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Abstract: Marker-assisted selection is an important method for livestock breeding. In recent years,
this technology has been gradually applied to livestock breeding to improve the body conformation
traits. In this study, the LRRC8B (Leucine Rich Repeat Containing 8 VRAC Subunit B) gene was
selected to evaluate the association between its genetic variations and the body conformation traits
in two native sheep breeds in China. Four body conformation traits, including withers height,
body length, chest circumference, and body weight, were collected from 269 Chaka sheep. We also
collected the body length, chest width, withers height, chest depth, chest circumference, cannon bone
circumference, and height at hip cross of 149 Small-Tailed Han sheep. Two different genotypes, ID
and DD, were detected in all sheep. Our data showed that the polymorphism of the LRRC8B gene
was significantly associated with chest depth (p < 0.05) in Small-Tailed Han sheep, and it is greater in
sheep with DD than those with ID. In conclusion, our data suggested that the LRRC8B gene could
serve as a candidate gene for marker-assisted selection in Small-Tailed Han sheep.

Keywords: LRRC8B gene; InDel; body conformation traits; sheep

1. Introduction

The LRRC8 gene family was discovered in recent years, and it is composed of five
subunits, namely LRRC8A, LRRC8B, LRRC8C, LRRC8D, and LRRC8E [1,2]. Specifically, the
LRRC8 protein is a type of transmembrane protein that exists in various cell membranes in
the mammalian body and participates in the formation of the cell VRAC (volume regulation
anionic channels) [2–6]. It also has a large influence on the field of cell volume regulation,
cell division and migration, apoptosis, cancer drug resistance, and inflammation [7–13].
However, the LRRC8 protein has not been found in invertebrates, so it may originate in
chordates [14] and is considered to be a specific factor in vertebrates [1]. Among the five
family members, LRRC8A is the most important subunit of the VRAC channel, and it co-
expresses with one or more of the other subunits to constitute correct VRAC liveness [2,15].
Therefore, LRRC8A is essential for the formation of the VRAC channel. Notably, gene
expression should remain in a certain level, and the overexpression of the LRRC8A gene
may interfere with the normal activity and function of the VRAC channel [15,16].

In addition, studies have shown that the co-expression of LRRC8A and other LRRC8
proteins in the LRRC8 gene family can produce VRACs with different functional char-
acteristics. Moreover, the difference in VRAC activity that the LRRC8A/B isomer causes
may depend on the cell type and different physiological conditions [17]. The LRRC8A/D
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isomer is the main pathway through which cells are responsible for excreting GABA (γ-
aminobutyric acid), taurine, and inositol [4,18]. The LRRC8A/E isomer is activated by
intracellular oxidation, whereas the LRRC8A/C and LRRC8A/D isomers are restrained by
oxidation [19]. Compared with the LRRC8A/C and LRRC8A/D isomers, the activity of the
LRRC8A/E isomer is significantly inhibited by positive membrane potential [16].

The LRRC8B gene, a protein coding gene, is an important member of the LRRC8
gene family. Specifically, the LRRC8B protein, a subunit of the channel complex, takes
part in regulating the substrate specificity of the channel and participates in intracellular
Ca2+ homeostasis through an endoplasmic reticulum leakage channel [4,20]. Furthermore,
research has found that the protein mediates drug-induced cell death signaling pathways
and promotes apoptosis related to anticancer drugs such as cisplatin AVD (apoptotic
volume decrease) [21–23]. It also plays a variety of roles in the pathology of Alzheimer’s
disease and is associated with the progression of the break stage thereof [24]. In addition,
the expression of the LRRC8B gene is closely related to the lung transplantation process
and can be used as a new therapeutic target for lung transplantation complications [25].
However, update there is no report about the function of LRRC8B gene in livestock and
poultry breeding.

