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Abstract: Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity,
and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms
underlying IMF deposition and the development of effective molecular markers have been hot
topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of
regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple
genomic approaches, including genome-wide association studies, whole transcriptome sequencing,
proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome
conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This
review comprehensively and systematically describes genetic and epigenetic factors associated with
IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and
provides promising applications for genetic improvement of meat quality in chicken.

Keywords: chicken; intramuscular fat deposition; genetic variation; non-coding RNA; epigenetic
modification; estrogen

1. Introduction

Intramuscular fat (IMF) content determines meat tenderness, water-holding capacity,
and flavor and serves as an important indicator for meat quality evaluation in livestock
and poultry [1–3]. Intensive selection for poultry based on growth rate and feed efficiency
has resulted in lower IMF content and poorer meat quality, which reduces consumer
acceptability and preference [4–6]. IMF content is a quantitative trait and has a low to
moderate estimated heritability of approximately 0.11–0.16 in chickens [7,8]. Despite a
lower heritability, IMF still distinctly responds to selection [9,10], indicating that a genetic
approach is an effective way to improve IMF deposition in chickens. Hence, it is extremely
important to identify the multifaceted molecular mechanisms, develop effective molecular
markers of IMF deposition, and thus accelerate the genetic improvement of IMF content
in chickens.

IMF deposition is dependent on the proliferation and differentiation of intramuscular
preadipocytes, which is complex and orchestrated by synergistic induction of genetic
factors, endocrine hormones, environmental effects, etc. [11–15]. With the continuous
development and improvement of sequencing technology, new advances have been made in
the molecular mechanisms regulating IMF deposition using different genomic approaches.
This review aims to summarize the current understanding of regulatory factors responsible
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for IMF deposition in chickens at transcriptional, post-transcriptional, and epigenetic scales,
which not only provide a better understanding of molecular mechanisms underlying IMF
deposition but also provide novel insights into the functional biomarkers for improving
meat quality in chickens.

2. Research Status on the IMF Deposition of Chickens

Chicken IMF content is an important factor that affects meat quality. It is an important
selection indicator for poultry breeding, and increasing IMF is an important strategy to
improve meat quality. Therefore, resolving the molecular regulation mechanisms of IMF
deposition and developing effective molecular markers have been popular research topics
in the field of poultry genetic breeding.

2.1. Overview of IMF in Chicken

Adipose tissue development is a process consisting of adipogenesis and cellular accu-
mulation of triglyceride (TG) within lipid droplets [16,17]. According to the distribution
location, adipose tissue is divided into abdominal fat, subcutaneous fat, and IMF. Chicken
IMF is mainly deposited by the proliferation of preadipocytes and an increase in adipocyte
size, i.e., the chicken IMF content depends on the number of cells and lipid deposition ca-
pacity [18]. In previous studies, IMF was mainly composed of triglycerides, phospholipids,
and structural lipids, but the detailed lipid composition of IMF in chickens is unknown [19].
Lipid molecules detected in muscle were classified into four categories: glycerol esters
(GLs), glycerophospholipids (GPs), sphingolipids (SPs), and sterolipids (STs) based on the
recognized lipid MAPS classification method [20,21].

2.2. Candidate Genes That Harbor Expression Correlation with IMF Content

Previous studies revealed the correlations between the expression levels of genes
involving lipid metabolism and IMF content. Li et al. (2008) found that compared with
Jingxing yellow hens, the expression level of adipocyte fatty acid binding protein 4 (A-FABP)
was significantly increased in Beijing You hens, which have higher IMF content, and A-
FABP expression was significantly higher in males than in females [22]. Zhang et al. (2017)
and Zhang et al. (2018) found that the expression levels of adiponectin receptor 1/2
(ADIPOR1/2) and fibroblast growth factor 1/10 (FGF1/10) were positively correlated with
IMF content in the leg muscles of male chickens, whereas other studies on IMF deposition
in Tibetan chickens showed that the mRNA levels of FGF1 and FGF10 were negatively
correlated with IMF content in female chickens [23,24]. Li et al. (2016) found that the
expression level of the secreted frizzled-related protein 5 gene (SFRP5) in the pectoral
and leg muscles of Tibetan chickens correlated with IMF content [25]. Sun et al. (2019)
found that Krüppel-like transcriptional factor 9 (KLF9) is involved in regulating chicken
intramuscular preadipocyte differentiation [26]. These findings indicate that chicken IMF
deposition is influenced by various factors, such as breed, sex, and developmental period.

