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Abstract: Both Alzheimer’s disease (AD) and primary open angle glaucoma (POAG) are diseases
of primary global neurodegeneration with complex pathophysiologies. Throughout the published
literature, researchers have highlighted similarities associated with various aspects of both diseases. In
light of the increasing number of findings reporting resemblance between the two neurodegenerative
processes, scientists have grown interested in possible underlying connections between AD and
POAG. In the search for explanations to fundamental mechanisms, a multitude of genes have been
studied in each condition, with overlap in the genes of interest between AD and POAG. Greater
understanding of genetic factors can drive the research process of identifying relationships and
elucidating common pathways of disease. These connections can then be utilized to advance research
as well as to generate new clinical applications. Notably, AD and glaucoma are currently diseases
with irreversible consequences that often lack effective therapies. An established genetic connection
between AD and POAG would serve as the basis for development of gene or pathway targeted
strategies relevant to both diseases. Such a clinical application could be of immense benefit to
researchers, clinicians, and patients alike. This paper aims to summarize the genetic associations
between AD and POAG, describe common underlying mechanisms, discuss potential areas of
application, and organize the findings in a review.
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1. Introduction

Both Alzheimer’s disease (AD) and primary open angle glaucoma (POAG) are dis-
eases of high prevalence and disease burden. AD is the world’s leading cause of cognitive
impairment with a worldwide prevalence estimated to be more than 24 million people [1].
Meanwhile, glaucoma is the world’s leading cause of irreversible blindness and approxi-
mately 57.5 million people are affected by POAG across the world [2]. Despite emphasized
awareness and decades of dedicated research efforts, these two diseases still appear to
present more questions than answers. Researchers continue to seek to understand their
genetic underpinnings, pathophysiologies, distinct subtypes, and improved therapeutics.

As more research is published in both fields, scientists have taken note of the many
similarities reported between these two disorders. Both are diseases of latent onset, progres-
sive global neurodegeneration that leads to debilitating neurologic impairments. They are
also now both understood to be heterogeneous collections of diseases with incompletely
delineated subtypes [3,4]. Increasing age is the most prominent predisposing risk factor
for both diseases, and they share several other risk factors, including ethnicity, history of
systemic disease, and family history [1,2,5–7].

Beneath these clinical similarities, deeper levels of association have also been pre-
viously identified in molecular studies. AD and POAG are postulated to share several
commonalities in molecular dysregulation, including disruptions in synaptic function,
cellular signaling, axonal transport, and neuronal communication [8]. Other overlapping
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neurodegenerative pathways include microglia-induced neuroinflammation and excitotoxi-
city [9]. In recent years, vascular studies have also demonstrated evidence of microvascular
dysfunction in both AD and POAG [10]. Moreover, histopathologic and imaging studies
have shown similar neuronal degeneration and abnormal protein accumulation patterns in
both patient populations, including extracellular abnormal β-amyloid plaques, intracellular
phosphorylated tau neurofibrillary tangles, loss of the retinal nerve fiber layer, and reduced
brain tissue volumes [11–13].

The presence of a considerable number of associations between features at every level
of disease is suggestive of related genetics influencing these two conditions. Exploration
into shared genetics can supply explanations for the resultant similarities noted in these
previously published studies, as well as provide clearer insight into the plethora of unan-
swered questions across both fields. Knowledge gained in one field could be applied to the
other, thereby expediting the research and discovery process.

