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Abstract: The focus of this brief review is to describe the application of nanoparticles, including
endogenous nanoparticles (e.g., extracellular vesicles, EVs, and virus capsids) and exogenous nanopar-
ticles (e.g., organic and inorganic materials) in cancer therapy and diagnostics. In this review, we
mainly focused on EVs, where a recent study demonstrated that EVs secreted from cancer cells are
associated with malignant alterations in cancer. EVs are expected to be used for cancer diagnostics by
analyzing their informative cargo. Exogenous nanoparticles are also used in cancer diagnostics as
imaging probes because they can be easily functionalized. Nanoparticles are promising targets for
drug delivery system (DDS) development and have recently been actively studied. In this review, we
introduce nanoparticles as a powerful tool in the field of cancer therapy and diagnostics and discuss
issues and future prospects.

Keywords: extracellular vesicle; DDS; imaging

1. Introduction

Cancer is a disorder that is hard to cure because it is basically a rebellion of self-cells,
making it difficult to target only cancer cells in therapy. The basic approach against cancer
is early detection, followed by chemotherapy and/or physical removal of the tumor if
possible. Physical removal can be achieved by surgical operation or radiation therapy; both
of these methods are highly invasive and require information about the tumor location.
Chemotherapy is a less invasive therapy; however, it is only effective against certain types
of tumors. In addition, chemotherapy has non-negligible risks of adverse effects [1,2]. Most
anticancer drugs are designed to kill cancer cells that exhibit high proliferation behavior,
and this characteristic causes adverse effects in healthy proliferative cells. Immunotherapy
is another therapeutic method that has already been applied against cancer; however, like
chemotherapy, it is only effective against certain types of cancer [3]. This may be attributed
to the fact that cancer cell survival is related to immunosuppression and regulatory T cells
protect cancer cells from the immune system. To achieve effective and minimally invasive
cancer therapy, early diagnostics and high-accuracy imaging technologies are essential;
treatment must be initiated as early as possible, and tumor location and temporal size
changes should be monitored to analyze the therapeutic effect. However, current analysis
technologies, such as fecal examination and projection radiography, cannot detect tumors
until they reach a certain size. Thus, when a tumor is discovered, surgery is often an
exclusive option. These hurdles hinder the development of minimally invasive cancer
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therapies. To overcome these hurdles, the use of nanoparticles is expected to be helpful.
Figure 1 illustrates the technology introduced in this review. The history of nanoparticle
research and development is very long, and the application range of nanoparticles covers
not only the medical field, but also industrial fields and the space industry. In the field of
cancer diagnostics and therapies, nanometer-sized particles called extracellular vesicles
(EVs), such as exosomes, have attracted attention because they have been reported to be
associated with malignant transformation of cancer [4,5]. Nanoparticles formed in vivo,
such as EVs, are called “endogenous nanoparticles,” and their functions have been reported
to be related to various diseases, homeostasis, and cancer. On the other hand, classical
nanoparticles which are formed by chemical synthesis from organic and/or inorganic
materials, are called “exogenous nanoparticles”. Highly functional exogenous nanoparticles
have been reported to improve synthesis precision and analysis technologies, and these
nanoparticles have been applied in various fields [6,7]. In this review, we mainly focused
on EVs and summarize the research results in cancer diagnostics and therapies. A common
issue in the application of endogenous and exogenous nanoparticles is the delivery of
formed nanoparticles to the target location. For example, in terms of adverse effects, it is
important to reduce the agent dose as much as possible while increasing drug delivery to
the tumor. Research approaches using nanoparticles in these delivery technologies are also
debated. Finally, we discuss future prospects and issues in cancer diagnostics and therapies
using nanoparticles.

1 
 

 
Figure 1. Schematic illustration showing the technologies introduced in this review. MRI, magnetic
resonance imaging; CT, computed tomography; PET, positron emission tomography; DNA, deoxyri-
bonucleic acid; mRNA, messenger ribonucleic acid; ncRNA, non-coding ribonucleic acid.
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2. Extracellular Vesicles
2.1. Types of Extracellular Vesicles

