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Abstract: In 1997, it was discovered that maternal plasma contains Cell-Free Fetal DNA (cffDNA).
cffDNA has been investigated as a source of DNA for non-invasive prenatal testing for fetal patholo-
gies, as well as for non-invasive paternity testing. While the advent of Next Generation Sequencing
(NGS) led to the routine use of Non-Invasive Prenatal Screening (NIPT or NIPS), few data are avail-
able regarding the reliability and reproducibility of Non-Invasive Prenatal Paternity Testing (NIPPT
or NIPAT). Here, we present a non-invasive prenatal paternity test (NIPAT) analyzing 861 Single
Nucleotide Variants (SNV) from cffDNA through NGS technology. The test, validated on more than
900 meiosis samples, generated log(CPI)(Combined Paternity Index) values for designated fathers
ranging from +34 to +85, whereas log(CPI) values calculated for unrelated individuals were below
−150. This study suggests that NIPAT can be used with high accuracy in real cases.

Keywords: paternity test; NGS; cffDNA; NIPAT

1. Introduction

To date, diagnostic genetic testing of the fetus during early pregnancy requires inva-
sive procedures such as Chorionic Villus Sampling (CVS) and amniocentesis (also called
amnio) associated with miscarriage risk. In 1997, it was discovered that maternal plasma
contains cell-free fetal DNA (cffDNA) [1]. Most cffDNA comes from villous cells, with
its concentration increasing proportionally with gestational age, enabling the chance to
obtain fetal genetic information from maternal plasma. Fetal cfDNA has an average length
of 150 bp (Base Pair), and comprises fragments that are shorter on average than maternal
cell-free DNA. It is released by apoptotic cells in trophoblasts. Placental trophoblasts and
fetuses develop from the same blastocyst and therefore share the same genome, promoting
the utility of cfDNA to test fetal DNA. The placenta releases significant levels of fetal DNA
into the maternal circulation, with concentrations of fetal DNA in maternal plasma showing
levels of 10–20% between 10 and 20 weeks of gestation. It is well known that circulating
cffDNA has a mean half-life of 16.3 minutes (min) and is undetectable in maternal plasma
2 hours post-delivery, indicating that cffDNA testing cannot be affected by carryover from
previous pregnancies [2,3].

The advent of Next Generation Sequencing (NGS) technology, and therefore the
ability to analyze sources of DNA, led to the development of several prenatal genetic tests
proposed as Non-Invasive Prenatal Screening (NIPT or NIPS) [4]. The main advantage of
using cffDNA is the non-invasive nature of the test compared to traditional procedures.
NIPT is currently being conducted globally, with more than 10 million tests having been
performed in 2018, and many countries are already using NIPT in their routine [5]. Since
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then, cffDNA has also been investigated as a source of fetal DNA for Non-Invasive Prenatal
Paternity Testing (NIPPT or NIPAT). In particular, parental assessment is one of the central
aspects of forensic genetics [6,7]. These analyses are performed by using genetic biomarkers
characterized by high variability. The first genetic biomarkers to be used for human
paternity testing were Short Tandem Repeats (STRs) [8]. In addition, a new class of genetic
biomarkers, which can be used for parental assessment and various forensic applications,
are Single Nucleotide Polymorphisms (SNPs). Compared with STR loci, SNP sites have
a lower mutation rate and the amplification products of single SNP sites can be very
short, which makes SNPs suitable for the analysis of highly degraded forensic samples [9].
Moreover, SNPs are related to multiple phenotypes, such as skin color, eye color, hair color,
ethnicity information and susceptibility to multifactorial disorders [10–13].

Although many non-invasive tests have been developed so far, few data are available
regarding the reliability and reproducibility of these methods [14–16]. In this article, we
present a Non-Invasive Prenatal Paternity Test (NIPAT) analyzing 861 Single Nucleotide
Variants (SNV) from cffDNA through Ion S5 NGS technology. The technology selected is
already used in many laboratories for forensic next generation sequencing protocols and
several commercially available kits have been validated [17,18]. The test was validated on
more than 900 meiosis samples. NIPAT generated log(CPI) (Combined Paternity Index)
values for designated fathers ranging from + 34 to + 85, whereas log(CPI) values calculated
for unrelated individuals were below −150. Finally, the performance of NIPAT was fairly
concordant with paternity compatibility threshold log(CPI) > + 4, and paternity exclusion
threshold log(CPI) < −4 suggested by the reference guidelines and reference literature for
SNV approaches [19].