Recognition of the integral genetic factors influencing disease pathogenesis could also
be instrumental in improving clinical management. Current treatment options for both
POAG and AD are relatively limited. Both diseases offer no cure at this time, and available
treatments address symptom management and complication prevention. POAG treatment
regimens center around lowering intraocular pressure (IOP), which is the major modifiable
risk factor for POAG. These include medications such as carbonic anhydrase inhibitors
and prostaglandin analogs, and surgical techniques such as trabeculectomies and stent
placements [14]. Even in the setting of adequate IOP reduction, approximately 30% of
patients experience continued visual decline [15]. Traditional AD therapy only includes
pharmacologic agents that aim to improve symptoms of cognitive dysfunction (i.e., acetyl-
cholinesterase inhibitors and an N-methyl-D-aspartate (NMDA) receptor antagonist) [16].
As traditional treatment options operate by preserving the remaining healthy nerve cell
integrity, earlier screening based on genetic information could indicate earlier initiation of
treatment for the evaluated disease as well as preclinical monitoring for the corresponding
disease. In recent years, novel drugs targeting integral processes of disease pathology,
such as reversal of β-amyloid plaques, have become approved for clinical application. The
current research direction aims to expand treatment targets to involve more etiologies of
disease, such as vascular dysfunction and molecular dysregulation [17]. A common goal in
AD and POAG therapy research is the development of nerve cell replacement techniques
that can replace already lost neuronal function. Greater understanding of genetic contri-
butions to pathophysiology is also crucial for the next step of gene and pathway-based
therapies and other strategies with an overarching goal of more effective treatment and
improved patient outcomes.
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Figure 1. Depiction of the pathologic commonalities between Alzheimer’s disease and primary
open-angle glaucoma [18–20]. Aβ = amyloid beta; IOP = intraocular pressure.

Overlaps in the common pathologic pathways and targets of therapeutic actions in
AD and POAG are portrayed in Figure 1.

Following immense research efforts, 75 risk loci have been associated with AD and
127 risk loci have been associated with POAG [13,21,22]. Researchers utilizing genome-
wide association studies (GWAS) data have found multiple protein-coding genes associated
with both AD and POAG [21,22]. This review will discuss these previously identified over-
lapping genes, select additional genes of particular research interest, and the impact that
an established genetic connection would have on multiple areas of disease management.

2. Overview of Alzheimer’s Disease and Glaucoma
2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurological disease of global cognitive impairment
characterized by latent onset, progressive dementia. Dementia refers to a heterogenous
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syndrome of cognitive decline that is out of proportion to normal biological processes and
interferes with functioning [23,24]. Many conditions feature dementia, but AD is the most
common cause accounting for 60–70% of all cases [25]. AD risk increases exponentially
beginning at 65 years of age, and most cases of AD are late-onset AD (LOAD) that occur
after 65 years of age. However, approximately 5% of patients may have early-onset AD
(EOAD) prior to 65 years of age [26].

The timeline of AD follows an asymptomatic preclinical phase that can last multiple
decades prior to symptom onset, a mild phase marked by limited cognitive impairment,
and a final stage of dementia. Although memory decline is the most well-known feature
of dementias, patients with AD can present with cognitive decline in a wide range of
areas, including memory, behavioral, visuospatial, and language impairments [26]. AD is a
diagnosis of exclusion, meaning other known classes of dementia (e.g., vascular dementia,
Lewy body dementia, frontotemporal dementia, etc.) must be excluded prior to diagnosis.
This rule-out process of AD diagnosis highlights the vague diagnostic criteria and clinical
workup of the disease. Diagnosis is difficult to establish as there are currently no definitive
diagnostic tests, biomarkers, or imaging studies. Clinical diagnosis can be made utilizing
multiple neuropsychological tools, such as cognitive interviews, cerebrospinal fluid (CSF)
biomarkers, and positron emission tomography (PET) imaging, but confirmative diagnosis
is only possible following postmortem brain examination [27].

Typical features seen in the brains of patients with AD include moderate atrophy of
multiple cortical structures, especially the hippocampus and temporal lobes, with associ-
ated temporal horn enlargement [28]. Abnormal cleavage of amyloid precursor protein
(APP) results in pathogenic β-amyloid protein. Rather than undergoing normal processes
of degradation, β-amyloid protein forms aggregates of extracellular deposits called senile
plaques that concentrate around cerebral vasculature and in gray matter. This deposi-
tion leads to neuronal dysfunction, proinflammatory responses, and neurotoxicity [29].
Increased β-amyloid protein concentrations also induce the formation of intracellular hy-
perphosphorylated tau neurofibrillary tangles, which is another classic pathologic feature
of AD [29].