EVs, also known as microparticles or lipid vesicles, are secreted from cells with a
lipid bilayer or multilayer structure. All living cells secrete EVs, which are generally
categorized into several groups based on their origin, such as exosomes, microvesicles, and
apoptotic bodies (Figure 2, Table 1) [8]. EVs carry various types of cargo, such as proteins,
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), lipids, and metabolites [9], and they
are decorated by surface molecules, which are crucial for the targeting of recipient cells.
EVs may be important for intercellular communication and can modify the state of recipient
cells with their cargo or surface molecules. Because various types of EVs are secreted from
the same cell, they are heterogeneous in size, composition, and origin [10,11]. Exosomes
are the most studied EVs and originate from endosomes; early endosomes develop into
late endosomes and form multivesicular bodies containing numerous luminal vesicles.
Microvesicles are secreted from cells through budding of the plasma membrane. Apoptotic
bodies with diameters ranging from 50 nm to a few micrometers are generated through
the disassembly of cells during apoptosis. These EVs are currently gaining attention in
various fields of science owing to their growing significance in diagnosis and therapy.
The liquid biopsy of EVs in body fluids is an emerging diagnostic tool. Apart from
circulating tumor cells in the bloodstream, EVs are also targets for liquid biopsy [12].
Because EVs are present in all body fluids and carry nucleic acids, a minimally invasive
diagnosis is possible. Monitoring tumor progression or deciding on optimal care is possible
by investigating DNA errors derived from tumor cells in EVs. In addition to tumor-
derived DNA, surface or luminal proteins or microRNA (miRNA) cargo in EVs may reflect
tumor progression and thus may be useful biomarkers for liquid biopsy. Exosomes and
microvesicles can be targets for liquid biopsy, and although their origin is different, their
composition is similar. EVs secreted by cancer cells are thought to play a role in tumor
formation, transformation, and metastasis. Recent advances in liquid biopsy are discussed
in detail in the following sections.
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Figure 2. Schematic illustration of biogenesis of various extracellular vesicles (EV). EVs are catego-
rized by their origin. Microvesicles are formed through budding whereas exosomes are generated
from late endosomes. Apoptotic bodies are formed from apoptotic cells. Recipient cells may change
their state through signaling from the EVs.
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Table 1. Types and characteristics of extracellular vesicles.

Type of EVs Origin Size Surface Markers Constituents Function

Exosomes Endocytosis
pathway 40–120 Alix, Tsg101, CD81, CD63 Lipids, nucleic

acids, proteins Cell-cell signaling

Microvesicles Budding 50–1000 Integrins, selectins, CD40 Lipids, nucleic
acids, proteins Cell-cell signaling

Apoptotic bodies Cytoplasmic
membrane 500–2000 Annexin V,

phosphatidylserine
Organelles, nuclear

fragments
Phagocytosis

induction

Sizes are in nanometers.

2.2. Therapeutic Use of EVs

The therapeutic use of EVs has been proposed because they can modify the state of tar-
get cells. In particular, EVs derived from immune cells can prime early T cells, differentiate
mature T cells, and develop effector functions, such as antigen presentation and activa-
tion of immune cells [13]. The EVs’ functions on immunity have been focused by these
discoveries, and immunotherapy using these functions is expected. Wolfers et al. showed
that EVs derived from cancer cells possess cancer antigens, and these EVs could induce
cancer antigen-specific immune response and anticancer efficacy [14]. This research raised
expectations to achieve cancer vaccine therapy using antigen presentation [15]. Vaccine
therapy using cancer cell derived EVs has an advantage unlike conventional immunother-
apy, it does not require the identification of cancer antigens. On the other hand, the vaccine
therapy using cancer derived EVs has shown anticancer efficacy, however, the therapeutic
effect is still insufficient. Therefore, many researchers strive to elucidate the mechanism of
EVs on human immunity [13]. Immunotherapy using EVs with anti-inflammatory prop-
erties is another type of immunotherapy that differs from vaccine therapy. In addition,
EVs derived from cancer cells possess cancer antigens and can therefore be used for cancer
immunotherapy by providing cancer-specific antigens to the immune system [14]. EVs
derived from mesenchymal stem cells (MSC) are attractive for therapeutic use because of
their low immunogenicity and ability to enhance injury recovery [16,17]. MSC-derived EVs
have been reported to possess antioxidant, anti-inflammatory, and anti-apoptotic proper-
ties [18,19]. Furthermore, recent studies have shown that they protect cardiomyocytes from
ischemia. Thus, EVs can function as drugs.

In addition to using EVs as drugs, EVs may deliver cargo into target cells, and the
use of EVs as drug delivery system (DDS) carriers is gaining interest in the medical field.
When using EVs as therapeutic DDS carriers, it is necessary to load the drug to be delivered
into the vesicles [20,21]. This can be achieved by preloading the therapeutic nucleic acid
into the cells producing the vesicles or introducing the drug into purified EVs. In the
former case, although the mechanism by which nucleic acids and other inclusions are
incorporated into the exosomes has not been fully elucidated, various methods have been
developed [22,23]. In the latter case, where cargo is encapsulated into purified EVs, there
is still a significant barrier to achieving efficient drug encapsulation [24]. Hydrophobic
drugs, such as anticancer drugs, can be loaded passively through hydrophobic interactions
with lipid bilayers [25]. However, owing to the hydrophobic lipid bilayer, hydrophilic
drugs such as nucleic acids require a technique to permeate the membrane. Electroporation
and sonication have been used to create pores in the EV membranes [26,27]. However,
it has been highlighted that excessive physical stimulation may induce the aggregation
of EVs, thereby altering their morphological characteristics, and changes in the surface
potential of the membrane may increase cytotoxicity. Various attempts were made to
increase drug-loading efficacy such as use of mesoporous material, use of acoustofluidic
device, or dimerization of drugs, [28–30].

