained by training the classifier on the reduced dimensionality
feature matrix.

2.1. Genome Resources and Species Selection

We downloaded 139 genome sequences with coding gene annotation files, including
Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, from the National Cen-
ter for Biotechnology Information [31], InsectBase [32], VectorBase [33], Fireflybase [34],
Ensembl Genomes [35], and GigaDB [36] to allow for more in-depth analysis (Table S1).
The corresponding coding genes had to be found based on the annotation file and the
gene sequencing data. We filtered out species with low-quality genomes using the Scaffold
N50 genome characteristic value, which is positively related to genome quality, and the
more significant, the better. Species with scaffold N50 < 400 Kb genomic assemblies were
eliminated. The most extended transcript was chosen when there were many alterna-
tive splicing variants for a protein-coding gene. We selected 50 insect species containing
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the annotation file, 27 of which were verified by literature references as herbivorous and
used as positive samples. Twenty-three insect species have been shown in the literature
not to feed mainly on plants. Therefore, they are used as examples of non-herbivorous
insects (Table S2).

2.2. Gene Family Analysis

From the alternative splicing file, the genomic mRNA sequences are retrieved first.
Alternative splicing generates several RNAs from the sequences of mRNA in the genetic
material. Alternative splicing is a biological process in which exons from the same gene are
connected in various ways, producing unique but related mRNA transcripts. Alternative
splicing causes a gene to produce several mRNAs, which, if left untreated and processed
using the TreeFam database, can substantially bias the results. We consequently retained
the longest mRNA sequence. TreeFam, which considers phylogenetic relationships, was
used to identify gene families derived from a single gene of the most recent common
ancestor. The TreeFam script and the TreeFam-A database determined the number of each
species’ mRNA sequences corresponding to each TreeFam gene family. A numerical matrix
comprised the final configuration.

2.3. Feature Selection

Several approaches to feature selection have been applied in bioinformatics. In this pa-
per, we compare our proposed method with three widely used feature selection approaches:
support vector machine recursive feature elimination (SVM-RFE) [37], ReliefF [38], and
PCA-ReliefF [39]. The SVM-RFE approach for gene selection was created by integrating
a minimum-redundancy, maximum-relevancy (MRMR) filter. The mutual information
among genes and class labels is used to determine the relevance of a collection of genes,
and the mutual information among the genes is used to determine redundancy. Because it
considers gene redundancy during gene selection, the technique enhanced the detection
of cancer tissues from benign tissues on numerous benchmark data sets. On most data
sets, the approach chose fewer genes than MRMR or SVM-RFE. Gene ontology analyses
revealed that the method selected genes that are relevant for distinguishing cancerous
samples and have similar functional properties.

The Relief method is a feature-weighting technique developed by Kira that applies
varying weights to characteristics based on the association between each feature and
category [38]. Features having less than a specific weight will be eliminated. The Relief
algorithm’s association between features and categories is based on the features’ capacity
to discern nearby samples. Relief algorithms are practical and generic attribute estimators.
They can discover conditional relationships and give a unified picture of attribute estimates
in regression and classification. Furthermore, their quality estimations have a natural
meaning. The running time of the Relief algorithm rises linearly with the number of
samples m and the number of original features N, resulting in excellent running efficiency.
In the Relief series algorithm, k closest neighbors (near misses) are identified, and each
feature is given a weighted value. It is a feature-weighting algorithm that is efficient and
does not have a data type restriction. Due to the algorithm’s preference for highly relevant
features, this algorithm cannot effectively eliminate redundant features.

PCA is a practical approach to optimize variance in each direction and reduce correla-
tions in training data. However, it only helps classification systems indirectly. ReliefF can
score each feature’s contribution and offer intuitive evidence by linking the feature and
classification accuracy, but correlations between features diminish performance, especially
when the features are essential. Zeng et al. [39] first retrieved Mel Frequency Cepstral
Coefficient features. A feature selection approach based on PCA and ReliefF is presented to
choose the most discriminatory group of features.