2.3. Identification of Candidate Genes Controlling IMF Deposition Using Genome-Wide
Association Study

IMF content belongs to a quantitative trait that is regulated by multiple genes. Genome-
wide association study (GWAS) is a powerful tool to identify genetic variation associ-
ated with IMF content at the genomic level, including single nucleotide polymorphism
(SNP), insertion/deletion (InDel), copy number variation (CNV), and quantitative trait loci
(QTL) [27]. According to the chicken QTL database (Release 50, 25 April 2023), there are
three QTLs associated with IMF percentage. For example, Nassar et al. (2013) localized
a QTL for IMF content at GGA14 by genomic scanning of 278 F2 roosters produced from
crosses between New Hampshire and White Leghorn chickens [28]. TYRO3 protein tyrosine
kinase (TYRO3), microsomal glutathione S-transferase 1 (MGST1), kinesin family mem-
ber 2A (KIF2A), and nucleoside-triphosphatase cancer-related (NTPCR) were identified as
genes potentially related to IMF content in the pectoral muscle of the F2 resource population
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of Beijing You chicken and commercial fast Cobb Vantress [29]. Liu et al. (2013) identified
genomic regions that influence IMF content in pectoral muscle by GWAS on meat quality
traits in Beijing oil chickens and identified two potentially related genes, cholecystokinin
(CCK) and toll-interacting protein (TOLLIP) [30]. Based on the genetic structure analysis of
the Jingxing yellow-feathered chicken population selected for high IMF content differentia-
tion in generations 15 and 16, genes and pathways related to IMF were identified, including
acyl CoA synthase long chain family member 1 (ACSL1), acyl CoA dehydrogenase long
chain (ACADL), phospholipid phosphatase 3 (PLPP3), membrane-bound O-acyltransferase
domain 1 (MBOAT1), fatty acid binding proteins 6 and 7 (FABP6 and FABP7), aldehyde de-
hydrogenase 3 family member A2 (ALDH3A2), peroxisome proliferator-activated receptor
(PPAR), the PPAR signaling pathway, the glycerolipid metabolic pathway, and the fatty
acid degradation pathways [8]. In addition, the TG content in muscle largely reflects IMF
content [31]. A GWAS for TG content in 520 selected populations with high IMF content
demonstrated that the solute carrier family 16 member 7 gene (SLC16A7) can promote
TG deposition by regulating de novo lipogenesis and is an important candidate gene
responsible for TG content in chicken muscle tissue [32].

Ye et al. (2010) found that SNPs occurring in the A-FABP and H-FABP genes in male
Beijing oil chickens had a significant effect on IMF (p < 0.05), with chickens with the BB
genotype at the A-FABP gene having significantly higher IMF than those of the AA and
AB genotypes, and chickens with the DD and CD genotypes at the H-FABP gene having
much higher IMF than those of the CC genotype [33]. Shu et al. (2015) found that SNP
(CAPN1 3535) of the CAPN1 gene was significantly associated with meat quality traits, with
higher IMF content in individuals carrying the AA genotype [34]. Cui et al. (2018) found
that two SNPs (G7518A and C7542G) occurring in intron 4 of the calpain 9 (CAPN9) gene
(GenBank accession No. XM_419585) were significantly associated with pectoral muscle
percentage (p < 0.05), and the AA (G7518A) genotype and GG (C7542G) genotype had
the highest IMF content, highest pectoral muscle weight, and lower abdominal fat weight
(AFW) and abdominal fat percentage (AFP) [35]. Wang et al. (2022) demonstrated that
the SNP rs17631638T>C in the ELOVL3 promoter was significantly correlated with IMF
through affecting its expression, and ELOVL3 may promote fat deposition in muscles by
increasing the proportion of long-chain unsaturated glycerol phospholipid molecules in the
breast muscle [36]. Wang et al. (2023) found that C12315T, a synonymous mutation in the
lipoprotein lipase (LPL) gene (XM_015280414.2), was significantly positively correlated with
IMF in the pectoral and leg muscles of Baicheng-You chicken and San-huang chickens [37].
These data indicate that IMF deposition is often subject to complex regulation of multiple
loci (genes).