For the delivery of EV cargo into target cells, especially when the drug of interest is
encapsulated inside EVs and is unable to penetrate the lipid bilayer by itself, the drug
must be released from the inside of EVs to exert its biological function after cell entry.
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Since EVs are mostly internalized by endocytosis, membrane fusion between the endocytic
membrane and the EV membrane must take place. Whether EVs exhibit membrane fusion
activity is a subject of considerable debate [31–34]. Several reports have demonstrated
that EV-mediated cargo delivery is an inefficient process where less than 0.2% of recipient
cells functionally receive the RNA cargo from EVs in vitro [35], while engineering EVs
with virus-derived fusogenic proteins significantly enhances cargo delivery [36,37]. These
studies strongly suggest that engineering EVs to enhance cytoplasmic delivery is the most
critical issue for the DDS application of EVs. Because exogenous nanoparticles can be a
promising DDS carrier for cancer therapeutics, various nanoparticles loaded with anti-
cancer drugs have been developed. Drugs such as paclitaxel, doxorubicin, or vincristine
were loaded into liposomes and used as anti-cancer drugs at clinics [38,39]. Other than
anti-cancer drugs, reagents which generate heat by external energy can be incorporated
into nanoparticles and used for hyperthermia therapy. Magnetite is a colloid of Fe3O4
iron oxide that can be used as a contrast agent for MRI; magnetite generates heat when
stimulated with alternating magnetic fields [40]. Agents for photothermal therapy such as
metal nanoparticles or polymers can also be delivered to tumor sites by nanoparticles [41].
Various nanoparticles have been in use since the 1990s, such as liposomal daunorubicin
or doxorubicin [42], since efforts were made to widen the variety of drugs or increase the
efficacy of the medicine [43]. The global market of nanomedicine is rapidly growing with
an estimated business of USD 293.1 billion in 2022 [44,45].

2.3. Biofabrication of EVs

As all cells secrete EVs, cultured cells are the best candidates for fabricating EVs
for therapeutic use. In general, the medium used for mammalian cell culture contains
serum, including animal derived EVs. Thus, the use of a defined medium without a
serum component is indispensable [46]. The source cells of EVs are chosen for their
therapeutic use but can even be fabricated from the same cell type. EVs have heterogeneous
physical properties such as size, density, and shape, as well as composition of cargo
and surface molecules [11,47,48]. These heterogeneities may affect the efficacy of EVs
when applied as therapeutic drugs, and the properties of carriers when applied as DDS
carriers. EVs can be isolated using various methods, such as differential centrifugation,
density gradient centrifugation, ultrafiltration, affinity chromatography, precipitation,
and size exclusion chromatography [49,50]. The complete separation of EVs from other
biosubstances of similar size, such as lipoproteins and protein aggregates, is currently
difficult. Various EV separation kits are available which have been reported to have higher
separation efficiency compared with conventional ultracentrifugation methods [51,52]. Size
exclusion chromatography methods have also been used to separate exosomes from protein
aggregates, which reportedly have less contamination than other methods [53]. The use of
a microfluidic device or tangential-flow filtration may reduce contamination.

Both biochemical and physical properties are used to evaluate the quality of EVs.
Biochemical analysis uses proteomic, genomic, and lipidomic approaches [54]. Western
blot analysis is a common biochemical approach for bulk EV samples, by which EV-
related proteins, such as tetraspanins (CD9 and CD63), have been confirmed [55]. The
morphological characteristics of EVs can be evaluated using electron or atomic force
microscopy [56,57]. Optical imaging is not possible because EVs are often smaller than the
wavelength of visible light. However, the use of a fluorescent microscope to labeled EVs
enables visualization of their presence [58,59]. The size and surface charge of EVs can be
estimated using methods such as dynamic light scattering or nanoparticle tracking analysis,
and zeta potential analysis, respectively [60–62]. None of the single methods can quantify
EVs’ characteristics. Therefore, a combination of approaches is required.
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3. EV-Targeted Diagnostics Using Synthetic and Functional Nanoparticles
3.1. EV-Based Liquid Biopsy for Cancer Diagnostics

As mentioned in the previous section, EVs also play important roles in intercellular
communication involved in tumor development and are expected to be a promising source
of biomarkers for biofluid (e.g., blood and urine)-based cancer diagnostics, called liquid
biopsy [63]. For instance, surface proteins of exosomes represent their origin and alteration
of the parent cells and are therefore expected to be cancer biomarkers. Examples include
prostate cancer antigen 3 [64] and survivin for pancreatic cancer [65], CD24 for breast
cancer [66] and ovarian cancer [67], and CD9 and CD147 for colorectal cancer [68]. Nucleic
acids contained in exosomes, such as miRNAs, messenger RNA (mRNAs), and long
noncoding RNAs, are also promising biomarkers for cancer diagnostics [69,70]. Among
these, exosomal miRNAs have been intensively investigated because of their relatively
high stability against enzymatic degradation [71]. Exosomal miR-23b-3p, miR-10b-5p, and
miR-21–5p have been reported as prognostic biomarkers for non-small cell lung cancer [72],
whereas miR-141 has been reported as a biomarker for prostate cancer [73]. Various other
examples can be found in previous reviews [74].

