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Abstract: A transcriptome profiles the expression levels of genes in cells and has accumulated a huge
amount of public data. Most of the existing biomarker-related studies investigated the differential
expression of individual transcriptomic features under the assumption of inter-feature independence.
Many transcriptomic features without differential expression were ignored from the biomarker lists.
This study proposed a computational analysis protocol (mqTrans) to analyze transcriptomes from
the view of high-dimensional inter-feature correlations. The mqTrans protocol trained a regression
model to predict the expression of an mRNA feature from those of the transcription factors (TFs).
The difference between the predicted and real expression of an mRNA feature in a query sample
was defined as the mqTrans feature. The new mqTrans view facilitated the detection of thirteen
transcriptomic features with differentially expressed mqTrans features, but without differential
expression in the original transcriptomic values in three independent datasets of lung cancer. These
features were called dark biomarkers because they would have been ignored in a conventional
differential analysis. The detailed discussion of one dark biomarker, GBP5, and additional validation
experiments suggested that the overlapping long non-coding RNAs might have contributed to this
interesting phenomenon. In summary, this study aimed to find undifferentially expressed genes
with significantly changed mqTrans values in lung cancer. These genes were usually ignored in most
biomarker detection studies of undifferential expression. However, their differentially expressed
mqTrans values in three independent datasets suggested their strong associations with lung cancer.

Keywords: bioinformatics; differential expression; transcription regulation; lung cancer; mqTrans;
dark biomarker

1. Introduction

Lung cancer is one of the most invasive and lethal cancer types for both females and
males [1,2]. More than 80% of lung cancers are non-small-cell lung cancers (NSCLC) [3],
while the rest comprises small-cell lung cancer (SCLC) [4]. There are three subtypes of
NSCLC [5], i.e., lung squamous-cell carcinoma (LUSC) [6], lung adenocarcinoma (LUAD) [7],
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and large-cell lung cancer [8]. Complicated molecular mechanisms are involved in the
occurrence and progression of different lung cancer subtypes, and various diagnosis and
treatment technologies have been developed based on these molecular mechanisms [9].

Biomedical imaging technologies undergo rapid developments to serve as a non-
invasive diagnosis tool for malignant lesions like lung cancer. Mammography is a popular
technology for detecting pulmonary nodules in lung cancer [10] and nodular breast lesions
in breast cancer [11], but its usage in diagnosing lung cancer is limited [12]. Magnetic
resonance imaging (MRI) uses a power magnetic field to create a 3D picture inside the
body without radiations like X-rays, and it is very sensitive to the detection of internal
inflammation lesions [13]. Low-dose computed tomography (LDCT) has been widely used
in the diagnosis of lung cancer, especially in screening small peripheral pulmonary nodules
and early-stage adenocarcinoma [14]. Positron emission tomography (PET) scans can
reveal the metabolic status inside the body and are usually integrated with the computed
tomography (CT) technology to create 3D PET/CT images of internal lesions [15].

A transcriptome is a set of the expression levels of the transcribable regions in the
genome using microarray or sequencing technologies [16], and it is one of the most popular
OMIC data types with abundant publicly available datasets [17]. The transcriptome has
been extensively used in the biological investigation of lung cancers [2]. Transcription
factors (TFs) bind to sequence-specific genomic regions and regulate the expression levels
of various transcripts [18]. A precise investigation of how the TFs are involved in the
onset and development of lung cancers facilitates the detection of candidate therapeutic
targets and improves the prognosis of lung cancers. The transcription factor STAT3 (signal
transducer and activator transcription 3) is kept constitutively expressed and could be
related to the tumorigenesis of lung cancer [19]. Another transcription factor, Pokemon (a
central regulator of an important tumor suppressor gene, ARF), is expressed in non-small-
cell lung cancers (NSCLC) by acting on the upstream regions of multiple proto-oncogenes
and tumor suppressor genes [20]. The expression level of the well-known prognostic
biomarker PD-L1 shows a strong correlation with the survival of multifocal lung cancer
patients [21].