2.4. Identification of Candidate Genes Controlling IMF Deposition at the mRNA Level

The transcriptomics is widely acknowledged as an effective method to directly identify
candidate genes and regulatory mechanisms associated with IMF deposition at the genomic
level (Table 1). Cui et al. (2012) identified that 3-hydroxymethyl-3-methylglutaryl-CoA
lyase like 1 (HMGCLL1), thrombospondin 1 (THBS1), uncoupling protein 3 (UCP3), enoyl-
CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), and sorting nexin
4 (SNX4) were potential candidate genes that were associated with IMF deposition by
comparative analysis of the pectoral muscle transcriptomes of slow-growing Peking oil
chickens and faster-growing commercial AA broilers [38]. Ye et al. (2014) identified
potential candidate genes associated with IMF deposition by comparative transcriptome
analysis of the leg muscles of 7-week-old normal and sex-linked dwarf chickens, and they
found that IMF deposition in the leg muscles of sex-linked dwarf chickens is partially
regulated by adipocytokines, insulin, and other downstream signaling pathways (TGF-
β/SMAD3 and Wnt/catenin-β pathways) [39]. Qiu et al. (2017) revealed that down-
regulation of solute carrier family 27 member 1 (SLC27A1), also known as fatty acid
transport 1 (FATP1), could reduce CPT1A-mediated fatty acid oxidation and thus promote
IMF deposition in chickens [40].
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Pectoral and leg muscles constitute an overwhelming majority of meat production in
chickens, and studies have shown that the IMF content in the leg muscle is significantly
higher than that in the thoracic muscle [38], but the regulatory mechanism is unclear.
Cui et al. (2018) analyzed differentially expressed genes in the pectoral and leg muscles of
42- and 90-day-old Beijing You chickens and showed that peroxisome proliferator activated
receptor γ (PPARG) and its downstream genes have important regulatory functions for
IMF deposition [41].

As the main component of the IMF, TG largely reflects the IMF content and therefore
plays an important role in IMF deposition [31,42]. Comparative transcriptome analysis of
pectoral muscle tissues from Jingxing yellow chickens with divergent intramuscular TG
content demonstrated that, the expression levels of key genes involved in lipid synthesis,
such as adiponectin, C1Q and collagen domain containing (ADIPOQ), cluster of differ-
entiation 36 (CD36), FABP4, FABP5, cell death-inducing DNA fragmentation factor-like
effector C (CIDEC), LPL, stearoyl-CoAdesaturase (SCD), perilipin 1 (PLIN1), and PPARG,
and genes involving in steroid biosynthesis, such as 24-Dehydrocholesterol Reductase
(DHCR24), Methylsterol Monooxygenase 1 (MSMO1), lanosterol synthase (LSS), NAD (P)
Dependent Steroid Dehydrogenase-Like (NSDHL) and cholesterol 25-Hydroxylase (CH25H)
were significantly higher in the high TG group than in the low TG group; additionally, the
steroid biosynthesis and PPAR signaling pathway played a key role in IMF deposition [43].