Due to the heterogeneity of samples, as well as the small quantity of target analytes,
sensitive and selective analysis of EVs in a facile and inexpensive way has been a challenge
in the field of diagnostics. In addition to widely used methods, such as enzyme-linked
immunosorbent assay for protein markers as well as quantitative real-time polymerase
chain reaction (qRT-PCR) and next-generation sequencing for nucleic acid markers, highly
sensitive and selective EV analysis methods using nanoparticles have recently been in-
vestigated [75,76]. Nanoparticles are known to exhibit specific functions derived from
their nanometer size, which is an intermediate between atomic and bulk scales. For in-
stance, semiconductor nanoparticles, which are often called quantum dots (QDs), exhibit
fluorescence derived from the quantum-confinement effect, whereas metal nanoparticles
show strong optical absorbance at specific wavelengths owing to localized surface plasmon
resonance (LSPR). The following sections introduce the use of these synthetic, functional
nanoparticles for EV analysis (Figure 3).

3.2. Use of Synthetic Nanoparticles for Analyzing Exosomal Surface Proteins

Antibody surface modification is the main strategy for targeting synthetic nanoparti-
cles to cancer-related exosomal surface proteins. Aptamers, which are short sequences of
artificial DNA or RNA that bind a specific target molecule, have been another choice owing
to their smaller size and lower cost compared with those of antibodies. Binding of synthetic,
functional nanoparticles to target exosomal surface proteins through these targeting moi-
eties enables their effective capture and sensitive detection via nano size-derived functions.

For example, LSPR-based detection of exosomal surface proteins utilizes the strong
optical absorbance of plasmonic nanoparticles at a specific wavelength around the red
color, which can be blue-shifted by their aggregation. Jiang et al. non-covalently coated
gold nanoparticles (AuNPs) with a panel of aptamers that can specifically bind to exosomal
surface proteins, i.e., CD63, EpCAM, PDGF, PSMA, and PTK7 [77]. After mixing the
aptamer-coated AuNPs with target exosomes in a high-salt concentration solution, binding
of the aptamers to target exosomal surface proteins induces the aptamer displacement
from the AuNP surface, leading to the aggregation of AuNPs and a shift in LSPR-derived
absorbance. By constructing an aptamer-coated AuNP-based detection panel for the above
five cancer protein markers, the authors demonstrated surface molecular profiling of
exosomes isolated from various cancer cell lines.
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Figure 3. Synthetic nanoparticle-based detection of exosomal surface proteins and miRNAs. Synthetic
nanoparticles can target specific exosomal markers via surface molecules, such as antibody, aptamer,
and single stranded DNA (ssDNA). They also exhibit size-derived specific properties including
localized surface plasmon resonance (LSPR), surface enhanced Raman scattering (SERS), and Förster
resonance energy transfer (FRET). By integrating these targeting properties and size-derived functions,
synthetic nanoparticles can be a promising tool for the detection of exosomal surface proteins
and miRNAs.

When metal nanoparticles bind to molecules, Raman scattering from the molecules
is significantly improved by up to 1010–1011 times, enabling their sensitive detection at
the single-molecule level. This phenomenon is called surface enhanced Raman scattering
(SERS) and has also been used for exosomal surface protein detection. Li et al. developed
Au-core/Ag-shell nanoparticles (Au@Ag NPs) modified with antibodies for the exosomal
cancer protein marker, migration inhibitory factor, as SERS tags [78]. Exosomes were first
captured by antibody-immobilized substrate and then labelled with Au@Ag NPs, resulting
in the specific detection of pancreatic cancer-derived exosomes via SERS with a detection
limit of ca. 9.0 × 10−19 M. The developed SERS assay enabled the classification of pancreatic
cancer patients and healthy individuals, metastasized tumors and metastasis-free tumors,
and tumor node metastasis P1–2 stages and P3 stage.

In addition to LSPR and SERS, other nano size-derived functions of synthetic nanopar-
ticles have also been utilized for the analysis of exosomal surface proteins [79–82]. For
example, the magnetic property of superparamagnetic iron oxide nanoparticles has been
used for the capture and isolation of exosomes with specific target surface proteins [82],
whereas the peroxidase-mimetic activity of iron oxide nanoparticles has been used for the
detection and analysis of exosomal surface proteins [83].