2. Materials and Methods
2.1. Selection of Samples and NGS Analysis

The samples were recruited from the molecular genetic laboratory Eurofins Genoma
and signed informed consent was obtained from all of the participants before blood sample
collection. Peripheral blood samples (10 mL) were collected from nine pregnant women
during the first trimester of pregnancy. Buccal swabs or peripheral blood samples were col-
lected from their partners [20]. In particular, maternal peripheral blood samples were used
for the extraction of cell-free fetal DNA and subsequently employed to perform GeneSafe®.
Maternal genomic DNA was employed to perform GeneScreen® testing. GeneSafe® is
a non-invasive prenatal test, based on NGS technology, that allows the identification of
pathogenic/likely pathogenic variants involved in inherited and de novo single-gene
disorders. On the other hand, GeneScreen® is a carrier screening test performed by tar-
geted sequencing. These genetic tests were employed for the sample selection of the nine
“mother – designated father” sample couples; only samples couples indicating fetuses
with pathogenic/likely pathogenic variants transmitted by the father were selected for the
genetic confirmation of parental relationship.

Maternal plasma was separated from the peripheral blood by centrifugation at 1600 RCF
(Relative Centrifugal Force) with a temperature of 4 ◦C for 10 min. Subsequently, the super-
natant was transferred to a new tube and it was centrifuged for an additional 10 min at
16,000 RCF with a temperature of 4 ◦C.

cffDNA was extracted again using a QIAsymphony® DSP Circulating DNA Kit (QI-
AGEN, Hilden, Germany) and QIAsymphony Automatic Extraction System (QIAGEN,
Hilden, Germany) according to the manufacturer’s instructions. The QIAsymphony® DSP
Circulating DNA Kit is based on magnetic-particle technology for the automated isolation
and purification of human circulating cffDNA. Furthermore, the QIAsymphony DSP circu-
lating DNA Kit is a ready-to-use system for the qualitative purification of human circulating
cell-free DNA from human plasma. Genomic DNA (gDNA) from paternal samples was
extracted with a Qiagen DNA Mini Kit. A custom PCR amplification panel was designed
through Thermo Fisher Ion Ampliseq Designer (www.ampliseq.com, accessed on 6 July
2021) using a set of 861 SNVs well-documented on dbSNP [21].

www.ampliseq.com


Genes 2023, 14, 312 3 of 10

Single nucleotide variant selection was based on the following criteria: all SNVs had
to have available population genetics data from dbSNP, 1000 genomes and/or FrogKB
databases. We excluded variants labeled as indel (insertion and deletion), Multiple Nu-
cleotide Variants (MNV)/complexes, and those that were pathogenic or likely pathogenic,
and we excluded variants in highly repeated regions or in pseudogenes. The resulting
SNVs were selected due to having MAF (Minor Allele Frequency) > 0.3 in at least one pop-
ulation, and/or were manually selected to optimize the chance of discriminating between
populations to be spread across all the chromosomes (chr). In total, 638 of the 861 selected
single nucleotide variants were biallelic and 223 were triallelic in the dbSNP database. The
average MAF of the panel excluding triallelic SNVs was 0.321 (median in 0.347) and the
number of SNVs per chromosome ranged from 12 to 95, with an average of 36. In particular,
the numbers of SNVs for each chromosome were: chr1:41, chr2:61, chr3:36, chr4:95, chr5:34,
chr6:60; chr7:25, chr8:74, chr9:33, chr10:26, chr11:35, chr12:33, chr13:24, chr14:31, chr15:33,
chr16:35, chr17:39, chr18:23, chr19:12, chr20:29, chr21:17, chr22:17, chrX:23 and chrY:25.