2.2. Glaucoma

Glaucoma is an ophthalmic disease characterized by a loss of retinal ganglion cells
(RGC) resulting in optic degenerative neuropathy. Patients with glaucoma typically expe-
rience elevated intraocular pressures and progressive loss of peripheral to central vision.
Similar to dementias, glaucoma is also a heterogenous collection of diseases. The most
common cause of glaucoma is primary-open angle glaucoma (POAG), in which disease
pathogenesis cannot be fully explained by an anatomical abnormality, such as in closed-
angle glaucoma. Another subset of glaucoma is normal tension glaucoma (NTG), in which
symptoms occur in a setting of normal intraocular pressure (IOP) [2].

Patients with glaucoma typically complain of gradual loss of vision that begins pe-
ripherally and gradually migrates toward the center of vision. Due to the insidious nature
of peripheral visual impairment, most patients do not notice when symptoms first arise.
Peripheral fields can be tested on ophthalmic examination, but sensitivity of the exam in
early stages of disease is unclear [30]. In cases of POAG with IOP elevations, IOPs can
be measured with a Goldmann Applanation Tonometry (GAT) device or other secondary
device. The generally accepted normal values of IOP lie in the range of 12 to 21 mmHg,
and values outside of this range may indicate need for further evaluation and management.
However, it is important to note that IOP is not an absolute diagnostic biomarker for
glaucoma. Individuals may suffer from symptomatic NTG in the setting of normal IOP. The
opposite can also be true in situations where individuals have multiple recorded elevated
IOPs but no symptoms of glaucoma (this condition is termed ocular hypertension) [31].
Another feature heavily utilized in clinical and research settings is cupping or notching
of the optic nerve. RGC loss from the surrounding neural rim of the optic nerve leads
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to an increased or irregular appearance of the center cup that is progressively devoid of
neuroretinal tissue, increasing the cup-to-disc ratio.

Traditionally, glaucoma was attributed solely to increased IOP in the ocular system.
This force exerts mechanical pressures on the optic nerve head that eventually leads to ax-
onal structural damage and neural cell degeneration [32]. Intraoperative and postoperative
imaging studies of ocular structures following open-angle glaucoma surgical treatment
have demonstrated that morphological improvements (e.g., Schlemm canal diameter and
anterior chamber angle) coincide with IOP reductions and likely improved subsequent out-
comes [33,34]. However, IOP elevation is unlikely to be the only etiology, as demonstrated
by cases of NTG in which IOP levels are within stable normal ranges. Additionally, disease
progression has been found to occur in a significant proportion of patients (10–45%) despite
IOP decrease through medical and surgical interventions [13,35]. As a result, multiple
other etiologies have been explored in recent years, including primary RGC loss, microglial
activation, vascular ischemia, cellular stress, and global neurotoxicity [21,35].

3. Background of Connections between Alzheimer’s Disease and Glaucoma

Prior to consideration of similar pathologies, a connection between the eyes and the
brain can be identified from the early beginnings of organ development. In approximately
the third week of gestation, the forebrain neuroectoderm develops two bilateral indenta-
tions in the neural plate that are called optic grooves. As the neural plate closes into the
neural tube, these optic grooves continue to extend outwards, growing into optic vesicles
anchored to the forebrain by elongated optic stalks. Ultimately, the optic vesicle’s neuroec-
toderm differentiates into the ocular nervous system, and the corresponding optic stalk
becomes the optic nerve that directly connects the brain to the eye [35]. Considering their
common embryologic origin, it would be reasonable to expect sustained likeness in the
mature organ systems as well as in their disease pathologies.

Indeed, several molecular and histologic similarities have been described in the repre-
sentative neurodegenerative diseases of each organ system—AD and POAG. Studies in
patients with AD who undergo ophthalmological examination have found decreases in
the peripapillary retinal nerve fiber layer, RGC loss, and increased optic nerve cup-to-disc
ratio [36–39]. All of these features are classic manifestations of glaucoma. These findings
strongly suggest that neurodegeneration in the central nervous system also affects and can
be visualized in retinal neurons. Studies in glaucoma have also found that glaucomatous
neurodegeneration is not limited to the eye. Several magnetic resonance imaging (MRI)
studies in patients with POAG showed evidence of global neurodegeneration throughout
the brain with reduced volumes in all structures of the central visual system as well as
broader neural structures [12,32,39].