Our hypothesis is that previous studies have ignored many undifferentially expressed
genes, whose transcription regulation may be quantitatively altered in a phenotype. We
use the recently developed algorithm mqTrans [22,23] to quantitatively measure the tran-
scription regulation machinery in healthy samples. Then, we screen three lung cancer
datasets for undifferentially expressed genes whose quantitative transcription regulation
is significantly altered in lung cancer samples compared to those in the healthy controls.
The inter-feature correlations of these genes show significant associations with lung cancer,
but these genes do not show differential expression themselves in one or more datasets.
We call these genes the dark biomarkers of lung cancers, because their mqTrans values are
substantially changed between the lung cancer samples and the controls, although their
original expression levels remain undifferentially expressed.

2. Materials and Methods
2.1. Summary of the Datasets

We collected three datasets—GSE33356/GSE18842/GSE30219—from the Gene Ex-
pression Omnibus (GEO) database [24] for screening and independently validating un-
differentially expressed genes with altered transcription regulation in lung cancer. All
the three datasets were transcriptomes profiled on the platform GPL570 [25]. There were
54,675 transcriptomic features per sample, and they were annotated as the mRNA gene
features or transcription factor (TF) features based on the annotations of gene symbols in
the platform annotation release 36 of the Human Genome U133 Plus 2.0 Array and the
database Human TFDB [26]. Dataset GSE33356 consisted of 60 lung cancer samples and
60 healthy controls. There were 46 lung cancer and 45 control samples in dataset GSE18842.
The third dataset, GSE30219, had 293 lung cancer samples and 14 controls. The datasets
were retrieved from the GEO database after a standard preprocessing step [24].
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We used 70% of the healthy control samples of dataset GSE33356 to train the mqTrans
model and evaluated the mqTrans features on 100% of the lung cancer samples and the
remaining 30% of the controls in the same dataset. The results were further screened
with two independent datasets, GSE18842 and GSE30219. The detailed description of the
experimental procedure is discussed in the following sections.

2.2. Expression Prediction Using Upstream TFs

Gene expression is strictly controlled by the transcription regulation machinery, and
this study assumes that a gene’s expression level may be formulated as a regression model
of the TFs’ expression levels.

Such a regression model is defined as a linear regression function [27] between the
expression levels of one mRNA gene and multiple TFs, i.e., LinearR(mRNA) = W0 + W1 ×
TF1 + . . . + Wn × TFn, where Wi is the weight of TFi, and W0 is a constant. The algorithm is
implemented using the LinearRegression function of the package sklearn.linear_model [28]
in the Python programming language version 3.8.

The Pearson correlation coefficient (PCC) is used to ensure the quality of regression
models. Let the predicted and real expression levels of a gene F be mRNA’(F) and mRNA(F).
The gene is kept for further screening only if PCC(mRNA’(F), mRNA(F)) > 0.5. Another
metric, the root mean square error (RMSE), has been also popularly used to measure the av-
erage difference between a model’s predicted and actual values. This study follows [29,30]
in using the PCC to measure the correlation between the predicted values and the original
expression levels of an mRNA gene.

2.3. Calculation of the mqTrans Features

This study hypothesized that the transcription regulation of some genes was quan-
titatively maintained among healthy control samples and that the altered transcription
regulation of a gene could be quantitatively measured from the difference of this gene’s
real expression level to the predicted level using a regression model trained on the healthy
controls. Therefore, the difference between the predicted and real expression levels of a
gene F is defined as the engineered mqTrans feature, as follows: mqTrans(F) = |mRNA’(F)
− mRNA(F)|. The mqTrans model was trained using the healthy control samples, and
the predicted expression level of a screened gene F was ensured to be highly correlated
with the real level using a PCC(mRNA’(F), mRNA(F)) > 0.5. So, a gene F’s mqTrans feature,
mqTrans(F), tends to be close to zero if this gene’s transcription regulation in the current
query sample is quantitatively maintained in the same pattern as the training healthy
samples [23].

This study engineered the mqTrans features of the testing samples for all the original
features using the trained regression mqTrans models and the high correlations between
the predicted and real expression levels in the training samples.

The differential expression was evaluated between the lung cancer (positive) and
healthy control (negative) samples using the p-value of a t-test [31]. The statistical t-test
was implemented using the function ttest_ind_from_stats of the package scipy.stats in the
Python programming language version 3.8. A feature was supposed to be significantly
associated with lung cancer if its t-test p-value < 0.05. The lung cancer and control samples
were evaluated in both the original and mqTrans feature spaces.