Inspired by the above method, we designed a new feature selection method based on
NMF-ReliefF. Given a nonnegative observation data matrix m× n, each column of denotes
a sample vector, m represents the number of features, and n represents the number of
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samples. The NMF algorithm aims to seek two nonnegative matrices, W and H, which can
well reconstruct the matrix as follows:

V ≈WH (1)

The squared Euclidean distance is the commonly used cost function to measure the
quality of the approximation which can be written as follows:

min‖V −WH‖2
F

s.t.W ≥ 0, H ≥ 0
(2)

where ‖•‖F stands for the matrix Frobenius norm. By adopting multiplicative update rules
for nonnegative optimization [40], the updating rules of (2) can be obtained as follows:

W = W � XHT

WHHT (3)

H = H � WTX
WTWH

(4)

where � shows the Hadamard product, and denotes the transpose of the matrix.
Algorithm 1 shows the iterative algorithm for learning an NMF decomposition and

ReliefF feature selection [41], where the multiplicative update rules are given in matrix notation.
The operator · denotes pointwise multiplication and the operator/pointwise division.
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 find a nearest hit ‘ H ’ and nearest miss ‘ M ’(instances) 

 for :A =1 to p do 

  
( ) : ( ) ( , , ) / ( ) ( , , ) / ( )= −  + W A W A diff A R H m k diff A R M m k  

 end  

 end  

return the vector W  of feature scores that estimate the quality of features 
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2.4. Classification Methods

This research employs three classification methods: Support Vector Machine, Random
Forest, and k-Nearest Neighbor, to examine the selected gene subset for categorization of
microarray data.

Support Vector Machines (SVM) are supervised learning methods for analyzing data
for classification and regression analysis [42]. The SVM training technique results in the
assignment of new instances to one of two categories, creating a binary linear classifier
that is non-probabilistic. The SVM model represents instances as points in space using
Platt scaling. However, it can also be used in probabilistic classification scenarios. They are
mapped so that as much distance as possible separates the examples of distinct categories
from each other. In the next step, new examples are mapped into this space and their
membership in a given category is determined based on where they fall within the gap.

As an ensemble learning method, random forests can perform classification, regression,
and other tasks by constructing a large number of decision trees at training time. This is
done by identifying the class representing the mean prediction of all the individual trees in
a given category. Using random decision forests, overfitting training sets can be corrected
with Random Forests (RF).

K-Nearest Neighbor (k-NN) is a non-parametric classification and regression tech-
nique [43]. Input consists of the k nearest training examples in the feature space. k-NN
assigns items to the category with the highest frequency among its k nearest neighbors
based on the majority vote of its neighbors (k is a positive integer, usually a decimal num-
ber). The attribute value of the item, the weighted average of the importance of its k nearest
neighbors, is the result of a k-NN regression.

To eliminate “selection bias,” we utilize five-fold cross validation (CV) [44] in our
studies on each microarray data set with a specified gene subset for each classification
technique. To prevent selection bias, we employed the fivefold crossover method to test
three classifiers on the previous stage’s data produced from feature selection. Specifically,
the data were randomly divided into five sections, of which one copy was used for training
and the other was used for testing. This procedure is repeated, with each copy serving as a
test set.

2.5. Prediction Accuracy Assessment

The prediction accuracy (ACC), the area under curve (AUC), sensitivity (SEN), and
specificity (SPE) are utilized in this study to assess the effectiveness of various approaches.
Their definitions may be found below. The receiver operating characteristic curve (ROC)
and area under the ROC curve (AUC) demonstrate the detailed performance of various
approaches. The ROC curve’s X-axis represents the false positive rate (FPR = 1 − SPE),
while the Y-axis represents the true positive rate (TPR = SEN). The models in this study are
evaluated and compared using five-fold cross-validation.

ACC =
TP + TN

TP + TN + FN + FP
(5)

SEN =
TP

TP + FP
(6)

SPE =
TP

TP + FN
(7)

AUC =
∑ predpos > ∑ predneg

positiveNum ∗ negativeNum
(8)

3. Results and Discussion
3.1. Data Sets

Four publicly available microarray data sets were used to test the effectiveness of the
proposed gene selection method. For better performance and evaluation of the proposed
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method, we chose the cancer microarray data set, which contains only two classes and is
widely used in related work [45–47]. These data sets are collected to diagnose various can-
cers such as prostate cancer, breast cancer, lung cancer, and myeloma. All four microarray
data sets share the following characteristics: (1) they are typically high-dimensional, and
three exceed 10,000 dimensions. (2) There are fewer than 200 samples, much fewer than the
genes. (3) Many redundant and irrelevant genes in these data sets affect classification. The
statistics of these data sets are summarized in Table 1.