Transcriptome analysis of pectoral muscles from Beijing You chickens at different
developmental periods revealed that genes related to energy metabolism, such as acyl-CoA
thioesterase 9 (ACOT9), cholesteryl ester transfer protein (CETP), LPIN1, diacylglycerol
O-acyltrasferase 2 (DGAT2), retinol binding protein 7 (RBP7), fructose-bisphosphatase 1
(FBP1), and phosphorylase kinase regulatory subunit α 1 (PHKA1), could regulate IMF de-
position [44]. Weighted co-expression network analysis of the transcriptomes of Wenchang
chicken pectoral muscle tissue found that IMF deposition in pectoral muscle was associ-
ated with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A
(LDHA), glutathione peroxidase 1 (GPX1), and 1,4-α-glucan branching enzyme 1 (GBE1),
which are involved in pyruvate and citrate metabolism, and carbohydrate metabolism
exerted an important role in IMF deposition [45]. Transcriptomic analysis of the leg muscle
of 60-day-old caged and free-range Luyang woolly bone chickens revealed that IMF de-
position may be associated with upregulated expression of genes involved in the PPAR
signaling pathway, including angiopoietin-like 4 (ANGPTL4), CD36, fatty acid transport
proteins 1 and 4 (FATP1, FATP4), and perilipin 2 (PLIN2) [46]. The binding of glucocorticoid
to its receptors may modulate the ADPNR-PPARα-FATP1 pathway, thereby regulating
the uptake of saturated fatty acids by myocytes [47]. Comparative transcriptomes of the
pectoral and leg muscles of Zhuanghe Dagu chickens and AA broilers demonstrated that
the extracellular matrix-receptor interaction pathway regulates IMF deposition by affecting
the metabolism of intermuscular adipocytes [48]. Based on the transcriptome analysis
of the pectoral muscle tissues of female Jingxing yellow chickens from 12 embryonic to
180 days of age, the hub gene such as ENSGALG00000041996, transcript factor l (3) mbt-like
1 (L3MBTL1), and the transcription factor cofactors TNFAIP3 interacting protein 1 (TNIP1),
histone acetyltransferase 1 (HAT1), and BEN domain containing 6 (BEND6) were identified
as being associated with high breast muscle IMF [49].

Table 1. Candidate genes controlling IMF deposition reported by more than two studies.

Gene and Pathway Function Reference

PPAR pathway Regulate IMF deposition. [8,43,46,50–54]

FATP1

Regulating the uptake of saturated fatty
acids into myoblasts reduces

CPT1A-mediated fatty acid oxidation and
thus promotes IMF deposition in chickens.

[40,47,48,55]

FASN, SREBP1, SCD Involving lipid synthesis [11,43,56,57]
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Table 1. Cont.

Gene and Pathway Function Reference

PPARG Promoting intramuscular adipocyte
differentiation [41,43,58]

H-FABP, A-FABP Positively associated with IMF content and
influenced by chicken gender [22,33,59,60]

ELOVL3

Promote fat deposition in muscles by
increasing the proportion of long-chain

unsaturated glycerol phospholipid
molecules in the breast muscle.

[36,60]

PLIN2 Promote IMF deposition. [46,61]
APOA1 Potential biomarkers for IMF [57,62]