3.3. Use of Synthetic Nanoparticles for Analyzing Exosomal miRNAs

While exosomal protein markers are mainly expressed on the cell surface, exosomal
nucleic acid markers, including miRNAs, are encapsulated inside exosomes. Analysis
of exosomal miRNAs usually requires RNA extraction, followed by amplification and
detection of target miRNAs using the qRT-PCR method [84]. Recent studies have also
examined the direct detection of miRNAs in a single exosome, which requires membrane
fusion or membrane penetration of the detection probes together with their detection using
a single vesicle imaging system [85,86]. To target these exosomal miRNAs using synthetic
nanoparticles, the main strategy is to modify their surfaces with single-stranded DNAs
(ssDNAs) which have a complementary sequence to the target miRNAs. The ssDNA-
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modified nanoparticle surface can bind to target miRNAs via double helix formation,
resulting in sequence-specific targeting.

AuNPs exhibit strong quenching against a wide range of fluorophores via Förster
resonance energy transfer (FRET) when they are close to the particle surface. Together with
their large surface area to load signal amplification agents, AuNPs have been used as a
platform for fluorescent detection of biomolecules, including exosomal miRNAs [87]. Zhai
et al. reported an Au nanoflare-based fluorescent probe for detection of the exosomal breast
cancer miRNA marker, miR-1246 [88]. They prepared ssDNA-modified AuNPs, followed
by hybridization with Cy3-modified ssDNA, which was partially complementary to the
ssDNA on the AuNP surface. At this initial state, because Cy3 is close to the AuNP surface,
fluorescence from Cy3 was quenched by FRET. After application to the plasma sample,
the Au nanoflare probe penetrates the exosomal membrane to target the internal miRNAs.
Because the ssDNA on the AuNP surface was designed to be complementary to miR-1246,
exosomal miR-1246s could bind to the ssDNA on the AuNP surface via toehold-mediated
strand displacement, resulting in the release of Cy3-mediated ssDNA from the AuNP
surface, leading to the activation of the fluorescent signal. By measuring plasma miR-1246
levels using the aforementioned probe, successful identification of breast cancer patients
from healthy controls was demonstrated.

In addition to direct labelling, amplification of fluorescent signals is a promising
strategy for sensitive miRNA detection. Degliangeli et al. reported an AuNP-based
fluorescent amplification and detection platform for cancer-related miRNA markers, miR-21
and miR-203 [89]. AuNPs were coated with fluorescein mercuric acetate (FMA)-modified
ssDNA, which could bind to target miRNAs via duplex formation. On adding ssDNA-
modified AuNPs to samples with duplex-specific nuclease (DSN), target miRNAs could
bind to ssDNA on the AuNP surface via duplex formation. Subsequently, activation of
the FMA fluorescent signal was induced by DSN-mediated degradation of the formed
duplex. As the target miRNAs are released after DSN-mediated duplex cleavage, they can
be reused for further fluorescent activation cycles, resulting in the amplified fluorescent
detection of miR-21 and miR-203. A similar amplification strategy with an enzyme-free
catalytic DNA reaction, in which QDs were used as a fluorescent agent instead of small
molecular fluorophores, was also reported [90].

In addition to the above strategies, SERS and electric signals have been used for
synthetic nanoparticle-based miRNA detection [91,92]. Further challenges in this field
include the development of a detection platform for multiple miRNA panels. Recently,
cancer diagnostics using several tens of miRNAs (typically around 20 types) as a panel
has been recognized as a promising approach [93,94]. The development of novel synthetic
nanoparticle-based platforms that can achieve facile, sensitive, and multiple detections of
exosomal miRNA markers is expected to further accelerate the future clinical translation of
this miRNA panel-based diagnostic approach.

4. Exogenous Nanoparticle-Based In Vivo Diagnostic Imaging

As mentioned above, EVs are prospective targets for cancer therapies and diagnostics.
While the liquid biopsy-based analysis of EVs provides information for the origin and
characteristics of cancer, the size and location of tumor are also important information for
cancer therapy and diagnostics. In particular, for non-invasive cancer therapy methods,
such as anticancer drugs and radiation, this monitoring information is important for evalu-
ating the treatment effect. This information is also essential for the efficiency and safety of
surgical procedures in the surgical therapeutic field. For achieving the accurate monitoring
of tumor size and location, exogenous, synthetic nanoparticles can play important roles. In
this section, we introduce synthetic nanoparticle-based in vivo imaging technologies for
cancer therapy and diagnostics.

To visualize formed tumors, molecular imaging has attracted much attention as a
powerful technology for understanding cancer biological phenomena and medical appli-
cations as non-invasive diagnostic techniques. In particular, nanoparticulated imaging
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agents have been explored as versatile probes for molecular imaging because they have
characteristic functions derived from their size and can be modified with ligands that are
well-suited to target specific biomolecules. Numerous functionalized nanoparticles have
been developed and proposed as imaging agents for various imaging modalities such as
magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission
tomography (PET), and fluorescent imaging. Regardless of the modality, nanoparticulated
imaging agents have demonstrated outstanding performance enabled by fine-tuning the
nanoparticle size, surface properties, composition, and other characteristics.

