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Abstract: Cornelia de Lange syndrome is a genetic and clinically heterogeneous entity, caused by at
least five genes. It is characterized by short stature, gestalt facies, microcephaly, neurodevelopmental
disorders, and other anomalies. In this report, we present a 13-year-old female patient with micro-
cephaly, cleft palate, polydactyly, short stature, triangular facies, frontal bossing, a bulbous nose, an
overfolded helix, limited pronosupination, and an anomalous uterus. No neurodevelopmental disor-
ders were reported. A chromosomal microarray analysis of 6.5 million markers was performed in the
proband and her parents. The results showed a de novo heterozygous microdeletion of exons 9–14
within RAD21, which confirmed the diagnosis of Cornelia de Lange syndrome type 4. Our patient
did not show any neurologic phenotype (until the time of diagnosis), although neurodevelopmental
disorders are frequently present in patients with Cornelia de Lange syndrome type 4, and despite
carrying a deletion that was larger than previously reported. Therefore, unknown genetic modifiers
or intrinsic mechanisms of RAD21 variants may exist and should be studied.

Keywords: RAD21; de Lange syndrome; microarray analysis; gene deletion

1. Introduction

Cornelia de Lange syndrome (CdLS, OMIM PS122470) comprises a group of conditions
that are diverse in their genetic origin and clinical manifestations [1,2]. The prevalence has
been reported to be 1/10,000–100,000, although it is thought to be higher [3–5]. Five genes
(NIPBL, SMC1A, HDAC8, RAD21, and SMC3) have been associated with CdLS phenotypes
of autosomal dominant or X-linked inheritance [3].

Among other clinical manifestations, patients usually show short stature, thick eye-
brows, synophrys, a depressed nasal bridge, a short nose, anteverted nares, a long and
smooth philtrum, and a thin and tented upper lip vermilion [2]. The prenatal proportional
short stature is characterized by anthropometry at birth below percentile 10, followed by
postnatal growth below percentile 5 [4].

There is a consensus on the diagnostic criteria of CdLS with a score greater than 11
on the International Consensus Statement [2], including microcephaly, oligodactyly or
adactyly, congenital diaphragmatic hernia, development delay, intellectual disability, small
hands, short feet, and hirsutism [2].

CdLS type 4 (OMIM # 614701) patients are extremely rare, and their phenotype is
associated with heterozygous variants in RAD21, although it is not fully understood how
variants in this gene cause the syndrome. The most frequent clinical manifestations are
motor developmental delay or intellectual disability, thick arched eyebrows, microcephaly,
synophridia, short anteverted nostrils, and clinodactyly of the fifth finger [6]. Missense
homozygous variants in RAD21 were associated with Mungan syndrome (OMIM #611376).
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In zebrafish, these variants appear to manifest as a loss-of-function effect of the rad21 gene.
This effect showed the partial or complete absence of runx1 expression in the gut during
development. The principal clinical manifestation is a chronic intestinal pseudo-obstruction
without gestalt facies like CdLS [7,8].

RAD21 (Gene ID: 5885, MIM *606462) is located on chromosome 8q24.11, spans
14 exons, and encodes RAD21, a 631-residue protein [9]. This protein is a structural
component of the cohesion complex, which holds sister chromatids together until anaphase,
ensuring the correct chromosomic segregation during mitosis [9], and is highly conserved
in eukaryotes [9–11]. Additionally, RAD21 is involved in the DNA repair progression
of apoptosis, centrosome cycles, gene expression, and hematopoiesis [12–17]. Regarding
cohesion complex function, RAD21 is one of its components, working together with SMC1A,
SMC3, and SSC3, forming a tripartite ring-like structure; therefore, variants in these genes
comprise the etiology of CdL syndrome; see also [11].

In this study, we describe a female patient presenting with short stature, microcephaly,
and other congenital malformations, without intellectual disability. High-resolution chro-
mosome microarray analysis (CMA) showed a previously undescribed de novo heterozy-
gous deletion, comprising several exons in RAD21. This copy number variation (CNV) is
associated with CdLS type 4. We review the previously reported clinical characteristics of
CdLS type 4 patients and compare them with those of the patient in the current study.