After years of continuous development and improvement, molecular marker breeding
with InDel (Insertion and Deletion) technology has become one of the most important
methods for livestock and poultry breeding [26]. Recent studies have found that genomic
structural variation is very important for the study of population polymorphism, disease
susceptibility, and animal phenotype. CNV (copy number variation), InDel, and SNP (single
nucleotide polymorphism) are called the three major genomic structural variations. CNV
refers to genomic structural variation with length greater than 50 bp, including fragment
insertion, deletion, inversion, translocation, duplication, and other types [27]. It is character-
ized by high resolution, wide genomic coverage, and stable genetic performance [28,29]. It
can be detected by chip methods (genomic hybridization chip and SNP chip), sequencing
methods (whole genome sequencing and single molecule length sequencing), PCR, fluores-
cence in situ hybridization (FISH), and other methods [30]. Each of these technologies has
its advantages. The one with the highest resolution and widest coverage is whole genome
sequencing. However, it is also the most expensive. InDel refers to genomic structural
variation with length less than 50 bp, including insertion and deletion of fragments. It
is characterized by simple operation, high sensitivity, reliable results, and good stability,
and it can be detected by high-resolution melting (HRM), non-denaturing gel capillary
(NDGC), amplification refractory mutation system (ARMS), Sanger sequencing, and agarose
gel electrophoresis [31]. Among them, Sanger sequencing and agarose gel electrophoresis
have been widely used in the detection of candidate genes for economic traits of livestock
and achieved brilliant results. The process of this method is as follows: first, primers are
designed upstream and downstream of mutation sites, and the specificity and sensitivity of
primers are guaranteed. Secondly, PCR was used for amplification. Finally, the target frag-
ment was detected by electrophoresis or sequencing analysis to select the optimal character
genotype. SNP refers to single nucleotide polymorphism, which refers to the variation of
the position of a certain base, including base insertion, deletion, conversion (purine replaced
by purine or pyrimidine replaced by pyrimidine), and transmutation (purine replaced by
pyrimidine or pyrimidine replaced by purine). It is characterized by wide distribution,
high density, and genetic stability. It can be detected by capillary electrophoresis, gene chip
technology, restriction fragment length polymorphism (RFLP), allele specific PCR (AS-PCR),
direct sequencing, and other methods [32]. Among them, capillary electrophoresis and gene
chip technology are suitable for the detection of unknown SNP mutation; the detection cost
is high, and the difficulty is greater. RFLP, AS-PCR, and direct sequencing are suitable for
the detection of known SNP mutations, with high detection efficiency.

In terms of the formation mechanism, CNV, InDel, and SNP have different emphases.
The formation of CNV is mainly due to non-allelic homologous recombinationg (NAHR),
non-homologous end joining (NHEJ), and fork stalling and template switching (FoSTeS).
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NAHR usually occurs during meiosis, when the copy number is changed due to the
exchange of genome sequences. NHEJ is a DNA damage repair mechanism existing
in the body, which can reconnect broken DNA and inevitably introduce copy number,
resulting in mutation. FoSTeS is the result of DNA replication using the wrong replication
template, which also causes mutations to occur. SNP is mainly the variation produced by
adaptation to the environment. In the process of biological evolution, mutation is inevitable,
and the most common mutation type is SNP. In order to survive, favorable variation is
preserved. The generation of InDel is mainly related to the characteristics of genome and
DNA replication errors. When the genome sequence is AT(A/C)(AC)GCC and TACCRC,
the probability of insertion will be increased. However, sequences containing TATCGC
and GCGG are not susceptible to insertion and deletion mutations. InDel is more likely
to be produced in regions with high replication; for example, the occurrence frequency of
euchromosomes is lower than that of sex chromosomes [33]. In addition, various factors
such as transposon replication and insertion, mobile element insertion, abnormal sequence
recombination, and unequal exchange of similar duplicate copies can also cause InDel [34].

As germplasm resources are dwindling, it is crucial to breed high-quality sheep. There
are many types of sheep breeds in China, but most of them have poor performance and
cannot satisfy people’s increased demand. Chaka sheep and Small-Tailed Han sheep are
two good breeds in our country, widely distributed throughout the country. Chaka sheep,
which live in Wulan County, Qinghai Province, are a famous hybrid breed of sheep used for
local wool and meat with high meat quality but low yield [35]. On the other hand, Small-
Tailed Han sheep are widely distributed and have strong adaptability and are resistant to
rough feeding. It is a famous sheep breed for both meat and wool in China and globally,
and it has been named as the “national treasure” of China [36]. However, the genetic
improvement of the body conformation traits of local Small-Tailed Han sheep in China is
still urgently needed.

2. Materials and Methods
2.1. Experimental Materials

A total of 269 healthy Chaka sheep aged from 1 year old to adults were randomly
selected from Chaka Town, Wulan County, and they had no blood relationship with each
other. This included 83 male sheep, 101 female sheep, and 85 wether sheep for which
experimental records were made. A total of 149 healthy Small-Tailed Han sheep with no
blood relations were also randomly selected from Ruilin Technology Breeding Co., Ltd.,
Yongjing County, Gansu Province, China, including 85 male sheep and 64 female sheep for
which experimental records were made. Notably, these sheep in each growth stage were
under the same feeding management and nutrition conditions.