MRI, CT, and PET imaging technologies have been widely used as powerful tools
for noninvasive diagnostic imaging because of their excellent penetration depths. Para-
magnetic gadolinium (Gd) complexes have been commonly explored as MRI contrast
agents, mainly for vascular visualization and brain tumor detection. Nanoparticulated Gd
contrast agents improve the circulation time and target specificity; however, the relatively
low relaxivity and high dose requirement are potential issues. Superparamagnetic iron
oxide nanoparticles are expected to improve contrast efficacy compared to conventional
Gd-based nanoparticles, which can be further tuned by adjusting the size and composition
of the nanoparticles [95]. Their use can also help avoid potential side effects caused by
the use of ionized Gd and the high requisite doses of Gd-based contrast agents. Recently,
iron oxide-based superparamagnetic nanoparticles such as “Ferridex” and “Resovist” have
been approved by the Food and Drug Administration in the United States for liver cancer
detection; however, a higher spatial resolution is required for a more accurate diagnosis.
Furthermore, PET has emerged as a clinical imaging modality because of its advantages,
including excellent penetration depth and quantitative capability. PET imaging via radi-
olabeled nanoparticles has improved PET contrast efficiency and accelerated the quanti-
tative evaluation of drug delivery to tumors because of the reduced risk of radioisotope
detachment [96].

Fluorescence imaging is also a powerful modality for molecular imaging because
of its high spatial and temporal resolutions. Although many techniques for fluorescent
imaging have been proposed as advanced modalities of molecular imaging with higher
spatial resolution, these technologies face limitations in the detection limit due to restrained
brightness and the inevitable photobleaching of small fluorescent molecules. To overcome
these limitations, many studies have focused on developing nanoparticle-based fluorescent
probes. Quantum dots (QDs) consisting of semiconductor nanocrystals have been reported
as effective imaging probes for visualizing cellular membrane proteins and intracellular
components [97]. Although the brightness and long-term stability make QDs candidates for
further applications, such as 3D confocal imaging and in vivo targeted real-time imaging,
cytotoxicity due to the inherently toxic heavy metals in its core (e.g., cadmium and selenium)
has been a controversial issue. Therefore, QDs composed of less toxic semiconducting
nanocrystals (e.g., indium phosphide and silicon) have attracted considerable attention
as bright and biocompatible probes for fluorescence bioimaging [98]. In addition to low-
toxicity QDs, polymer dots based on conjugated semiconducting polymers have been
investigated as alternative fluorescent probes without considering the cytotoxicity caused
by ionized heavy metals [99].

These imaging modalities have various advantages and disadvantages. For instance,
MRI, CT, and PET have high penetration depths, however, their spatial resolution is limited
to the millimeter scale. In contrast, fluorescent imaging has high spatial resolution at the
subcellular scale, however, its penetration depth is limited to a few centimeters. To benefit
from each advantage, multimodal imaging has generated considerable research interest
in increasing the accuracy of diagnosis using complementary information from different
imaging modalities [100]. The fabrication of nanoparticulated imaging probes allows them
to exhibit multifunctional characteristics; therefore, the strength of each imaging modality
can be integrated into a multimodal nanoparticle. For instance, 64Cu-labelled and RGD
(Arg-Gly-Asp) peptide-conjugated iron oxide nanoparticles were developed as PET/MR
dual-modality imaging probes for tumor integrin expression, whereas the near-infrared
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fluorescent (NIRF) dye ZW800 loaded with silica nanoparticles labelled with Gd ions and
64Cu was developed as PET/MR/optical imaging probe for tumor-draining sentinel lymph
nodes [100]. In addition to diagnostic imaging, these multifunctional nanoparticles can
also serve to monitor therapeutic efficacy of cancer treatment (theranostics) [101]. For ex-
ample, croconaine dye-based nanoparticles were developed for photoacoustic/fluorescent
imaging-guided photothermal therapy [102], while SPIO and olaparib-loaded exosome
extracted from hypoxic cells was investigated for magnetic particle imaging and therapy of
hypoxic region in tumor [103]. Furthermore, multimodal nanoparticles have also improved
the accuracy and quality of in vivo cellular tracking, leading to a great contribution to
animal cell-based diagnostics and therapy. For instance, Huang et al. developed a mes-
enchymal stem cell (MSC)-based multifunctional theranostic platform for targeted delivery
of MSCs to glioblastoma and multimodal imaging with hyaluronic acid-coated mesoporous
silica nanoparticles with green fluorescent dye (FITC), NIRF dye (ZW800), Gd3+, and
64Cu [104]. In vivo multimodal imaging with optical and magnetic resonance imaging
and PET successfully revealed the feasibility of tumor tropism-facilitated delivery of their
multifunctional MSC platform with improved tumor accumulation. Nanoparticle-based
multimodal imaging improves the properties of MSC-based theranostics and immune
cell-based theranostics for cancer. A dual-modal PET/NIRF nanoparticle-based imaging
probe for labelling chimeric antigen receptor (CAR) T cells achieved long-term whole-body
immune cell tracking in a mouse model of carcinomatosis [105]. This type of nanoparticle-
based multimodal cellular tracking technique is crucial for advancing cell-based therapy
to investigate the fate of administered cells and the therapeutic effect. These nanoparticle-
based multimodal cell-tracking systems are expected to lead to the next generation of
theranostics for future clinical applications. The core of QDs often contain heavy metals
such as selenium, cadmium, or lead, which are toxic to the human body. To reduce toxicity,
these metal cores are covered with non-toxic polymers, however, contamination during
manufacturing process or leakage from deficient QDs cannot be ignored. Gd used for MRI
is also toxic and bioaccumulative, thus, must be used with a chelation compound to reduce
toxicity and ensure rapid elimination from the body.