2.4. Experimental Design

This study plans to screen for the transcriptomic features that are not differentially
expressed in lung cancer samples but whose transcription regulation is significantly altered
in lung cancer, as illustrated in Figure 1. We firstly train mqTrans models using 70% of the
healthy controls in dataset GSE33356 and ensure the regression qualities with a requirement
of PCC(mRNA’(F), mRNA(F)) > 0.5, where mRNA’(F) and mRNA(F) are the predicted and
real expression levels of a gene F. Then, we calculate the mqTrans features for those
transcriptomic features with the above-trained mqTrans models.



Genes 2023, 14, 2169 4 of 17

Genes 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

2.4. Experimental Design 
This study plans to screen for the transcriptomic features that are not differentially 

expressed in lung cancer samples but whose transcription regulation is significantly 
altered in lung cancer, as illustrated in Figure 1. We firstly train mqTrans models using 
70% of the healthy controls in dataset GSE33356 and ensure the regression qualities with 
a requirement of PCC(mRNA’(F), mRNA(F)) > 0.5, where mRNA’(F) and mRNA(F) are the 
predicted and real expression levels of a gene F. Then, we calculate the mqTrans features 
for those transcriptomic features with the above-trained mqTrans models.  

 
Figure 1. Flowchart of the experimental design of this study. 

We screen two groups of dark biomarkers, as shown in Figure 1. We define a 
transcriptomic feature as a dark biomarker between the disease group and the control 
group if its original values are not differentially expressed (p-value(Original) > 0.05) and 
its mqTrans values are differentially expressed (p-value(mqTrans) < 0.05). A strong dark 
biomarker meets the dark biomarker requirement in all the investigated datasets, while a 
weak dark biomarker only meets the requirement in one dataset and has a p-
value(Original) > 0.5 in the same dataset. 

3. Results and Discussion 
3.1. Data Preprocessing 

This study screened the dark biomarkers of lung cancer samples in three independent 
datasets (GSE33356, GSE18842, and GSE30219). The transcriptomic features without 
annotations in the “Gene Symbol” of the platform data of GPL570 were excluded. Among 
the remaining 45,782 features, 3501 features were annotated as the transcription factor 
(TF) features based on the information from the database Human TFDB [26]. The 
transcriptomic data were normalized to [0, 1] [32]. 

The above section, “Summary of the Datasets”, showed that dataset GSE33356 has 
the largest number of healthy control samples. So, 70% of the healthy controls in this 
dataset were randomly retrieved to train unsupervised mqTrans models. The remaining 
samples of dataset GSE33356 were used as the testing dataset. The other two datasets, 
GSE18842 and GSE30219, were used to independently test the detected biomarkers.  

3.2. The Quantitative Transcription Regulatory Models 
Many OMIC data sources can be integrated to computationally calculate a gene’s 

expression [33]. Sequence features have been previously explored for their correlations 

Figure 1. Flowchart of the experimental design of this study.

We screen two groups of dark biomarkers, as shown in Figure 1. We define a transcrip-
tomic feature as a dark biomarker between the disease group and the control group if its
original values are not differentially expressed (p-value(Original) > 0.05) and its mqTrans
values are differentially expressed (p-value(mqTrans) < 0.05). A strong dark biomarker
meets the dark biomarker requirement in all the investigated datasets, while a weak dark
biomarker only meets the requirement in one dataset and has a p-value(Original) > 0.5 in
the same dataset.

3. Results and Discussion
3.1. Data Preprocessing

This study screened the dark biomarkers of lung cancer samples in three independent
datasets (GSE33356, GSE18842, and GSE30219). The transcriptomic features without an-
notations in the “Gene Symbol” of the platform data of GPL570 were excluded. Among
the remaining 45,782 features, 3501 features were annotated as the transcription factor (TF)
features based on the information from the database Human TFDB [26]. The transcriptomic
data were normalized to [0, 1] [32].

The above section, “Summary of the Datasets”, showed that dataset GSE33356 has the
largest number of healthy control samples. So, 70% of the healthy controls in this dataset
were randomly retrieved to train unsupervised mqTrans models. The remaining samples
of dataset GSE33356 were used as the testing dataset. The other two datasets, GSE18842
and GSE30219, were used to independently test the detected biomarkers.