The extracted cffDNA from the maternal plasma samples, as well as gDNA from
the paternal samples, have been parallelly used for library preparation using the Ion
AmpliSeq™ Library Kit PLUS (Thermo Fisher Scientific, Foster City, CA, USA). This kit is
engineered for the rapid preparation of amplicon libraries. The Ion AmpliSeq™ Library
Kit Plus is an on-plate format to facilitate sample processing, traceability and compatibility
with automation. The Ion AmpliSeq™ Library Kit Plus provides high, uniform, reliable
and reproducible output. Sequencing maternal cffDNA samples requires much more read
depth compared to paternal gDNA samples because the evaluation of the presence of low-
frequency alleles in cffDNA samples is necessary to determine the fetal genotype. For this
reason, the last step of the library preparation is crucial to balance correctly maternal and
paternal samples in the same pool. In fact, in order to pool cffDNA and gDNA amplified
samples in order to obtain the proper number of reads, it is very important to load them
20:1 (in terms of nanograms), respectively. The entire pool is then quantified, diluted
to 100 pM (parts per million), and finally processed with an Ion Chef™ Instrument for
the templating and enrichment procedures. In particular, the Ion Chef™ System reduces
sources of user-introduced variability and supports sequencing preparation for the Ion
S5™ System. A final 500 flows sequencing has been performed using the Ion 540™ Chip
running on the Ion S5™ System (Thermo Fisher Scientific, Foster City, CA, USA). The Ion
S5 System is a semiconductor system which allows different sequencing workflows.

The Thermo Fisher Scientific S5 sequencing platform automatically performs a set of
next generation sequencing reads and quality checks statistics pre- and post-alignment
with the hg19 human reference genome. Statistics includes read length histograms, chip-
loading-density percentage, total number of mapper and unmapped reads, and similar
self-explanatory statistics. The most useful ones are the “on target”, “uniformity”, and
“mean depth” statistics from the Thermo Fisher Scientific “coverage analysis” plugin. They
represent the alignment statistics for each amplicon of the panel, where the “on target”
statistic represents the percentage of reads aligning in correspondence of an amplicon
included in the panel; the “uniformity” statistic represents the percentage of the amplicon
bases covered by at least 0.2 × the average base reads depth; and the “mean depth” statistic
represents the average base coverage depth over all bases targeted in the reference. To be
evaluable, we expect samples to have “on target” value > 90%, “uniformity” value > 90%,
and “mean depth” > 8000 for cffDNA samples (and > 400 for gDNA samples). The
Thermo Fisher Scientific system produces a BAM file for each sample, containing all the
aligned reads. This file is exportable from the system and can be submitted for further
bioinformatics analysis. In this study, the BAM files obtained from the S5 instrument have
been analyzed using the NIPAT-flow data analysis pipeline developed by the Eurofins
Genoma Group.
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2.2. NIPAT-Flow Algorithm

The algorithm evaluates the compatibility of each maternal cell-free fetal DNA sample
against each alleged father. The fetal genotypes for each SNV included in the analysis
are inferred from the maternal samples. Furthermore, the algorithm robustness has been
validated using a set of mock samples generated by simulating 100 biological brothers for
each biological father.

The algorithm utilizes the BAM files obtained from the next-generation sequencing
process, and it produces some intermediate reports (one for each mother vs. alleged father
comparison) and a final overall report including the paternity probability (W) for each
comparison. The evaluation is straightforward from the Combined Paternity Index (CPI
likelihood statistic) adapted to be used in the context of an SNV-based prenatal test.

A kinship relationship is universally evaluated by comparing the likelihoods of observ-
ing the obtained genotypes given two alternative hypotheses (i.e., the Likelihood Ratio, LR).
In the case of paternity testing, it is evaluated whether an individual is related to another
individual with a father–son relationship versus the hypothesis that the two individuals
are not related. The higher the LR, the more supported is the first hypothesis (paternity).
The lower the LR (i.e., <1), the more supported is the second hypothesis (unrelated individ-
uals). For each SNV, the Paternity Index (PI) is classically calculated as a likelihood ratio
according to the Bayesian theorem [22]. PI is defined as the ratio between the probability of
the fetal genotype to be the observed one (event E) conditioned to the alleged father being
the biological father (hypothesis H1) and the same probability where the father is a random
individual extracted from the population (hypothesis H2) (PI = Pr(E | H1)/Pr(E | H2) [22].
When multiple loci are used to determine paternity, the product of all the individual PI
values for each locus is the combined paternity index. PI formulas are adapted to the
cases of prenatal tests where fetal genotypes need to be inferred from the maternal cffDNA
samples [16,23,24]. In particular, this was undertaken by also taking into account technical
errors and natural effects (e.g., sequencing errors or ex novo mutations) that could lead to
fetal genotype misinterpretation and eventually to a biased PI calculation. The CPI for a
couple is then the product of all the PIs—one for each SNV included in the analysis—and
paternity probability (W) is calculated as (CPI/CPI + 1)*100.