5. Nanoparticle-Based Biological Drug Delivery System (DDS)

As previously mentioned, various nanoparticles have been developed and applied
in cancer therapy, diagnostics, and imaging. As therapeutic methods using biomolecules
(e.g., artificial recombinant protein, nucleic acid) are expected in the field of cancer therapy,
developing innovative technology to deliver these materials to a specific place in the body
(DDS technology) is essential. DDS is a key technology for improving the therapeutic effect
of drugs by optimizing the physicochemical properties of active pharmaceutical ingredients
(APIs), improving pharmacokinetics, and targeting specific cells [106]. Compared with
conventional small-molecule drugs, the bioavailability and efficacy of biopharmaceuti-
cals, such as recombinant proteins manufactured by animal cells, inherently rely on DDS
technology for several reasons. First, the molecular size of therapeutic biomolecules is
considerably larger than that of small molecules; hence, biomolecules rarely penetrate the
cell membrane and reach inside the cells where the drugs function. Thus, the intracellular
delivery of biopharmaceuticals is essential for achieving the therapeutic effect. Second,
some biopharmaceuticals are prone to enzymatic degradation in the body. For example,
therapeutic nucleic acids, especially RNA, are easily degraded by the abundant nucleases
in the body. These biomolecule-derived APIs should be protected by extensive chemical
modifications or delivery vesicles [107]. Therefore, DDS technology is highly desirable
for material protection and targeting; hence, optimization of DDS is a pivotal step in the
development of biopharmaceuticals.

DDS is mainly achieved using two methodologies: chemical and biological approaches.
Chemical approaches involve the use of chemical substances or synthetic nanoparticles to
deliver drugs. Pharmacokinetics can be improved via chemical conjugation of the targeting
moiety to the APIs or attachment of the polymers (e.g., polyethylene glycol) to APIs.
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Synthetic nanoparticles, such as liposomes, inorganic materials, and polymer materials,
have been used to encapsulate APIs for delivery. In contrast, biological approaches use
biomolecules or biological vectors to achieve efficient delivery of APIs. Biomolecules or
biological vectors are nanometer-sized particles, similar to other synthetic nanoparticles.
Nanoparticles, such as viral vectors, are powerful tools for delivering genetic information
of therapeutic molecules in the form of DNA or RNA. Currently, adeno-associated virus
(AAV) vectors are used for gene therapy, adenovirus vectors are used as prophylactic
vaccines against infectious diseases, and lentivirus or retrovirus vectors are used for ex vivo
gene therapy, such as CAR-T cell therapy. Virus-like particles (VLPs) mimic the delivery
mechanism of viral vectors; moreover, they avoid genetic materials; thus, they are safer
than viral vectors and are not involved in gene insertion into target cells [108]. More
recently, EVs secreted by all cell types have been widely studied as novel biological vectors
for DDS [109].

It is well known that biotechnology and bioengineering are central disciplines when
developing a biological DDS. Using technical knowledge from these disciplines, the above
biological DDS could improve existing biologics and develop novel therapeutic modalities.
Engineering of existing viral vectors is an emerging topic, and several studies have shown
that in vivo tropism and functionality of viral vectors can be designed. Ogden et al.
analyzed the fitness of the AAV vector using a mutant capsid library and found that
certain mutations in the capsid protein affected the biodistribution of recombinant AAV
vectors. This machine-guided design is a powerful tool for the identification of mutant AAV
vectors with favorable properties for in vivo gene therapy [110]. Mihara et al. demonstrated
that a targeting moiety, a macrocyclic peptide, can be inserted into the surface-exposed
loop of the AAV capsid protein, changing the tropism of the AAV vector [111]. The in silico
design of proteins may also be an attractive strategy for developing a new protein-based
DDS [112]. These technological advancements in biological nanoparticle-based DDS have
evolved with the changing cancer therapy approach.