3.2. The Quantitative Transcription Regulatory Models

Many OMIC data sources can be integrated to computationally calculate a gene’s
expression [33]. Sequence features have been previously explored for their correlations
with the gene expression levels in Caenorhabditis elegans via a Bayesian probabilistic
framework [34]. TF-binding statuses with the ChIP-seq and chromatin data have been
integrated in a regression model to predict gene expression [35]. Deep learning algorithms,
like convolutional neural network (CNN), have been used to consolidate the cis signals
in promoters and distal regulatory regions for the prediction of cell-type-specific gene
expression [36]. But, the transcriptome is one of the OMIC types with the most abundant
public datasets and open-source analysis tools [22,23,37].

We screened for mqTrans regression models trained in a dataset A with PCC > 0.5
between the predicted and real expression levels in a dataset B, as shown in Figure 2. A
threshold PCC > 0.5 has been previously used to determine the co-expression patterns of
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two biological molecules [38]. There were 5820 mqTrans regression models achieving a
PCC > 0.5 in dataset B. A total of 2396 and 1146 of these models kept achieving a PCC > 0.5
in the two datasets C and D, respectively. There were 116 mqTrans models achieving a
PCC > 0.9 on the validating samples of the same dataset, GSE33356. Even on the two inde-
pendent testing datasets C (GSE18842) and D (GSE30219), 49 and 24 mqTrans regression
models achieved a PCC > 0.9 between the predicted and real expression levels.
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Figure 2. The distribution of the PCC values of the transcriptomic features with a PCC > 0.5 in
all four datasets. Dataset A consists of the 70% randomly chosen healthy control samples from
dataset GSE33356 for training the mqTrans models, and the remaining samples of dataset GSE33356
constitutes dataset B. Datasets C and D represent datasets GSE18842 and GSE30219.

3.3. Differential Transcription Regulation Analysis

The engineered mqTrans features were screened for their differential representations
between the two groups of lung cancer and healthy control samples. The mqTrans feature
of the original transcriptomic feature F in a query sample S was defined as mqTrans(F)
= |mRNA’(F) − mRNA(F)|, where the transcriptomic value of F was mRNA(F), and its
predicted expression was mRNA’(F). The expression prediction model was trained using
the healthy controls. So, the engineered mqTrans(F) quantitatively measured the change of
the F’s transcription regulation in the query sample S compared with the training group of
the healthy control samples.

A differential transcription regulation (DeTouR) analysis was conducted to calculate
the differential representations of the mqTrans features between the two groups of lung
cancer and healthy control samples using the above formulations. The mqTrans regres-
sion models were trained using randomly extracted healthy controls, and the differential
analysis used 0.05 as the significance threshold of the t-test p-values.

There were 1880, 1278, and 381 features with a significantly altered transcription
regulation in the three datasets B/C/D, as shown in Figure 3. We called them the DeTouR
features. There were about 1/3 of mqTrans features whose transcription regulation was
significantly altered in the two datasets B (32.30%) and D (33.25%), respectively. More
than half (53.34%) of the mqTrans features in dataset C were differentially transcriptionally
regulated. There were even 80, 452, and 79 mqTrans features with DeTouR p-values < 0.05
in the three datasets B/C/D, respectively.

3.4. DeTouR Features Ignored by a Conventional Differential Analysis

We further screened the DeTouR features that would have been ignored in a conven-
tional differential analysis. Most of the existing biomarker detection studies evaluate the
differential significance of a given feature between two groups of samples using a statisti-
cal test like the t-test [39]. Many features with a statistical significance of p-values > 0.05
would be ignored, with the assumption that these features are not associated with the
investigated phenotypes.
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We focused on those DeTouR features whose original expression was not differentially
expressed in the respective datasets, as shown in Table 1 and in Supplementary Table S1.
The PCC values in Table 1 show that the expression levels of these DeTouR features were
confidently predicted. Two DeTouR features, 208296_x_at and 229625_at, were detected to
be differentially represented in the mqTrans level but not in the original expression level in
all three datasets B, C, and D. The mqTrans features of these two features were differentially
expressed in the lung cancer samples (p-values < 0.05), while their original expression levels
were not (p-values > 0.05) in all three datasets B, C, and D. The original expression levels of
229625_at were almost identical between the two groups of lung cancer and healthy control
samples in the two datasets GSE33356 (p-value = 7.42 × 10−1) and GSE30219 (p-value
= 6.40 × 10−1). These two features were regarded as strong dark biomarkers from the
mqTrans view of all three datasets B, C, and D, although they would have been ignored by
a conventional differential expression analysis using any of these three datasets. If we had
used a conventional t-test to rank these features, both of these two strong dark biomarkers
would have ranked lower than 5000 in all three datasets, dbB/dbC/dbD (Supplementary
Table S1). Most studies would not investigate such lowly ranked features.