Only SNVs where the mother genotype is homozygous have been included in CPI
calculation because for heterozygous maternal positions it is statistically inaccurate to infer
the fetal genotype from the maternal cell-free fetal DNA sample only [24,25].

The algorithm defines the fetal genotype from the maternal cffDNA sample using a
set of fetal base thresholds. In fact, for each SNV, if a low-frequency base is detected on
the maternal sample, and it is different from the maternal homozygous genotype, the fetal
genotype is inferred as heterozygous. In particular, a minimal coverage of 1000 reads for
the maternal sample and 100 reads for the alleged father are required for the inclusion in
the Paternity Index calculations. A base coverage of at least 100 reads is required to be
assigned as fetal for allele characterized by frequency ranging from 1.5% to 15%.

In the case of variants located on chromosome Y, the maternal zygosity filter is obvi-
ously inapplicable; however, for a coverage > 100 reads, the filter is still applied. In the
end, the number of SNVs reporting a low-frequency allele varies among different meiosis
samples, ranging from 131 to 173 with an average of 145 SNVs.

Multiple checks and features are included in the algorithm to improve the robustness
against both human and technological errors. The algorithm performs an assessment of
relatedness indexes among all different sample pairs [24,26]. Some thresholds are set in
the algorithm to deal with noise and low coverage. In particular, the algorithm includes a
noise reduction method to ensure a more robust call for the fetal base, starting from the
mother’s genotype. Fetal genotype calling implements a SNV-specific threshold for the
low-frequency alleles which relies on previously collected data of low-frequency alleles
on samples without cffDNA. As a support, CPI is also calculated using a different set of
thresholds optimized for low-fetal-fraction samples. Robustness of the CPI calculation
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is also assured by the usage of no less than 30 SNVs reporting a low-frequency allele
(1.5–15%).

2.3. Simulating Father’s Brothers

For each compatible couple, 100 synthetic brothers of the designated father were
simulated (for a total of 900 simulate samples) to evaluate the performances of NIPAT-flow
on individuals whose genetic profile was closely related to the real biological father. A
two-step probabilistic model was designed to define the synthetic sample’s genotype for
each SNV. Each father’s brother is then a sample drawn from this model. Given the desig-
nated father, a couple of synthetic parents was first sampled from an inferred probability
distribution and then a synthetic son of theirs was generated using the equiprobable combi-
nation of their genotypes. In more detail, a Bayesian approach was used to infer the parents’
genotypes. For each SNV, the vector of the MAFs values was taken as the prior probability
distribution. This quantity was updated considering the profile of the designated father,
using the likelihood of its genotype conditioned to his parents’. The normalized product
of these two quantities is a posterior probability distribution from which the genotypes of
the parents are sampled. This probabilistic model allows us to create individuals sharing
a major part of their genetic profile with the designated father. Defining concordance
between two individuals as the percentage of SNVs showing an identical genotype over
the total number of SNVs, the brothers showed, on average, a concordance of 68.6% with
the designated father. This percentage varies equally both across the different brothers
and different individuals (64.0–72.8%). As expected, the concordance between unrelated
individuals was lower, ranging from 18.9% to 56.4% (average 36.1%).

2.4. Statistical Analysis

To evaluate the reliability and robustness of NIPAT, couples originating from the
maternal samples and biological fathers (n = 9), unrelated fathers (n = 72), and simulated
brothers (n = 900) were tested by comparing the log(CPI) distributions between groups.