In addition to the importance of functional modifications, mass-scale production is
a critical issue in the development of biological DDSs. Although the production process
of biologics has already been established, the production and purification of biological
nanoparticles, such as viral vectors and EVs, remain challenging because of the complexity
and difficulties of the purification and scale-up processes [113]. Generally, the production
yield of biological nanoparticles is substantially lower than that of conventional biologics
(e.g., therapeutic immunoglobulins) because of their inherent properties and the lack of
efficient production technologies. Establishing a balance between the yield and purity of
the final product is a trade-off when producing biologics. Therefore, the development and
optimization of an efficient production process is key for reducing the manufacturing costs
of biological nanoparticles and achieving affordable therapeutics.

Nanoparticle-based biological DDS, such as biomolecules and biological vectors, are a
promising platform for the delivery of cancer therapeutics. Owing to recent fundamental
discoveries in biology, such as gene-editing technologies, biological DDS could deliver a
novel type of therapeutics to the target site in the body. Therefore, biotechnology-based
biological DDS is the foundation for next-generation cancer therapeutics.

6. Future Prospect

This brief review summarizes the current approaches to cancer therapy and diagnos-
tics using biological nanoparticles generated by cells and other organisms (endogenous
nanoparticles) and artificial nanoparticles generated by chemical synthesis and other meth-
ods (exogenous nanoparticles). For endogenous nanoparticles, we introduced EVs and
DDS technology using virus vectors, which have attracted particular attention in recent
years for cancer therapy and diagnostics.

Recently, gene therapy for cancer treatment has been highly anticipated with the
improvement of genome editing technologies such as CRISPR/Cas9. The treatment strategy
using genome editing technologies is to attack target cancer cells by returning genome-
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edited T cells to the body. This genome editing is performed in vitro. On the other
hand, RNA interference technology has also been expected for cancer treatment. This
technology specifically suppresses gene expression with a short double-stranded RNA
(siRNA) by degrading its sequence-specific target mRNA [114]. To enhance the treatment
effect, siRNA should be delivered to targeted cancer cells because the inhibitory effect of
RNA interference on gene expression is restricted to cells where siRNA is present. The
expectation of gene therapy peaked in the 2000s; however, this expectation collapsed
with unfortunate accidents, which might be attributed to DDS [115–117]. To avoid these
accidents, DDS need to be improved in terms of their function and general understanding
of endogenous nanoparticle safety. There are many unclear points regarding endogenous
microparticles, including their intracellular formation process, extracellular dynamics, and
even their biological significance, which is an essential issue in the development of cancer
diagnostic and therapeutic techniques for these particles. Adverse effects, such as allergic
reactions, have been reported in clinical trials with EVs, showing the need for further
investigation [118]. Furthermore, because of the high manufacturing cost in exchange for
safety and high medicinal effects, endogenous nanoparticles have a bottleneck for clinical
application. On the other hand, manufacturing cost of exogenous nanoparticles is low
and it is easy to add various functions. We introduced synthetic exogenous nanoparticles
for imaging. In addition to conventional methods using gene-editing technologies and
protein engineering, the modification and functionalization of endogenous nanoparticles
using scientific manufacturing technologies of exogenous nanoparticles have recently
been developed [119,120]. Moreover, research articles relating to endogenous–exogeneous
hybrid nanoparticles constructed in complexes with nanocarriers or inorganic particles
have significantly increased [121,122]. As mentioned in this review, nanoparticles have
great potential as medical materials to eradicate cancer. On the other hand, despite the
intensive research and success in treating tumors in mouse models, only a few non-targeted
nanoparticle formulations, such as Abraxane and Doxil, have been clinically approved at
present [123]. A recent review suggested that the average delivery efficiency of previously
reported nanoparticles into solid tumor was 0.7% and did not change much over past
10 years [124]. It has also been reported that since the diffusion of nanoparticles in tumor
is strictly prohibited by the dense ECM network, most nanoparticles extravasated from
blood vessels cannot reach the tumor core and stay near the blood vessel wall [125]. To
overcome these issues for actual clinical translation, revisiting the tumor delivery strategy
of nanoparticles based on the deep understanding on their interaction with biological
environment is required. In addition, applying the DDS technology to diseases other
than tumor has also attracted much attention: examples include antibody delivery into
brain for neuro-degenerative diseases [126] or antisense oligonucleotide delivery for RNA
interference for muscular dystrophy [127]. Through these investigations, future research
in cancer therapy and diagnostics fields using functional nanoparticles manufactured in
synthesis or biotechnologies is likely to produce many novel insights, which could also
lead to the development of therapeutics by controlling cell behaviors.
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