2.2. Sample Collection and Measurement of Body Size

Blood samples were collected from all experimental animals, following which they
were fully mixed with anticoagulant and stored at −80 ◦C. Simultaneously, the body size
traits of the experimental animals were recorded, including the wither height, body length,
chest circumference, and body weight of the Chaka sheep, as well as the body length, chest
width, wither height, chest depth, chest circumference, cannon bone circumference, and
height at the hip cross of the Small-Tailed Han sheep. To reduce random errors in this
experiment, the same person measured and recorded the same trait.

2.3. Primer Design

The sheep’s LRRC8B gene sequence (serial number: NC_056054.1), which the NCBI
database published, was referred to, and gene-specific primers were designed using Primer.
The specific primers were submitted to Sangon Bioengineering Co., Ltd (Shanghai, China)
for synthesis (Table 1).
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Table 1. Primer information.

Gene Primer Sequence (5′ to 3′) Amplification Length/bp

LRRC8B
Forward primer ACTTGGAGGGTAGAATGGGG 342 bp
Reverse primer ACAGGCAGGCACTTTCTCAG

2.4. The PCR Amplification System and Procedures

A 10 µL PCR amplification system was used, including 5 µL of PCR Master Mix, 0.5 µL
of sheep DNA, 3.9 µL of ddH2O, and 0.3 µL of upstream and downstream primers each.
The procedure used was as follows: pre-denaturation for 5 min at 95 ◦C; denaturation for
30 s at 94 ◦C, as well as at 68–50 ◦C cycle of 30 s, with each cycle decreasing by 1 ◦C, and a
72 ◦C extension for 30 s for a total of 18 cycles; denaturation for 30 s at 94 ◦C, annealing
for 30 s at 50 ◦C, and an extension for 30 s at 72 ◦C for a total of 26 cycles; an extension
for 10 min at 72 ◦C, following which it was stored at 12 ◦C. Then, the classification of the
reaction products was detected using 3.5% agarose gel electrophoresis.

2.5. TA Cloning Experiment

The first step was to select the DNA of 25 heterozygous genotypes and mix them to-
gether. In the second step, the same system and procedure were used for PCR amplification.
The third step was to verify the PCR products by agarose gel electrophoresis. The fourth
step was to purify the amplified product. Step five was to use Tsingke Biotechnology Co.,
Ltd. (Beijing, China) The 5xpClone007 Versatile Simple Vector Mix was developed to con-
struct the T Vector (junction site: CCCTT AAGGG). The sixth step was the transformation
of connection products. The seventh step was to inoculate the transformed product into a
bacterial petri dish. Step eight was to select monoclones, and second generation sequencing
was used for verification.

2.6. Data Collation and Analysis

SPSS23.0 software was used to conduct association analysis between the body size
data of the Chaka and Small-Tailed Han sheep populations and the InDel typing results. We
used the website SHEsis (http://analysis.bio-x.cn (accessed on 10 March 2021)) to analyze
the HWec (Hardy–Weinberg equilibrium constant), Ho (homozygosity), He (heterozygos-
ity), PIC (polymorphism information content), genotype frequency, and allele frequency
of LRRC8B gene polymorphisms in the sheep population. All data were presented as
means ± SE [37]. A conventional linear model was also used to explore the effects of the
elements on sheep traits: ymn = µ + Gm + en, where µ was the average population value,
Gm was the genotype fixed effect, and en was the stochastic error.

3. Results
3.1. Screening of the InDel Locus of the LRRC8B Gene

The InDel locus was located in the exon region of the LRRC8B gene on chromosome
1. After PCR amplification, it was found that there was a 4 bp InDel mutation in this
gene, which was located at 74,215–74,218 bp of this gene and 66,963,967–66,963,970 bp on
chromosome 1 (Figure 1).
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3.2. PCR Results and Genotyping

The 4 bp mutation site of the LRRC8B gene was amplified using PCR according to
the specific synthesized primers, and the genotyping of the LRRC8B gene was analyzed

http://analysis.bio-x.cn
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using 3.5% agarose gel electrophoresis. The results showed that LRRC8B gene mutation
sites include two genotypes: heterozygous (ID) and homozygous deletion (DD), and the
DNA sequence is consistent with the electrophoretic figure (Figures 2 and 3).
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of the base mutation.