2.5. Non-Coding RNAs Controlling IMF Deposition

Non-coding RNAs, such as circular RNA (circRNA), microRNA (miRNA), and long
non-coding RNA (lncRNA), function as endogenous regulators in lipid metabolism. In-
creasing evidence has suggested the association of non-coding RNAs with IMF deposition
in chickens [63,64]. Fu et al. (2018) constructed the first dynamic miRNA expression
profile of Gushi chicken pectoral muscle tissue at 6, 14, 22, and 30 weeks of age by whole
transcriptome analysis and found that miRNAs such as miR-138-2-3p, miR-103-3p [65],
and miR-15a [66] play key roles in IMF deposition by integration analysis with the mRNA
transcriptome. Li et al. (2019) used weighted gene co-expression network analysis to
identify six gene expression modules that were significantly and positively associated with
IMF traits and identified key candidate genes that influence IMF deposition [67]. Gga-miR-
140-5p promoted intramuscular adipocyte differentiation by targeting retinoid X receptor
γ (RXRG) [68]. MiRNA-223 regulates interstitial adipocyte differentiation by targeting
GPAM [69]. Li et al. (2019) showed that miR-15a promotes intramuscular preadipocyte
differentiation, increases cholesterol and TG accumulation in adipocytes, and regulates
intramuscular fat deposition by targeting sterol carrier protein 2 (SCP2), acetyl-CoA acyl-
transferase 1 (ACAA1), and acyl-CoA oxidase 1 (ACOX1) in chickens [66]. Sun et al. (2019)
performed miRNA-seq by constructing an intramuscular adipocyte differentiation model
and found that gga-miR-18b-3p inhibited chicken intramuscular adipocyte differentiation
by targeting acyl-CoA thioesterase 13 (ACOT13) [70]. Lin et al. (2022) found that miRNA-
24-3p dominated IMF deposition in chickens by promoting the proliferation and inhibiting
the differentiation of intramuscular preadipocytes through blocking the expression of
membrane-associated protein A6 (ANXA6) [71]. Gai et al. (2023) showed that the IMF
content of Beijing-You Chicken (BJY) at 1 d of age was significantly higher than that at later
stages of birth, and miR-6701-3p-PTEN, miR-1563-WWP1, miR-6701-3p-BMPR1B, miR-29c-
3p-PIK3R1, and miR-449c/d-5p-TRAF6 were identified as the key mRNA-miRNA pairs for
regulating IMF deposition [72]. Zhu et al. (2023) found that miR-128-3p inhibited chicken
intramuscular adipocyte differentiation through down-regulation of farnesyl diphosphate
synthase (FDPS) [73]. Guo et al. (2023) found that LncHLEF can not only act as a molecular
sponge to adsorb miR-2188-3p to weaken the inhibitory effect on GATA6, but also pro-
mote hepatic lipid synthesis through its encoded micropeptide and regulate liver-derived
secretion. Increased IMF deposition in chicken muscle is mediated by the body [74].

Although a set of miRNAs and miRNA-mRNA regulatory networks have been identi-
fied in chicken muscle tissue and intramuscular adipocyte cells, their specific effects on IMF
deposition are poorly understood. To date, only a few miRNAs have been functionally char-
acterized in intramuscular adipogenesis in chickens (Figure 1). Zhang et al. (2018) found
that lncRNA IMFNCR adsorbs miR-128-3p and miR-27b-3p through the ceRNA mechanism
to enhance PPARG expression, thereby promoting intramuscular adipocyte differentia-
tion [58]. Comparative transcriptome analysis of chicken pectoral muscles with high and
low IMF content indicated that lncRNA may regulate IMF deposition by mitogen-activated
protein kinase (MAPK), PPAR, gonadotropin-releasing hormone (GnRH), erythroblastic
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leukemia viral oncogene homolog (ErbB), and calcium signaling pathways, as well as
fatty acid elongation and fatty acid metabolism signaling pathways [50]. The dynam-
ics of lncRNA and mRNA expression profiles in the pectoral and leg muscles between
Rose Crown and Cobb broiler embryos displayed that a differentially expressed lncRNA,
lncRNA-46546, significantly increased the expression of 1-acylglycerol-3-phosphate-O-
acyltransferase 2 (AGPAT2) and lipid droplet accumulation in chicken intramuscular
preadipocytes, which might promote IMF deposition in chickens [75]. These studies demon-
strated that miRNA, lncRNA, and circRNAs are important regulators of IMF deposition
in chickens. Zhang et al. (2020) integrated the RNA-seq and miRNA-seq data of chicken
intramuscular adipose tissue and identified that circARMH1, circLCLAT1, circFNDC3AL,
and circCLEC19A potentially modulate adipogenesis by regulating miRNAs through PPAR
and fatty acid metabolic pathways [51]. However, most studies have mainly focused
on miRNAs, and fewer studies have reported on lncRNAs and circRNAs in regulating
IMF deposition.
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Figure 1. Regulatory map of intramuscular fat deposition by miRNAs and lncRNAs. ACAA1, acetyl-
CoA acyltransferase 1; ACOX1, acyl-CoA oxidase 1; SCP2, sterol carrier protein 2; GATA6, GATA binding
protein 6; PPARγ, peroxisome proliferator activated receptor γ; AGPAT2, 1-acylglycerol-3-phosphate-O-
acyltransferase 2; FDPS, farnesyl diphosphate synthase; ACOT13, acyl-CoA thioesterase 13.