Table 1. Statistics of the microarray data sets.

Data Sets Instance Gene Number Class Disease

Gordon [48] 181 12,533 2 Lung Cancer
Tian [49] 173 12,625 2 Myeloma

Singh [50] 102 12,600 2 Prostate Cancer
West [51] 49 7129 2 Breast Cancer

3.2. The Selection of Classifier

We examined three popular classifiers: closest neighbor (k-NN), support vector ma-
chine (SVM), and random forest (RF). We evaluated the efficacy of our applied classifier by
looking at how well it performed under the proposed scheme. To create a baseline model,
we do not use feature selection methods but all features directly. NMF-ReliefF was used
to pick features in the proposed method’s preprocessing stage. Table 2 compares three
classifiers based on an evaluation of their prediction accuracy. The evaluation of prediction
accuracy reveals that our categorization performance is exceptional. The AUC values for
SVM, RF, and k-NN classifiers are 0.843, 0.723, and 0.745, respectively. The SVM classifier
has a significantly higher AUC than other classifiers. In addition, the computational times
for SVM, RF, and k-NN classifiers are 0.089 s, 0.110 s, 0.122 s, and 0.095 s, respectively. The
temporal efficiency of the SVM classifier is superior to that of other classes. In summary,
the SVM classifier space is preferable to other examined spaces based on classification
performance and average execution time.

Table 2. Comparison of our method, ReliefF, SVM-RFE and PCA-ReliefF on high-dimensional
microarray data sets; the best result is in bold face.

Lung Prostate Myeloma Breast
Methods Classifiers ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPN AUC

ReliefF k-NN 0.857 0.990 0.714 0.866 0.804 0.472 0.896 0.950 0.803 0.788 0.849 0.667 0.914 0.833 0.996 0.833
RF 0.757 0.658 0.859 0.794 0.798 0.320 0.928 0.952 0.843 0.876 0.836 0.739 0.767 0.553 0.910 0.460

SVM 0.847 0.864 0.858 0.880 0.809 0.129 0.985 0.988 0.883 0.888 0.904 0.801 0.904 0.900 0.967 0.867
SVM-
RFE k-NN 0.757 0.871 0.643 0.829 0.758 0.871 0.643 0.830 0.764 0.720 0.809 0.082 0.852 0.678 0.997 0.668

RF 0.815 0.810 0.810 0.847 0.816 0.810 0.810 0.847 0.775 0.810 0.751 0.602 0.791 0.667 0.883 0.589
SVM 0.847 0.860 0.883 0.849 0.848 0.860 0.883 0.850 0.892 0.880 0.906 0.799 0.910 0.867 0.950 0.833

PCA-
ReliefF k-NN 0.573 0.740 0.370 0.645 0.774 0.475 0.847 0.918 0.774 0.475 0.847 0.918 0.652 0.300 0.800 0.220

RF 0.531 0.540 0.566 0.639 0.769 0.239 0.898 0.927 0.769 0.239 0.898 0.927 0.848 0.920 0.880 0.800
SVM 0.546 0.560 0.550 0.602 0.878 0.581 0.956 0.980 0.878 0.581 0.956 0.980 0.850 0.960 0.927 0.807

NMF-
ReliefF k-NN 0.751 0.943 0.914 0.709 0.919 0.943 0.986 0.998 0.921 0.948 0.966 0.845 0.848 0.948 0.833 0.700

RF 0.593 0.567 0.657 0.619 0.873 0.673 0.933 0.980 0.940 0.946 0.940 0.891 0.881 0.800 0.883 0.750
SVM 0.855 0.846 0.902 0.843 0.942 0.833 0.978 0.985 0.941 0.983 0.915 0.898 0.914 0.800 0.933 0.800