3.3. InDel Genetic Parameter Analysis of the LRRC8B Gene

The results of the genotyping were statistically analyzed to calculate the HWec, Ho,
He, PIC, genotype frequency, allele frequency, etc., which are presented in a table (Table 2).
In the Chaka sheep, the frequency of the D gene was 0.714, so it belonged to the dominant
gene but not in the HWec (p < 0.05). Furthermore, He was 0.409 and PIC was 0.409, showing
moderate polymorphism. In the Small-Tailed Han sheep, the frequency of the D gene was
0.795, so it belonged to the dominant gene in the HWec (p < 0.05), whereas He was 0.326
and PIC was 0.326, so it belonged to moderate polymorphism.
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Table 2. Analysis of the InDel genetic parameters of the LRRC8B gene in Chaka sheep and Small-
Tailed Han sheep.

Number
Genotype Frequencies Gene Frequencies

HWec
Genetic Parameter Estimation

ID DD I D Ho He Ne PIC

CKS 269 0.572 (154) 0.428 (115) 0.286 0.714 p < 0.05 0.591 0.409 1.691 0.409
STHS 149 0.409 (61) 0.591 (88) 0.205 0.795 p < 0.05 0.674 0.326 1.483 0.326

3.4. Association Analysis between LRRC8B Gene Polymorphism and Body Conformation Traits

In the 269 Chaka sheep, wither height, body length, chest circumference, and body
weight were measured and underwent associated analysis with the different genotypes
of the LRRC8B gene. However, no obvious associations were found among these four
traits (Table 3). Moreover, seven body conformation traits, including body length, chest
width, wither height, chest depth, chest circumference, cannon bone circumference, and
height at the hip cross, of the 149 Small-Tailed Han sheep were measured, and association
analysis was conducted with the different genotypes of the LRRC8B gene. The results
showed that there was a significant association with chest depth (p < 0.05) with a p value
of 0.044. Additionally, the DD genotype of the Small-Tailed Han sheep was better than
their ID genotype. However, no significant association was found with the other six body
conformation traits (Table 4).

Table 3. Association analysis of LRRC8B gene polymorphism and body conformation traits in Chaka sheep.

Body Conformation Traits
Genotype (Mean ± SE)

p Value
ID DD

Wither height/cm 66.29 ± 4.70 65.57 ± 4.50 0.470
Body length/cm 72.18 ± 6.80 72.14 ± 7.30 0.314

Chest circumference/cm 89.95 ± 8.63 88.63 ± 8.26 0.589
Body weight/cm 54.87 ± 13.42 53.26 ± 13.18 0.367

Table 4. Association analysis of LRRC8B gene polymorphism and body conformation traits in
Small-Tailed Han sheep.

Body Conformation Traits
Genotype (Mean ± SE)

p Value
ID DD

Body length/cm 59.60 ± 5.63 59.44 ± 6.17 0.946
Chest width/cm 19.28 ± 2.67 19.51 ± 3.53 0.907

Wither height/cm 63.61 ± 4.09 63.36 ± 4.44 0.841
Chest depth/cm 27.23 ± 2.02 b 28.13 ± 2.85 a 0.044 *

Chest circumference/cm 72.11 ± 5.74 72.64 ± 6.47 0.685
Cannon bone circumference/cm 7.24 ± 0.66 7.10 ± 0.79 0.382

Height at hip cross/cm 63.59 ± 3.85 62.87 ± 4.46 0.406
Note: different lowercase letters on the shoulder indicated significant differences (p < 0.05), whereas no letters on
the shoulder indicated no significant difference (p > 0.05). * indicates a significant difference.

4. Discussion

In this study, a tiny InDel mutation of the sheep LRRC8B gene was screened, which
was only 4 bp. Using ordinary agarose gel electrophoresis, however, the ID and DD
genotypes could not be distinguished. Nevertheless, the electrophoresis provided results
for the following two items: a stripe for mutations with a length of 342 bp and 338 bp
(indistinguishable), with the other presumably being a heterologous double strand [38].

Heterologous double strands are formed from the complementary pairing of the
single-stranded bases of the double-stranded molecules of both parents. However, due to
the different sources of the two single DNA strands, the bases are not completely paired,
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and it is easy to form an unpaired ring structure. Therefore, to verify the heterologous
double-stranded structure of this experiment, a TA cloning experiment was conducted. The
sequencing results showed not only ID and DD genotypes but also many sequences that
were significantly different from the PCR products, which confirmed our speculation about
heterologous double chains.