2. Results
Clinical Evaluation

The patient, a female aged 13, is the second child of an unrelated couple of Peruvian
origin (27-year-old mother and 32-year-old father). The proband was born via cesarean
section due to preeclampsia, premature rupture of membranes, and pelvic narrowing. The
weight and height at birth were 3190 g (p30) and 52 cm (p86), respectively. Her motor
development and school performance were adequate. At twelve days old, her clinical char-
acteristics were a head circumference of 32 cm (−2.695 SD), micrognathia, hypotelorism,
a short neck, pre-axial polydactyly, and cleft lip and palate. At 2 years of age, the patient
underwent cleft palate repair surgery. At two months, her anthropometry values included
a normal height (59 cm, p98) and microcephaly (HC = 35.5 cm, −3.21 SD). At 3 years of
age, she presented with short stature (98.4cm, −3.346 SD), triangular facies, a broad and
prominent forehead, a bulbous nose, a repaired palate (Figure 1A,B), a bilateral overfolded
helix (Figure 1C,D), bilateral prono-supination limitation (Figure 2A,B), cutis marmorata
(Figure 3A), hypertrichoses with a predominance in the lower limbs (Figure 3B), and over-
lapping toes (Figure 3C). At 12 years of age, a pelvic ultrasound showed a bicornuate uterus
of 4.3 cm. The IGF-1 was low (167 ng/mL; VR 191–482 ng/mL), with post-stimulation
growth to 60 min of 1.85 ng/mL, and to 90 min of 1.81 ng/mL. A full spine X-ray did not
show any alterations, while a forearm X-ray showed diaphyseal curvature of the radius.
At 13 years of age, a full abdomen MRI was performed, which showed a normal upper
abdomen and an arcuate uterus. A TORCH test was negative.

Clinical diagnoses of some genetic diseases were not suspected, although we did not
use any software (e.g., Face2Gene 2.2 ®); furthermore, as a first approach, a karyotype
test was ordered (due to short stature), and a normal result was obtained (46,XX). Be-
cause the patient’s phenotype (the absence of neurodevelopment disorders) was more
likely caused by intragenic variants (single or multiple nucleotides) than a copy num-
ber variation, a high-resolution CMA test was performed. The result (arr[GRCh38]
8q24.11(116845458_116854956)x1) showed a 9499 bp heterozygous deletion in 8q24.11,
comprising six exons (9–14) within RAD21. The carrier status of the parents was deter-
mined via performance of the same high-resolution CMA, which showed no deletion
present in the parents. Subsequently, whole-exome sequencing was performed without
pathogenic or likely-pathogenic single-variant nucleotides.
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Figure 1. (A) The patient with triangular facies and large eyelashes, and without synophrys. (B) The 
palate repaired of the cleft without the uvula; (C) and (D) the overfolded helix and prominent helix. 
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Figure 1. (A) The patient with triangular facies and large eyelashes, and without synophrys. (B) The
palate repaired of the cleft without the uvula; (C) and (D) the overfolded helix and prominent helix.
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Figure 3. (A) The patient with cutis marmorata and hypertrichosis. (B) The presence of hypertrichosis 
of the limbs. (C) Overlapping toes, hallux valgus, and clinodactyly of the fourth and fifth bilateral 
toes. 
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Figure 3. (A) The patient with cutis marmorata and hypertrichosis. (B) The presence of hypertrichosis
of the limbs. (C) Overlapping toes, hallux valgus, and clinodactyly of the fourth and fifth bilateral toes.

3. Materials and Methods
3.1. Ethical Statement

Following the Instituto Nacional de Salud del Niño regulations, informed written
consent was obtained from the patient’s parents.