We observed that some DeTouR features had very large p-values at their original ex-
pression levels. So, we included 11 additional DeTouR features as the weak dark biomarkers
if their original expression levels had p-values > 0.5 in at least one dataset. For example,
the original expressions of DeTouR feature 225107_at showed almost identical distribu-
tions between the lung cancer and healthy control samples, with a p-value = 9.54 × 10−1

in dataset B. Another DeTouR feature, 203954_x_at, showed highly similar distributions
between the lung cancer and healthy control samples in the original expression levels in the
two datasets C (p-value = 6.33 × 10−1) and D (p-value = 2.84 × 10−1). These 11 additional
features could have been ignored in a conventional differential analysis, at least in some
datasets, and were regarded as the weak dark biomarkers.

We performed a functional enrichment analysis and a protein–protein interaction
network assessment for the 13 dark biomarker genes associated with lung cancer. For
the functional enrichment analysis, we used the KEGG rest API (https://www.kegg.jp/
kegg/rest/keggapi.html, accessed on 1 November 2023) to obtain the latest gene anno-
tations of the KEGG pathway as the background, mapped the dark biomarker genes to
the background set, and performed an enrichment analysis using the R software package
clusterProfiler (version 3.14.3) [40] to obtain the gene set enrichment results. The minimum
gene set size was set to five, and the maximum gene set size was set to five thousand,
with a p value < 0.05. Protein–protein interaction (PPI) analyses were conducted utilizing
the online STRING database [41], which provides functional protein association networks

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
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(https://cn.string-db.org/, accessed on 1 November 2023). Additionally, the protein inter-
action mapping was performed using the Cytoscape local client (Cytoscape_v3.6.1). The
results in Figure 4 show that there were ultimately seven dark biomarkers identified to
interact with genes within the TNF signaling pathway, which is actively involved in the
development and metastasis of lung cancer [42–44].

Table 1. Two types of dark biomarkers were detected in the three lung cancer datasets. There are
“Strong” and “Weak” dark biomarkers indicated in the column “Type”. The next two columns,
“Feature” and “Gene”, give the transcriptomic ID and gene symbol of the detected dark biomarkers.
The three columns dbB/dbC/dbD indicate whether the feature satisfy the definition of a dark
biomarker in datasets B/C/D, respectively. If the feature is a dark biomarker in a dataset, the
corresponding column gives a value of 1. The three columns PCC-B/PCC-C/PCC-D indicate the
PCC values in datasets B/C/D, respectively.

Type Feature Gene dbB PCC-B dbC PCC-C dbD PCC-D

Strong 229625_at GBP5 1 0.5057 1 0.7275 1 0.8095

Strong 208296_x_at TNFAIP8 1 0.5395 1 0.6465 1 0.6792

Weak 228865_at C1orf116 1 0.5920 0 0.7263 0 0.5173

Weak 219856_at C1orf116 1 0.5043 0 0.5716 0 0.5186

Weak 225786_at HNRNPU-
AS1 1 0.8405 0 0.7996 1 0.6197

Weak 225107_at HNRNPA2B1 1 0.9013 0 0.7447 0 0.7005

Weak 225932_s_at HNRNPA2B1 1 0.7947 0 0.6915 0 0.6522

Weak 203954_x_at CLDN3 0 0.5682 1 0.5222 1 0.5282

Weak 221088_s_at PPP1R9A 1 0.5592 0 0.5708 1 0.6123

Weak 204994_at MX2 0 0.6886 1 0.6834 1 0.6351

Weak 211689_s_at TMPRSS2 1 0.5350 0 0.5364 0 0.5124

Weak 205583_s_at ALG13 1 0.8589 0 0.7153 0 0.5303

Weak 205001_s_at DDX3Y 1 0.9180 0 0.7524 1 0.7513
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3.5. Differential Patterns in the Two Levels