In experimental models, abnormal β-amyloid protein deposition and tauopathy were
significantly increased in the lateral geniculate nucleus of rhesus monkey models with
glaucoma [40]. Researchers have observed increased caspase-induced abnormal process-
ing of amyloid precursor protein and β-amyloid protein in RGCs of rate models with
chronic ocular hypertension [41]. Other common pathways include the insulin receptor
pathway thought to be involved in neuronal growth, differentiation, and functioning [42].
Reduced insulin receptor expression is associated with AD, and increased insulin resistance
is also associated with IOP elevation [43,44]. Another pathway found to contribute to
both disease pathologies involves vascular dysfunction. AD models have demonstrated
vascular fragility in capillaries, arterioles, and large arteries such as the Circle of Willis [17].
Vessel damage can result from a variety of factors, including age-related angiogenic de-
cline, decrease in vessel caliber, inefficient cell signaling, and impaired vasodilation [17].
These factors as well as many others ultimately lead to reduced cerebral blood flow, which
has been shown to directly correlate with cognitive impairment [45]. Populations of
POAG patients have also demonstrated microvascular dysfunction and deficiencies in
endothelium-dependent and independent vasodilatory responses [46,47]. Retinal microvas-
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cular dysfunction was found in both mild AD and POAG patients as demonstrated by
alterations in retinal artery reactivity when compared to healthy controls [10].

Despite numerous studies demonstrating similarities throughout disease presentation,
a connection between AD and POAG has yet to be established due to conflicting evidence
in the literature. Several population-based studies have demonstrated mixed associations
between AD and POAG diagnoses in study cohorts. Some studies have shown that patients
with POAG have significantly increased risk of dementia when compared to controls
without POAG [48–50]. On the other hand, other studies did not identify POAG as a risk
factor for AD [51–54].

Of note, a prominent limitation to population-based studies of association between
POAG and AD is the reliability of diagnostic information. Most population-based cohort
association studies utilize medical records and insurance claims to extract data in study
methodology. However, these may not be accurate reflections of true disease prevalence.
In a meta-analysis of 23 studies across the world screening for undiagnosed dementia, the
overall rate of undetected dementia was approximately 61.7% [55]. In glaucoma population
studies, researchers have found that approximately 90% of individuals worldwide and
50% of individuals in developed countries are unaware that they have glaucoma [56,57].
Both AD and POAG are difficult to diagnose due to delayed symptom presentations,
variable presentations especially in the early stages of disease, and lack of standardized
diagnostic protocols [58]. Another barrier to accurate association studies includes presently
undifferentiated subtypes of both diseases. Cohort studies that found no or negative
overall associations between POAG and AD found that older age of glaucoma diagnosis
and the normal tension glaucoma subtype were associated with dementia [48,51,56,57].
These findings suggest that different subtypes of both AD and POAG may be significantly
associated if stratified appropriately.

The literature is currently undecided as to whether a connection exists between
AD and POAG. The finding of common genetic connections and molecular pathways
could contribute to the establishment of shared connections. Knowledge of genetic con-
tributions could also fortify studies of association through screening for undiagnosed
affected individuals, providing genetic tests to aid diagnosis, and clarifying subtypes of
these diseases.