3.2. Chromosome Microarray Analysis

Genomic DNA was isolated from whole blood using the gSYNC™ DNA Extraction
Kit (Geneaid Biotech Ltd., New Taipei City, Taiwan). Total genomic DNA (100 ng) was
amplified, labeled, and hybridized using CytoScan™ XON array protocols (Thermo Fischer
Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. The array
specifications included 6,550,000 nonpolymorphic markers and approximately 300,000 SNP
markers. CEL files obtained via scanning the arrays were analyzed using Chromosome
Analysis Suite (ChAS) software v4.3 (Affymetrix) and Genome Build GRCh38 (hg38). Gains
that affected a minimum of 50 markers, losses that affected a minimum of 25 markers, and
loss of heterozygosity (LOH) regions that expanded over 5 Mb were initially considered.
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4. Discussion

Chromatinopathies are caused by variants in the proteins responsible for chromatin
remodeling and transcriptional regulation. These variants cause a global deregulation of
gene expression and, consequently, favor the appearance of intellectual disability, delayed
psychomotor development, and behavioral disorders [3]. CdLS is a chromatinopathy
and shares the characteristics previously described with Rubinstein–Taybi, Coffin–Siris,
Wiedemann–Steiner, and KBG syndromes [3].

CdLS is caused by genetic variants in the ring-like cohesin protein complex genes.
The complex comprises two regulators (NIPBL and HDAC8) and four structural proteins
(SMC1A, SMC3, SCC3 and RAD21). Variants in NIPBL have been found in approximately
70% of patients. Variants in other subunits or regulators of the complex are also responsible
for CdLS [3]. The cohesin complex maintains chromatin structure during cell division
and transcription regulation [18]. RAD21 binds to the SMC1-SMC3 heterodimer by its
conserved carboxyl-terminal and amino-terminal protein domain, respectively. RAD21 also
binds SCC3 (SA1/SA2) by its STAG domain [19].

Most variants found in RAD21 are single-nucleotide variants (SNVs). However, several
patients diagnosed with CdLS have been shown to carry CNVs, which span several genes,
including RAD21 [8]. Here, we show a previously undescribed variant, an intragenic
de novo microdeletion which comprises exons 9–14 within RAD21, in a patient with no
pre-established genetic diagnosis. The deletion of these exons generates a truncated protein
that lacks the STAG domain and the C-terminal region, both necessary for the interaction
with SMC1 and the stabilization of the cohesin complex [8]. This gene is haploinsufficient
(ClinGen ® shows LOEUF = 0.26, pLI score = 1, index haploinsufficiency = 4.51, and HI
score = 3), and this deletion has a dominance effect.

To date, including the patient described in the present study, 27 patients with RAD21
variants have been reported. In many of these studies, only the genetic variants have been
described, without the clinical characteristics (Table 1) [6,8,20–29]. It can also be observed
that the distribution of CdLS has been similar among males and females, with the time of
diagnosis having a median of 5.5 years.

The most-described clinical manifestations were microcephaly, broad eyebrows, syn-
ophrydia, long eyelashes, a long philtrum, clinodactyly, and psychomotor developmental
delay (Table 1). From the 27 CdLS cases, 7 were caused by CNVs (deletions including
RAD21), 7 were frameshift variants, 7 were nonsense variants, and the rest were missense
and splicing variants [6,8,20–29]. In one of the reported cases, even though different tech-
nologies were used, such as Face2Gene and the CdLS diagnosis score [28], the variant
described is predicted as “probably benign” according to Varsome and as “uncertain”
according to Franklin [31,32]. Post hoc analysis of the phenotype of our patient did not
show clinical criteria of CdLS.

It is important to highlight that the current commonly used genetic platforms are
incapable of detecting all genetic variants. Moreover, a lack of information and evidence
hinders the classification of most of the variants found in these studies. Until the technology
and analyses are improved, we consider that CMA (normal- and high-resolution) and next-
generation sequencing (NGS) should be used complementarily to synergistically improve
their power of variant detection. Going forward, third-generation sequencing could replace
conventional methods because it can detect almost all types of variants including SNVs
and CNVs, while NGS primarily detects SNVs and CNVs, failing to achieve the same level
of sensitivity as CMA [30].
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Table 1. Clinical characteristics of patients with Cornelia de Lange syndrome type 4.

Deardorff et al. 2012 [19] (n = 6)
Minor et al.