Our results showed that there was no significant association between the InDel of
LRRC8B gene and body conformation traits (wither height, body length, chest circumfer-
ence, and body weight) in the 269 Chaka sheep population. Surprisingly, the ID genotype
had better traits than the DD genotype, with the best association being for body length,
followed by body weight and wither height, and the worst association being for chest
circumference. We speculated that individuals with ID genotype could regulate the expres-
sion of LRRC8B or other genes, thus promoting the growth and development of Chaka
sheep. Among the 149 Small-Tailed Han sheep population, the InDel of LRRC8B gene
was significantly correlated with the chest depth of Small-Tailed Han sheep, and the as-
sociation coefficients reached 0.044. The traits of DD genotype were superior to that of
ID genotype. However, InDel of LRRC8B gene did not show significant association with
other six traits (body length, chest width, wither height, chest circumference, cannon bone
circumference, and height at hip cross). The dominant traits of ID genotype individuals
included body length, wither height, cannon bone circumference, and height at hip cross,
whereas the dominant traits of DD genotype individuals included chest width and chest
circumference. The best association was cannon bone circumference, and the worst was
body length. The HWec of Chaka sheep and Small-Tailed Han sheep were both lower than
0.05, indicating that the gene frequency and genotype frequency of the two sheep breeds
were in a state of balance. The population genetic diversity showed a positive association
with polymorphism information content. The PIC and He of Chaka sheep and Small-Tailed
Han sheep were both greater than 0.25 and less than 0.5, which belonged to the moderate
polymorphism level. The genetic variation was rich; we could increase the mining of
beneficial mutations and promote the breeding process of Chaka sheep and Small-Tailed
Han sheep.

In the field of livestock and poultry breeding, InDel molecular marker technology has
made remarkable achievements, one example of which shows that the InDel mutations
of PLAG1 and SIRT4 genes are significantly correlated with the body conformation traits
of several cattle breeds [31,39]. In addition, the InDel mutations of the Cry2 and GDF9
genes have been found to be significantly correlated with the litter size of sheep and goats,
respectively [38,40]. Further, the 12 bp length mutation of the Oct4 gene is associated with
the reproductive traits of male piglets [41], whereas the 65 bp mutation of the GOLGB1 gene
is significantly correlated with the growth and carcass traits of chickens [42]. In addition,
some research has found that the 10 bp InDel of the FecB gene is significantly correlated
with the number of offspring produced in Chinese Australian White sheep [43]. Similarly,
in our study, the 4 bp InDel of the exon region of LRRC8B gene was significantly correlated
with the chest depth of Small-Tailed Han sheep, and the DD genotype individuals showed
better performance. The insertion–deletion mutation of the CREB1 gene, which is involved
in the regulation of fat metabolism in sheep adipose tissue, is also significantly related to
the body conformation traits of sheep [44]. These results indicate that they could be used
as molecular markers for sheep breeding. However, these are just a few of the studies that
have been conducted.

Chaka sheep have adapted to the environment of Chaka Salt Lake over time, forming
a unique gene pool with abundant alleles [35]. Although this experiment did not find a
significant association between genotypes and body conformation traits, it did find that
the InDel locus of the LRRC8B gene is associated with other unchecked traits. Therefore,
the InDel molecular marker still has great application prospects for animal breeding.
Furthermore, the Small-Tailed Han sheep is an excellent local sheep breed in China with
high performance and can be used as an ideal parent candidate in meat production. In
this study, it was found that the mutation of the LRRC8B locus at 74,215 bp–74,218 bp is
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significantly associated with chest depth in Small-Tailed Han sheep (p < 0.05), and chest
depth is closely and positively related to sheep body condition. That is, the deeper the
chest, the fatter the sheep. However, further research is needed to explain this.

In order to test the association between the InDel site of LRRC8B gene and the chest depth
of Small-Tail Han sheep, we plan to construct LRRC8B gene interference and overexpression
vector and transfect sheep muscle primary cells to detect the growth and development of cells
(such as cell proliferation and differentiation). Meanwhile, ESEfinder 3.0 online software was
used to predict the splicing point changes of the pre-mRNA of the gene, and Phyre2 software
was used to predict the protein structure and function of the gene.

To date, there have been few functional studies on the LRRC8B gene, most of which
have been in the field of medical research and are widely used in cancer treatment [19].
In addition, the direction of research has been toward the function of related channel
structures, although the structure of genes themselves and the function of other DNA
regions remain unclear. Therefore, starting from the field of livestock and poultry breeding,
in this study, InDel molecular marker technology was used to explore the association
between the InDel of the LRRC8B gene and the body conformation traits of Chaka and
Small-Tailed Han sheep.

5. Conclusions

In conclusion, this study found a new InDel of the LRRC8B gene in the Small-Tailed
Han sheep population and suggested that it can be used as a molecular marker to improve
meat yield.
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