4. Genetic Factors Relevant to Alzheimer’s Disease and Primary Open Angle Glaucoma

Using publicly available online GWAS datasets in AD and glaucoma, Zheng et al.
(2022) identified 49 single nucleotide polymorphisms (SNPs) in 11 risk loci associated
with AD and glaucoma (AGBL2, CELF1, FAM180B, MTCH2, MYBPC3, NDUFS3, PSMC3,
PTPMT1, RAPSN, SLC39A13, and SPI1) [22]. In another review using GWAS datasets
from 21 studies, Gharahkhani et al. (2021) identified 3 risk loci associated with AD and
POAG (MAPT, CADM2, and APP) [21]. The exact mechanisms of actions for many of these
genes remain unclear. Features of currently known gene loci, pathogenic mutations, their
molecular pathways, and possible connections to disease pathogenesis based on present
literature are described. Previously identified shared genes implicated in the investigation
of possible connections between AD and POAG are organized in Table 1.
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Table 1. Shared genes in studies of connection between Alzheimer’s disease and primary open-angle glaucoma [8,9,21,22,40,41,59–79].

Gene Name Location Protein Product Function Pathogenic Mutation Association with AD Association with
POAG

AGBL2 ATP/GTP-binding
protein-like 2 11p11.2

Cytosolic
carboxypeptidase
2 (CCP2) enzyme

Catalyzes
post-translational

modification of
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11p11.2 CELF/BRUNOL protein
Regulates pre-mRNA
splicing and mRNA
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rs12798346
rs56400411
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FAM180B Family with sequence
similarity 180 member B 11p11.2 Family with sequence

similarity 180 member B
Presently unknown

function rs11605348 Expressed at higher
levels in brain IOP elevation

MTCH2 Mitochondrial carrier 2 11p11.2

Solute carrierfamily 25
(SLC25) family

nuclear-encoded
mitochondrial transporters

Involved in apoptotic
pathway via

recruitment of Bcl-2
family BID protein

rs4752856
rs4752856
rs4752856

Disrupts mitochondrial
motility, metabolism,

and function
IOP elevation

MYBPC3 Myosin binding
protein C3 11p11.2

Cardiac isoform of myosin
binding protein C

(MyBP-C)

Regulates cardiac
striated muscle

contraction
rs2856661

May affect axonal
growth and

synaptic development
IOP elevation

NDUFS3
NADH:ubiquinone
oxidoreductase core

subunit S3
11p11.2

Iron-sulfur protein (IP)
component in
mitochondrial

NADH:ubiquinone
oxidoreductase (complex I)

Involved in
mitochondrial electron

transport chain and
cellular functions

rs2030166
rs2030166

Increased levels in
early stages of mild

cognitive impairment
IOP elevation
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Table 1. Cont.

Gene Name Location Protein Product Function Pathogenic Mutation Association with AD Association with
POAG

PSMC3 Proteasome 26S subunit,
ATPase 3 11p11.2 26S proteasome

Involved in
ubiquitin-proteasome
degradation system

rs11600581 Increased cellular
proteotoxic stress IOP elevation

PTPMT1
Protein tyrosine

phosphatase
mitochondrial 1

11p11.2
Phosphatidylglycerophosphatase

and protein-tyrosine
phosphatase 1

Involved in
mitochondrial

metabolic pathways
and embryogenesis

rs56400411
rs7945473

Mitochondrial
dysfunction IOP elevation

RAPSN Receptor associated
protein of the synapse 11p11.2 Receptor-associated protein of

the synapse

Anchors postsynaptic
nicotinic acetylcholine

receptors
rs35705029

Acetylcholine
neurotransmitter signal

alteration
IOP elevation

SLC39A13 Solute carrier family 39
member 13 11p11.2 Zinc transporter

transmembrane protein

Facilitates zinc
transport across

membranes
rs755554 Disturbance of zinc

homeostasis IOP elevation

CADM2 Cell adhesion molecule 2 3p12.1 Synaptic cell adhesion
molecule 1 (SynCAM)

Interacts with
cytoskeletal proteins
for cellular support

and structure

r71316816
rs13101042
rs2220243

Impaired synaptic
adhesion and
maintenance

Expressed almost
exclusively in brain

and retina and found
to have altered

expression
throughout all stages

of glaucoma

APP Amyloid beta precursor
protein 21q21.3 Amyloid precursor protein

(APP)