2.6. Epigenetic Modificators Controlling IMF Deposition

N-6 methyl adenine (m6A) is an important epigenetic modification of RNA in eu-
karyotic genomes that affects various biological processes [76–79]. Methylation is also an
important epistatic regulator of gene expression [52]. Therefore, changes in methylation
levels of genes related to lipid metabolism may also affect IMF deposition.

Fat mass and obesity-associated (FTO) protein acts as a demethylase, encoded by the
FTO gene, and was found to regulate adipocyte development. Zhang et al. (2016) found
that FTO could promote triglyceride lipid deposition in chicken liver by targeting the re-
moval of m6A modification of the fatty acid metabolism gene carnitine palmitoyltransferase
1A (CPT1) in a model of lipopolysaccharide (LPS)-induced hepatic TG accumulation [80].
Hu et al. (2020) found that hepatic FTO could be activated by cortisol, which promotes
hepatic lipid deposition by activating lipogenic genes (SREBP1, FASN, ACACA, and SCD)
through the effect of m6A-modified demethylation [56]. Feng et al. (2021) constructed a
glucocorticoid receptor (GR)-mediated corticosterone-induced fatty liver syndrome (FLS)
model in chickens and found that hepatic lipid accumulation was increased in laying hens
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fed a low-protein (HELP) diet (p < 0.05), which may be caused by specific clearance of m6A
modifications of FASN, SREBP1, and SCD lipogenesis-related genes [81]. Li et al. (2022)
used different doses of methyl donor betaine and methylation inhibitor cycloleucine to
treat chicken primary preadipocytes and found that m6A modification was negatively cor-
related with chicken preadipocyte production and FTO through demethylation. Chemically
regulates the expression of CTNNBI, thereby promoting adipogenesis [82].

Zhang et al. (2023) conducted RNA immunoprecipitation sequencing (MeRIP-seq)
and RNA sequencing (RNA-seq) analyses on breast and leg tissues from 180-day-old
Jingyuan chickens, revealing differentially methylated genes involved in the regulation
of muscle lipid anabolism, including enoyl-CoA hydratase 1 (ECH1), branched chain
amino acid transaminase 1 (BCAT1), and cytochrome P450 family 1 subfamily B member 1
(CYP1B1) [83]. Yu et al. (2023) demonstrated that the m6A-induced ferroptosis pathway
in breast muscle tissue was a novel target for regulating IMF metabolism and validated
the finding that chicken Leiomodin 2 (LMOD2) and its multiple m6A negative regula-
tory DMGs are potential regulators of differential IMF deposition in muscle [84]. These
provided an important theoretical basis for exploring the functional mechanism of m6A
in IMF deposition in chickens. Zhang et al. (2017) analyzed genome-wide methylation
levels in pectoral muscle tissue at different developmental periods and found that high
IMF levels were associated with downregulation of transcript levels caused by promoter
hypermethylation of ATP binding cassette subfamily A member 1 (ABCA1), collagen type
VI α 1 chain (COL6A1), and glutathione S-transferase theta 1-like (GSTT1L) [85]. These
studies demonstrated that many different genes regulate chicken IMF deposition, among
which the PPAR signaling pathway may play an important role, but the complex molecular
mechanisms are not yet clear.