Baseline k-NN 0.545 0.783 0.425 0.550 0.734 0.325 0.836 0.883 0.682 0.688 0.739 0.509 0.557 0.400 0.653 0.317
RF 0.545 0.575 0.508 0.600 0.774 0.233 0.931 0.956 0.717 0.783 0.713 0.553 0.467 0.417 0.503 0.200

SVM 0.575 0.558 0.475 0.583 0.687 0.252 0.803 0.854 0.872 0.912 0.859 0.788 0.710 0.750 0.667 0.717
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3.3. Classifying Insect Feeding Habits by Machine Learning

The results indicated that the method performs well in classifying insects as herbivo-
rous, with an average accuracy of 84.5%. Sensitivity, specificity, and the AUC (Area under
the Curve of ROC) were 84.3%, 87.4%, and 91.9%, respectively, suggesting good perfor-
mance by the classifier (Table 3). From the results in the table, our designed algorithm
achieves better classification results with a classification accuracy of 84% and time con-
sumption of 1.3224, which is significantly higher than other algorithms (Table S3). It does
not take the least amount of time, but compared to the PCA-ReliefF algorithm, it improves
accuracy by about 18%, which is better than most other algorithms.

Table 3. Comparison of our method, ReliefF, SVM-RFE, and PCA-ReliefF on matrix of gene family
data set; the best result is in bold face.

Methods Classifers ACC SEN SPE AUC Time

ReliefF k-NN 0.766 0.758 0.833 0.700 1.063
RF 0.783 0.675 0.916 0.750 1.756

SVM 0.786 0.541 0.966 0.691 1.074
SVM-RFE k-NN 0.770 0.708 0.866 0.725 3.396

RF 0.730 0.675 0.825 0.708 4.057
SVM 0.786 0.683 0.891 0.733 3.492

PCA-ReliefF k-NN 0.669 0.573 0.749 0.653 0.060
RF 0.609 0.526 0.609 0.609 0.644

SVM 0.667 0.560 0.744 0.636 0.066
NMF-ReliefF k-NN 0.745 0.443 0.370 0.788 1.310

RF 0.723 0.696 0.765 0.800 2.038
SVM 0.843 0.843 0.974 0.919 1.324

Baseline k-NN 0.643 0.750 0.725 0.629 0.069
RF 0.663 0.600 0.650 0.587 9.657

SVM 0.683 0.566 0.783 0.629 0.097

3.4. Feature Selected Reflect the Relationship of Gene Family

To illustrate why PCA is inferior to NMF, we extract features and construct a heat map
in Figures 2 and 3. While Figure 2 demonstrates that there is no noticeable difference in
the average values of herbivorous and non-herbivorous insects, Figure 3 illustrates the
opposite. This demonstrates that the NMF method is superior to the PCA algorithm in
selecting features in this context.
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As shown in Figure 3, our method is effective because the feature heat maps of the
screened gene families show discernible differences. These screened features are closely
related to insect feeding habits, which can be crucial in building a classifier. As long as the
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appropriate classifier is selected, the insect’s genes can determine whether it is herbivorous.
Since it differs from the traditional homology alignment method, we cannot explain the
specific gene family effects with the TreeFam method. Nonetheless, the Pfam database
contains some associations.

3.5. Comparison with Other Gene Selection Methods

Similar to the classifier mentioned above, four publicly accessible microarray data sets
were utilized to examine the efficacy of gene signature selection methods for the specified
characteristics to evaluate classification results. This study compared four commonly used
feature selection methods, ReliefF, SVM-REF, PCA-ReliefF and NMF-ReliefF.

Table 2 demonstrates that (1) when the NMF-ReliefF process extracts the features,
the classification ACC achieved with the SVM classifier ranges from 85 to 95 percent,
depending on the data set. (2) The data set’s positive and negative case preferences have a
more significant influence on the categorization. In comparison with Table 2, Table 3 shows
a 15% increase in ACC. (3) The SVM classifier’s classification performance is much superior
to that of the k-NN and RF classifiers, as demonstrated by the benchmark test. (4) NMF is
marginally superior to PCA for feature extraction, with classification results for the data set
indicating an improvement of between 3 and 5%.