Acts as a
transmembrane cell
surface receptor and
regulates neuronal

functions

rs59892895
Abnormal cleavage

forms β-amyloid
plaques

Increased abnormal
expression in

glaucoma models

APOE Apolipoprotein E 19q13.32 Apolipoprotein E

Maintains lipid
metabolism and

balance in circulatory
and peripheral systems

ε4 allele

Increased risk for
disease, increased

amount of β-amyloid
plaques

Reduced risk for
disease, decrease

activation of
microglia

AD = Alzheimer’s disease; POAG = primary open angle glaucoma; IOP = intraocular pressure; SNP = single nucleotide polymorphism; ATP = adenosine triphosphate; GTP = guanosine
triphosphate; Bcl-2 = B-cell lymphoma 2; BID = BH3 interacting-domain death agonist; NADH = nicotinamide adenine dinucleotide.
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Many shared gene loci reside within the genomic region of chromosome 11p11.2,
including AGBL2, SPI1, CELF1, FAM180B, MTCH2, MYBPC3, NDUFS3, PSMC3, PTPMT1,
RAPSN, and SLC39A13. This chromosome 11 cluster was found to be associated with
increased IOP as well as increased risk for POAG [59].

Numerous risk loci involved in a large variety of molecular processes have been
identified. Investigation into the pathways that these genes take part in has led to increased
recognition of the complexity and multitude of disease etiologies. Some genes of interest
have demonstrated integral roles in microtubule structure and function. Microtubules,
comprised of repeating tubulin subunits, form tracks within neuronal axons along which
molecules necessary for neurocognitive function are shipped during axonal transport [76].
Previous studies in animals and humans have demonstrated that the axonal transport
system in AD is defective, resulting in bottleneck accumulation of products within axonal
swellings, proteolytic processing of β-amyloid precursor protein, and abnormal hyperphos-
phorylation of microtubule-associated tau protein [77]. Microtubule disruption has also
been mentioned as part of glaucoma pathogenesis, as animal models have demonstrated
microtubule deficiency prior to RGC loss [74].

Other genes have been shown to play integral roles in macrophage proliferation and
activation via enhanced macrophage colony-stimulating factor (M-CSF) [62]. In AD, de-
posits of intracellular neurofibrillary tangles and extracellular β-amyloid plaques trigger
microglial recruitment for abnormal protein clearance. However, the prolonged proin-
flammatory effects accompanying this microglial response can lead to neuronal death
and exacerbate neurologic dysfunction [61]. Specific variants of pertinent genes resulting
in increased expression have been associated with an earlier onset of AD and increased
expression of other AD risk genes [63]. Microglia-mediated inflammatory retinal neuron
damage has also been seen in experimental glaucoma models, and inhibition of certain
aspects of microglial activation has demonstrated neuroprotective effects [9].

The ε4 allele of the Apolipoprotein E gene (APOE4) is considered an established
risk factor for AD. APOE4 has been demonstrated to produce neurons with decreased
synaptic function, astrocytes with impaired lipid metabolism, and microglia with reduced β-
amyloid phagocytosis [80]. It has also been shown to contribute to the vascular dysfunction
etiology through disruptions in the blood–brain barrier, which was previously shown to be
associated with early cognitive decline [81,82]. However, research surrounding APOE4 is
inconsistent regarding its impacts on POAG. Several meta-analyses in Asian populations
have suggested that APOE4 leads to similar accelerated neurodegeneration in POAG,
whereas other metanalyses concluded that APOE4 is not associated with glaucoma [42].
A recent study utilizing a large, combined dataset demonstrated that APOE4 may be
protective in POAG through increasing retinal microglial resiliency to neurodegenerative
responses [83,84].

5. Implications of Genetic Connections between Alzheimer’s Disease and Glaucoma

Presently, patients with AD and glaucoma often suffer from delayed diagnoses and
ineffective therapies. Studies in AD populations have shown that patterns of abnormal
structural changes and neurodegeneration can occur more than a decade prior to symptom
onset [85]. This corresponds with the estimates that 61.7% of patients with dementia and
50–90% patients with glaucoma are undiagnosed [55–57]. As a result of the markedly
delayed recognition of disease, patients will have undergone years of irreversible neurode-
generation prior to clinic presentation, evaluation, and treatment.