2014 [21]
(n = 2)

Ansari
et al. 2014
[20] (n = 1)

Lee et al.
2014 [22]

(n = 1)

Martínez
et al. 2017
[23] (n = 1)

Boyle et al. 2017 [24] (n = 4)
Yuan et al.
2019 [25]
(n = 2)

Kruszka et al. 2019
[26] (n = 3)

Gudmunson
et al. 2019
[6] (n = 1)

Dorval et al.
2019 [27]

(n = 1)

Latorre-Pellicer
et al. 2020 [28]

(n = 3)
Lei et al.
2020 [29]

(n = 1)

Abarca et al.
2023 [30]

(n = 1)

Total (N = 26)

1 2 3 4 5 6 1 2 1 2 3 4 1 2 1 2 3 1 2 3 (%)

Sex * M * * * * M M F * * F F F F * * F M M M M F F M M F F = 9/M = 9/* = 9
Age (years) * * * * * * 3 12 4 * 26 * * * * * 7 14 2 1.25 5 3 5 8 6 13 Mdn = 5.5
Congenital
microcephaly * + * * * * * * * * * * * * * * * * * * * − * * * * + 2/3 66.7

Small for
gestationatl age * + * * * * + + * * * * * * * * * * * * − − * * * * − 3/6 50

Low weight + + − * − * + − − * * * * * * * * * * * + * * * * + + 4/10 60
Short stature + + − + − * + − − * * * * * * * * − − − − * * * * + + 6/14 42.9
Holoprosencephaly * * * * * * * * * * * * * * * * * + + − * − * * * * − 2/5 40
Microcephaly + + + + + + + + + + * + + * * * * * + + + + * * * * + 17/17 100
Prominent
forehead − * * * − + + − * * * − * * * * * * * * * * * * * * + 3/7 42.9

Braquicephaly + − * * * * − + * * * * * * * * * * * + * * * * * * − 3/6 50
Thick eyebrow + + + + + + + + + + * + * * * * * * + + + + * * * + + 17/17 100
Synophrys + − + + + + + + * * * * * * * * * + * + − + * * * * − 10/13 76.9
Nistagmus − * * * * * + − * * * * * * * * * * * * * * * * * * − 1/4 25
Hyperopia − * * * * * − + * * * * * * * * * * * * * * * * * * − 1/4 25
Long eyelashes + + + + + + − + * + * * * * * * * * * * + + * * * + + 11/14 92.3
Long philtrum − + + + − + − + * * * + * * * * * * + + + + * * * * + 11/14 78.6
Strabismus * * * * * + + − * * * * * * * * * * * * * * * * * * − 2/4 50
Ptosis + * * * + + + − * * * + * * * * * * * * + * * * * * + 7/8 87.5
Micrognathia + − + + − − + − * * * − * * * * * * * * + * * * * + + 7/12 58.3
Cleft palate + − * * + * * * * * * + * * + * + + * * * * + + 8/9 88.9
Broad uvula * * * * * * − + * * * * * * * * * * * * * * * * * * − 1/3 33.3
Short nose + * * * * − + − * * * + * * * * * * * + + * * * * * + 6/8 75
Nares anteverted * * * * * + − + * * * + * * * * * * + * + * * * * + − 6/8 75
Depressed nasal
bridge + + * * * − + − * * * + * * * * * * * * * * * * * + − 5/8 62.5

High nasal bridge * * * * * + − + * * * − * * * * * * * * * * * * * * + 3/5 60
Increased
posterior
angulation of ear

+ * * * * + + − * * * − * * * * * * * * * * * * * * + 4/6 66.7

Low-set ear * * * * * * − + * * * − * * * * * * + + * * * * * * − 3/6 50
Deafness − * * * * * − − * * * * * + + * * * * * − * * * * * − 2/7 28.6
Hirsutism − − * + * − − + * * * * * * * * * * * * * * * * * * + 3/7 42.9
Clinodactyly of
fitth finger + * * − * + + + * * * * * * * * * * + + + + * * * + − 9/11 81.8

Syndactily of 2-3
fingers * * * − * + − + * * * * * * * * * * * * − * * * * * − 2/6 33.3

Overlapping toes
(2-3) * * * − * * + − * * * * * * * * * * * * * * * * * * + 2/4 50

Syndactily of 2-3
toes * * * − + + + − * * * * * * * * * * * * * * * * * * − 3/6 50

Single transverse
palmar crease * * * * * * + − * * * * * * * * * * * * * * * * * * − 1/3 33.3

Radio-ulna
synostosis,
limited elbow
range of motion

+ − * − + * * * * * + + * * * * * − * * * * * + 5/8 62.5

Hemivertebra/butterfly
vertebra + + * * + * * * * * * * * * * − − * * * * * + − 4/10 57.1