We compared our technique to the most cutting-edge algorithms using the test data.
We investigated four high-dimensional microarray data sets and calculated the mean and
standard deviation for each microarray data set’s accuracy, specificity, sensitivity, and area
under the curve. The comparison results are displayed in Table 2. Our approach has a
mean precision of 91.3%, a sensitivity of 86.5%, a specificity of 93.2%, and an area under the
curve of 88.4%. Our method outperforms ReliefF and PCA-ReliefF in terms of precision,
specificity, sensitivity, and extent under the curve. In addition, we have developed a
considerably improved approach than SVM-REF.

3.6. The Relationships of Selected Features

We selected 50 significant features using the NMF-ReliefF feature selection method,
calculated the Pearson correlation coefficient between any two features, and used these
results to create heat maps. The feature correlation heat map illustrates the linear correlation
between each feature. Different features represent different numbers of gene families, and
Figure 4 illustrates that these components are correlated. The coefficients between the
coefficient matrices have considerable weight and play a key role in feature selection,
allowing us to recognize the corresponding gene family as having a pivotal role. The heat
map shows that the critical coefficients are crucial in how a species feeds. We can analyze
the gene families associated with these critical coefficients to understand how they work.
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3.7. Classification Performance with Different Numbers of Selected Gene Families

To determine the ideal number of selected genes, we tested the classification ability
of multiple approaches employing varying numbers of selected genes. Note that the n
option modifies the NMF-ReliefF feature count. In the experiments, the range of n values
was 5, 10, 20, 30, 40, and 50, while all other parameters remained unchanged. For different
feature selection algorithms and parameters, a five-fold cross-check is performed and
the run is repeated 15 times to obtain the mean and standard error. Figure 5 depicts the
ACC curves of the four feature selection techniques with varying feature counts. The
results show that if the number of features is less than 10, the ACC of the classification
evaluation index is less than 75%. However, suppose the number of features is more than
10. In that case, the evaluation index ACC can reach 85%, indicating that if the number of
features is too small, the classifier is underfitted and cannot provide better classification. In
contrast, the evaluation index ACC for more than 30 features is stable at about 80%, with a
slowly decreasing trend as the number of features increases. According to the experimental
statistical results, the ACC values for feature numbers 5, 10, 20, 30, 40, and 50 are 0.6709,
0.8915, 0.8438, 0.8418, 0.8276, and 0.8124, respectively. The ACC value for a feature count of
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10 is much greater than the ACC for a lower feature count, while the distance is smaller
than the ACC for a higher feature count. Therefore, when the number of characteristics is
between 10 and 20, our classification approach performs better and does not have too many
features to influence the subsequent analysis (Tables S4, S5, and File S1). This algorithm
achieves a better balance between robustness and differentiation than the other algorithms
in every case involving an eigenvalue, as shown in Figure 5. The corresponding values
for each algorithm, however, are quite high. This results in no significant differences in
sensitivity between the algorithms when the number of characteristics chosen is taken
into account. In contrast, the specificity varies by more than 15%, with a maximum of
approximately 40 unique features. In light of the low sensitivity, the selected features
increase as the number of selected features increases. The reason for this is that the number
of features available increases as well. Therefore, it is appropriate to take more features
when selecting the number of features, even if accuracy is consistent.
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4. Conclusions

This paper proposes a framework for intrinsically mining associations in gene family
data sets and a novel feature selection method based on NMF and ReliefF. The framework
can classify feature attributes and is applied to the gene family feature map of insects,
which has a good classification ability for insect predators. Furthermore, our proposed
feature selection method, NMF-ReliefF, can effectively improve the classification ability in
the case of high dimensionality and small data samples. Validation of the algorithm on
four publicly available microarray data sets illustrates the effectiveness and superiority
of the algorithm, showing that our classification system outperforms most comparable
algorithms. Further, it was compared in terms of temporal performance, outperforming
most dimensionality reduction-based methods. In the future, we will further analyze the
genetic and intrinsic association between the multiclassification performance of the feature
selection algorithm and the selected gene families.
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all 139 insect species downloaded; Table S2. Statistics on the genomes of 50 insect species obtained
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comparison under different feature number (evaluation index values for different algorithms at
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