Identification of pertinent genes would introduce the opportunity for asymptomatic
screening and counseling in high-risk populations. As currently available therapeutics are
only targeted towards symptoms, complications, and attenuating the progression of disease,
early diagnosis and treatment are imperative to improve patient outcomes. This would
allow for early initiation of currently available therapeutics to preserve residual healthy
neurons prior to irreversible neurodegeneration, leading to slower disease progression and
better patient outcomes. Genetic testing following symptom presentation of one disease
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could lead to identification of common pathogenic variants. This would indicate early
preclinical screening and monitoring of the other disease before symptom onset. It is
important to note that testing and screening of genetic factors may need to take ethnic
population and common ancestry into consideration. Various ethnic groups are affected by
AD and POAG differently due to anatomic characteristics, systemic conditions, and genetic
predispositions. For example, in subgroup analyses of a large meta-analysis, APOE4 was
significantly associated with risk of POAG in Asians but not in Caucasians [86]. In both
POAG and AD, African Americans have been found to have a higher prevalence, more
rapid progression of disease, and greater severity of disease as compared to their white
peers [5,6]. Increased study focused on specific ethnic populations and their relation to
the disease processes can help to further elucidate the impact of genetic contributions and
potential for screenings, while ensuring the inclusion of the most affected populations in
these future steps.

Furthermore, knowledge of the genetic underpinnings and contributory molecu-
lar pathways for disease pathogenesis would be the first step towards novel gene or
pathway-based therapies. Presently employed treatment strategies only target disease
symptoms, progression, and complications [25,87]. These include cholinesterase inhibitors
(e.g., donepezil, etc.) and glutamate regulators (e.g., memantine, etc.). In glaucoma, a
variety of medications targeting different pathways of IOP management have been em-
ployed. These include beta-adrenergic antagonists (e.g., timolol, etc.), alpha-adrenergic
agonists (e.g., brimonidine, etc.), cholinergic agonists (e.g., pilocarpine, etc.), carbonic
anhydrase inhibitors (e.g., dorzolamide, etc.), prostaglandins (e.g., latanoprost, etc.), and
others. Surgeries to lower intraocular pressure are also used.

There are currently no cures; thus, AD and glaucoma remain as irreversible diseases.
The scientific community has long recognized the need for effective treatments that act
upon the pathologic mechanisms of disease, and recent pharmacologic developments have
been directed towards disease modifying therapeutics (DMT). In June 2021, the U.S. Food
and Drug Administration (FDA) granted a landmark approval of the first drug to target the
underlying pathologies of AD: aducanumab. Aducanumab is a monoclonal antibody that
selectively targets and clears pathogenic β-amyloid plaques. As more momentum is gained
towards the development of DMTs, a step further from anti-pathologic therapies would be
genetic or pathway specific therapies that directly impact pathogenesis at the molecular
level rather than downstream presentations. While still in the early stages of development,
gene therapies for AD and POAG have proven promising in animal studies, and clinical
trials are currently ongoing [88,89]. Understanding genes with common roles between AD
and POAG could accelerate this process of novel diagnostic and therapeutic applications.

6. Conclusions

Underlying connections between Alzheimer’s disease and glaucoma remain to be
firmly established, but multiple common genetic undercurrents identified between the two
disease entities suggest related molecular pathways and pathophysiologies. Further studies
are necessary to elucidate the precise mechanisms by which shared genetics manifest as
disease similarities visualized in previous clinical studies. Greater understanding of the
genetic associations between AD and POAG would drive collaboration and exchange of
knowledge between these two fields of study as well as having potential application to
understanding other forms of neurodegeneration. Furthermore, new points of entry into
future developments of disease screening, management, and treatment could potentially
be introduced. Interplay of knowledge between genetic research and clinical studies, AD
and glaucoma, as well as current symptomatic strategies and novel disease modifying
diagnostics and therapeutics is expected to yield findings beneficial to the scientific and
general medical communities.
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