Pectus excavatum * * * * − * − + * * * * * * * * * * * * * * * * * * − 1/4 25
Pectus carinatum * * * * + * − − − * * * * * * * * * * * * * * * * * − 1/5 20
Congenital heart
disease * * * * + * * * * * * + * * − * − * * * * * + − 3/6 50

Gastroesophageal
reflux disease + * * * + * − + * * * * * * * * * * + + + + * * * * − 7/9 77.8

Hypospadias * * * * * * + − n/a * * n/a n/a n/a n/a * * n/a * * * * n/a n/a * * n/a 1/2 50
Cryptorchidism * * * * * * + − n/a * * n/a n/a n/a n/a * * n/a * * + * n/a n/a * * n/a 2/3 66.7
Bilateral inguinal
hernia * * * * * * + − n/a * * n/a n/a n/a n/a * * n/a * * * * n/a n/a * + n/a 2/3 66.7

Congenital
diaphragmatic
hernia

* * * * * * * * n/a * * n/a n/a n/a n/a * * n/a * * + * n/a n/a * * n/a 1/1 100

Bifid scrotum * * * * * * + − n/a * * n/a n/a n/a n/a * * n/a * * * * n/a n/a * * n/a 1/2 50
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Table 1. Cont.

Deardorff et al. 2012 [19] (n = 6)
Minor et al.

2014 [21]
(n = 2)

Ansari
et al. 2014
[20] (n = 1)

Lee et al.
2014 [22]

(n = 1)

Martínez
et al. 2017
[23] (n = 1)

Boyle et al. 2017 [24] (n = 4)
Yuan et al.
2019 [25]
(n = 2)

Kruszka et al. 2019
[26] (n = 3)

Gudmunson
et al. 2019
[6] (n = 1)

Dorval et al.
2019 [27]

(n = 1)

Latorre-Pellicer
et al. 2020 [28]

(n = 3)
Lei et al.
2020 [29]

(n = 1)

Abarca et al.
2023 [30]

(n = 1)

Total (N = 26)

1 2 3 4 5 6 1 2 1 2 3 4 1 2 1 2 3 1 2 3 (%)

Penoscrotal
transposition * + * * * * + − n/a * * n/a n/a n/a n/a * * n/a * * * * n/a n/a * * n/a 2/3 66.7

Development
delay − * + * + * + + * * * * * * * * * + + + + − * * * * − 8/11 72.7

Language delay − + + * + * + − * + * * * * * * * * * * * + * * * * − 6/9 66.7
Motor delay − + * * + * + − * * * * * * * * * * * * * − * * * * − 3/7 42.9
Autistic spectrum
disorders − * * * + * + . * * * * * * * * * * * * * * * * * * − 2/4 50

Specific learning
disorders − * * * * * − + * * * + + + + * * * * * * * * * * * − 5/8 62.5

Intellectual
disability − * + + * * * * * * * * * * * * * − − * * * + − 3/7 42.9

ADHD − * * * * * + + * * * * * * * * * * * * * * * * * * − 2/4 50
Cutis marmorata + + * − * − * * * * * * * * * * * * * * * * * * * * + 3/5 60
Preaxial
polydactyly + 1/1 100

Bicornuate uterus + 1/1 100
Clinical scores * * * * * * * * * * * * * * * * * * * * * * * − 10 * *

Variant

8:11
7,70
8,71
3–1
21,0
24,1
93
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This study is the first to show a de novo intragenic deletion in RAD21, detected via
high-resolution CMA, that is associated with CdLS type 4. In addition, the patient described
in this study showed clinical manifestations previously unreported for CdLS type 4 patients,
such as uterus malformations and preaxial polydactylies [6,8,20–29]. These characteristics
could be unusual signs of CdLS or could be the result of other variants, such as SNVs, that
cannot be detected via the techniques used in this study. To test this hypothesis, an NGS
analysis is suggested. However, considering the clinical manifestations, the high-resolution
CMA results obtained for the proband and her parents, and the literature reviewed, we
believe that the CNV found in the present study is likely pathogenic and could cause the
patient’s phenotype.
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