At first, the log(CPI) parent distribution was tested for normality using a Shapiro–Wilk
test and evaluated with a skewness–kurtosis plot for empirical distribution [27]. This plot
combines information about skewness and kurtosis, which are measures of the shape of
a distribution. A skewness–kurtosis plot can help decide whether a parametric or non-
parametric statistical test is appropriate by determining whether the distribution of the
data is normal or non-normal. Bootstrapping was used (nboot = 100) to test the stability of
the skewness and kurtosis statistics when data were resampled, finally ensuring evaluation
reliability. As the distribution of log(CPI) was identified as non-normal, a non-parametric
statistical test was chosen, considering that the inappropriate use of a parametric test would
have given biased results. A Kruskal–Wallis rank sum test was used to test if there was a
difference in log(CPI) between biological fathers, unrelated couples, and simulated brothers.
Post hoc tests were then performed with the two-tailed Wilcoxon test for two independent
samples and p-values were corrected for multiple testing using the false discovery rate
correction. We set α = 0.0001, corresponding to a confidence level (1 − α) of 99.99%. This
highly restrictive confidence level was set to reduce the risk of incurring a false positive
result. Moreover, to further confirm our result, we decided to compute a 99.99% confidence
interval for the true mean of the simulated brothers log(CPI) distribution. The statistical
analysis was performed with the R programming language [28].

3. Results

Here, we present a non-invasive prenatal paternity test (NIPAT) using cffDNA based
on Ion S5 NGS technology. A custom PCR amplification panel consisting of 861 SNVs
has been developed on the basis of MAF and the absence of correlation with human
phenotypes. A number of nine pregnant women and their partners were recruited to
test the performance of NIPAT. In particular, maternal peripheral blood samples were
utilized for the extraction of cell-free fetal DNA as a source of fetal material for the NIPAT
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workflow. Informative SNVs used for CPI calculations were selected based on the mother
genotype. The number of SNVs reporting a maternal homozygous genotype and a second
low-frequency allele in our cohort ranges from 131 to 173, with an average of 145 SNVs.

Log(CPI) values calculated for designated fathers showed ranges between +34 and
+85, whereas log(CPI) values calculated for unrelated individuals were below −150 (full
data available in Supplementary Table S1). In order to evaluate the performances of NIPAT
on individuals whose genetic profile was closely related to the biological father, for each
compatible couple, 100 synthetic full brothers of the designated father were simulated (for
a total of 900 simulate samples).

Log(CPI) values calculated for simulated full brothers of the designated fathers ranged
between −30 and −200 with an average of −108 (Supplementary Figure S1). These values
are still very far from the biological father log(CPI) value. These data truly support the
robustness of the NIPAT-flow test.

Finally, the performances of NIPAT were fairly concordant with the paternity compati-
bility threshold (log(CPI) > +4) and paternity exclusion threshold (log(CPI) < −4) suggested
by the reference guidelines and reference literature for SNV approaches [21,26].

To assess the differences between the distributions of log(CPI) resulting from real
fathers, unrelated couples, and simulated full brothers, we first evaluated the parent
distribution of log(CPI). A Shapiro–Wilk normality test showed that the distribution was
strongly non-normal (W = 0.83711, p-value < 0.0001), as also shown in the skewness–
kurtosis plot, and noticeable in the density plot (Figure 1). Therefore, we used a non-
parametric approach to hypothesis testing.

A Kruskal–Wallis rank sum test showed that there was a statistically significant
difference in log(CPI) between real fathers, unrelated couples, and simulated full brothers
(χ2 = 221.55, df = 2, p-value < 0.0001). Post hoc Wilcoxon tests reported a significant
difference in all the comparisons (Figure 2).

The log(CPI) of the simulated brothers was significantly different from that of the
biological fathers (W = 8100, p-value = 2.38 × 10−7, p-value adjusted = 3.57 × 10−7, 99.99%
CI [−203.3075, −134.5006]). Both the lower and upper CI bounds were negative, meaning
that the true mean of the simulated brothers cannot overlap with that of the biological
fathers. In fact, the estimated difference in location of the means is 166.6658. The log(CPI) of
the unrelated couples was significantly different from that of the biological fathers (W = 648,
p-value = 1.146 × 10−6, p-value adjusted = 1.146 × 10−6, 99.99% CI [−359.8096, −243.4905]).
The log(CPI) of the simulated brothers was significantly different from that of the unrelated
couples (W = 64691, p-value = 4.559 × 10−45, p-value adjusted = 1.367 × 10−44, 99.99% CI
[−156.0940, −121.1659]).