2.7. Proteomic and Other Histological Research

Previous studies on the mechanisms of IMF deposition in chickens have mainly
focused on the genomic and transcriptomic levels. Technologies such as proteomics,
metabolomics, scRNA-seq, and HiC have been developed and gradually applied to elu-
cidate the molecular mechanisms underlying IMF deposition in chicken. A first study
linking proteomics to IMF deposition shows that Liu et al. (2016) used iTRAQ technology
to analyze the protein expression profiles of the postnatal thoracic muscles of Beijing-You
chickens at different developmental stages and identified that apolipoprotein A1 (APOA1)
and heat shock protein family B (small) member 1 (HSPB1) were potential biomarkers
of IMF deposition [57]. Then, Liu et al. (2017) quantified the proteome and metabolome
of breast muscle of Beijing You chickens and Cobalt broilers at different ages using mass
spectrometry and found that protein processing and PPAR signaling pathways promote
IMF deposition [53]. Tian et al. (2021) used Hi-C technology to study the effect of chromatin
interaction on IMF deposition in the breast muscles of local Chinese chickens and fast-
growing AA broilers and found that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR),
regulated by TAD boundary slip, was a potential biomarker for IMF deposition in the
breast muscles of chickens [86]. A scRNA-seq analysis of chicken breast muscles identified
the APOA1 and collagen type I α 1 chain (COL1A1) genes as biomarkers for chicken IMF
cells [62].

2.8. Hormonal Regulation of Intramuscular Fat Deposition in Chickens

Estrogen is generally considered an important regulator of lipid metabolism. Li et al.
(2021) found that the IMF content was significantly higher in females than in males of
150-day-old Daheng broilers, probably due to the differential expression of some genes
related to lipid metabolism in the muscle and liver of males and females, and that PLIN2
may play a key role [61]. Another important aspect is the existence of interactions between
intramuscular preadipocytes and skeletal muscle satellite cells that are essential for post-
natal skeletal muscle growth and regeneration. Guo et al. (2021) investigated the effect of
intramuscular preadipocytes on chicken myosatellite cells by transcriptome analysis and



Genes 2023, 14, 2197 8 of 12

elucidated that intramuscular preadipocytes may promote their lipid deposition through
the PPAR pathway [54]. Liu et al. (2017) showed that additional energy from the yolk sac is
transported and deposited as IMF in the pectoralis major muscle of chickens at hatching
and that lipid metabolism-related genes and pathways (e.g., TGF-β, PPAR, Hedgehog, and
cytokine-cytokine receptor interaction signaling pathways) promote IMF deposition in the
pectoralis muscle of fast-growing chickens compared with slow-growing chickens [52].
Insulin, a secreted hormone in chickens, can affect the accumulation of body fat in chickens
by influencing the expression of genes related to lipid metabolism [87]. Related studies
have shown that insulin stimulates the expression of adipogenesis-related genes such as
SCD, FASN, and LPL [11,88].

3. Conclusions

Many important candidates, including genes, transcription factors, ncRNAs, and
epigenetic modification factors, have been identified in the regulation of chicken IMF,
which provides a theoretical basis for genetic breeding of high meat quality in chicken. The
PPAR pathway is the key signaling pathway for regulating IMF deposition. FATP1 promotes
IMF deposition in chickens by reducing CPT1A-mediated fatty acid oxidation or involving
the ADPNR-PPARα-FATP1 pathway to regulate the uptake of saturated fatty acids into
myoblasts. ELOVL3 contributes to increasing the proportion of long-chain unsaturated
glycerol phospholipid molecules in the breast muscle. MiR-15a, miR-18b-3p, miR-223,
miR27b-3p, and miR-128-3p were shown to regulate IMF deposition by directly targeting
lipid metabolism-related genes and intramuscular adipocyte differentiation-related genes in
chickens. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponge-
adsorbing miR-128-3p and miR-27b-3p to facilitate PPARG expression. LncHLEF can not
only act as a molecular sponge to adsorb miR-2188-3p to weaken the inhibitory effect on
GATA6, but also promote hepatic lipid synthesis through its encoded micropeptide and
regulate liver-derived secretion. Increased IMF deposition in chicken muscle is mediated
by the body. DNA methylation controls the expression level of COL6A1 to affect IMF
deposition. All these findings show that the formation of IMF is a complex and finely
controlled process regulated by multiple genetic/epigenetic factors. Ultimately, the findings
of the review can provide novel insights into the DNA, mRNA, protein, non-coding RNA,
epigenetic modifiers, and hormone-level regulatory mechanisms of IMF deposition in
chickens. Additionally, these results may facilitate the identification of functional SNPs,
genes, or epigenetic factors as genetic markers for improving the quality of chicken meat in
genetic breeding.
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