As the NIPAT-flow algorithm reported zero chances of obtaining a log(CPI) value
greater than 0 for the simulated brothers and for the unrelated couples, we conclude that it
can be used to flawlessly identify biological fathers. Such a high statistical significance in
testing biological father vs. simulated brothers and vs. unrelated couples’ log(CPI) values
ensures that NIPAT is flawlessly reliable in detecting the biological father.
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Figure 2. Log(CPI) distribution in different groups. The boxplot shows the comparison among
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4. Discussion

Here, we present a Non-Invasive Prenatal Paternity Test (NIPAT) using cffDNA based
on Ion S5 NGS technology that is already used in many laboratories for forensic NGS
protocols. A custom PCR amplification panel consisting of 861 SNVs has been developed
on the basis of MAF. The average MAF of the panel is 0.321 (median in 0.347), while
the number of SNVs per chromosome ranges from 12 to 95 (with an average of 36). The
algorithm was tested on a number of nine pregnant women and their partners. NIPAT
generated log(CPI) values for designated fathers ranging from +34 to +85, whereas log(CPI)
values calculated for unrelated individuals were less than −150. This difference in log(CPI)
values between these two groups demonstrates the robustness of NIPAT, making it an
extremely reliable tool for determining paternity with a high degree of confidence.

One of the main challenges for paternity testing is the ability to distinguish two possi-
ble fathers when they are biologically related. It is not particularly rare that two possible
fathers can be related and, therefore, share many DNA variants. Thus, getting conclusive
results for a paternity test may be challenging using traditional short tandem repeats
(STR)-based methods. Full brothers share 50% of their DNA and represent a typical case of
disputed paternity between related putative fathers. To evaluate the robustness of NIPAT,
we calculate log(CPI) for 100 simulated full brothers of each biological father. More than
900 meiosis samples were analyzed, and log(CPI) values were compared between biological
fathers and 100 virtual full brothers. Log(CPI) values were calculated for simulated full
brothers of the designated fathers, ranging between −30 and −200 with an average of
−108. The difference between log(CPI) values for designated fathers and simulated full
brothers was very high, and these two distributions never overlapped. Thus, this means
that the chance of incurring a false positive is approximately 0, meaning that the NIPAT
test is robust with high rates of shared DNA.

Finally, the performances of NIPAT are fairly concordant with the paternity com-
patibility threshold log(CPI) > + 4 and the paternity exclusion threshold log(CPI) < −4
suggested by reference guidelines and reference literature for SNV approaches [21,26].
To date, there are no universally accepted thresholds for the confirmation of paternity,
exclusion, or for inconclusive results for both STRs- and NGS-based methods. Accredited
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laboratories are expected to establish an internal range for inconclusive results, with such
values dependent on the methods, the validation studies, the number of SNPs, etc. We
would like to outline that NIPAT showed differences in terms of log(CPI) between desig-
nated fathers and simulated full brothers that were very striking and unimaginable with
conventional analysis. Generally accepted ranges for inconclusive cases are 10−2 < LR < 102,
or 10−4 < LR < 104 [29]. The CPI values calculated for designated fathers ranged between
10+34 and 10+85, whereas the CPI values calculated for unrelated individuals were below
10−150. As a stress test, CPI values calculated for simulated full brothers of the designated
father ranged between 10−30 and 10−200, with an average of 10−108.

These data confirm that a genomic approach, analyzing hundreds of variants based on
next-generation sequencing, can represent an opportunity for paternity testing compared
to traditional methods based on STR typing. The ability to interpret the sequence of
hundreds/thousands of SNVs allows discriminating powers unimaginable only a few
years ago. Non-invasive prenatal paternity tests using cell-free fetal DNA need to analyze
hundreds of genetic variants, and NGS technology and statistical approaches are mature
enough to support robust methods ensuring the correctness of results. We believe that these
data strongly support the robustness of the NIPAT-flow test, representing an interesting
approach for scientists working in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020312/s1. Figure S1: Log(CPI) comparison; Table S1:
Log(CPI) values.
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