The original expression levels of all 13 dark biomarkers showed limited differences
between the lung cancer and healthy control samples, as shown in Figure 5A. If we took
the ratio of the average values between the lung cancer and healthy control samples (P/N
ratio) to measure the difference of a feature between these two sample groups, the original
expression levels of these 13 features would have P/N ratios between [0.9752, 1.1824],
[0.6864, 1.1033], and [0.6626, 1.0762] in the three datasets B, C, and D, respectively. These
13 features showed much larger changes in the engineered mqTrans levels than those
in the original expression levels, illustrated via the distributions of the t-test p-values
(Supplementary Figure S1). The minimum and maximum P/N ratios of these mqTrans
features reached 1.6559 and 3.3574 in dataset B. Similar increased changes were observed
in the other two datasets. We used the online tool shinyCircos to visualize the distribution
of the thirteen dark biomarkers [45], and we observed that these dark biomarkers were
distributed across six chromosomes (Figure 6). There were four dark biomarkers in each of
the two chromosomes 1 and 7. The two strong dark biomarkers, GBP5 and TNFAIP8, were
in chromosomes 1 and 5.

Figure 5. Comparison of the 13 dark biomarkers from both the original expression and mqTrans
levels. (A) The original expression levels and (B) the mqTrans levels of these 13 dark biomarkers
are displayed. The two strong dark biomarkers are on the left-most part. The horizontal axis lists
the 13 dark biomarkers. The vertical axis illustrates the values of the respective feature levels. The
data series B-P and B-N are the lung cancer and healthy control samples in dataset B. The other four
data series, C-P, C-N, D-P, and D-N, are defined for the lung cancer and healthy control samples in
datasets C and D, respectively.
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Figure 6. Circos plot of the 13 dark biomarkers in the human genome. The dark biomarkers
are represented with the genes where they reside. The two strong dark biomarkers 229625_at
(gene GBP5) and 208296_x_at (gene TNFAIP8) are highlighted in a larger size and red color. The
two dark biomarkers 228865_at and 219856_at are both within the gene C1orf116, and they are
denoted as C1orf116-a and C1orf116-b, respectively. Another pair of dark biomarkers, 225107_at and
225932_s_at, are from gene HNRNPA2B1, and they are denoted as HNRNPA2B1-a and HNRNPA2B1-
b, respectively. The Circos plot was generated using the online version of shinyCircos.

A large-scale evaluation of the expression patterns of the two strong dark biomarkers
GBP5 and TNFAIP8 across different human organs was conducted (Supplementary Figure
S2). The GTEx Portal [46] visualized the gene expression profiles across most human
organs, and Supplementary Figure S2a,b illustrates that these two dark biomarkers, GBP5
and TNFAIP8, showed relatively high expression levels in the lung compared to the other
organs. We further investigated how these two genes were expressed in different cancer
types compared against their matched normal samples (Supplementary Figure S2c,d). The
visualizations were retrieved from the GEPIA database [47] using the TCGA data [48].
Both strong dark biomarkers had increased expression levels in tumor samples of many
cancer types, including DLBC (lymphoid neoplasm diffuse large B-cell lymphoma), GBM
(glioblastoma multiforme), OV (ovarian serous cystadenocarcinoma), PAAD (pancreatic
adenocarcinoma), SARC (sarcoma), and TGCT (testicular germ cell tumors). But, GBP5 and
TNFAIP8 were expressed at similar levels between the tumor and normal samples in the
two lung cancer subtypes LUAD (lung adenocarcinoma) and LUSC (lung squamous-cell
carcinoma), which confirmed our computational analysis results.

Figure 7 illustrates the dot plots of the lung cancer and healthy control samples
on the original expression and mqTrans levels. The original expression levels of these
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13 features did not separate the lung cancer samples from the healthy controls. But, the
top two principal components [49] based on the 13 corresponding mqTrans features clearly
separated the lung cancer samples from the healthy controls. Figure 7 indicates that useful
information is carried by these dark biomarkers which might be ignored in a conventional
differential analysis.

3.6. Validation of the Dark Biomarkers on an Independent Dataset

We conducted an additional validation experiment of the detected dark biomarkers
in independent datasets. A comprehensive screening was carried out for the lung cancer
datasets in the GEO database [24]. We found four new GPL570-based datasets with at least
100 samples, i.e., GSE115458, GSE18385, GSE33532, and GSE19188. Datasets GSE115458
and GSE18385 had no normal control samples. Dataset GSE33532 consisted of only twenty
patients with diagnosed early-stage non-small-cell lung cancer (NSCLC), and each patient
had four tumor sub-samples and one matched normal lung tissue sample. Therefore, we
could only obtain one independent validation dataset, GSE19188.
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The same mqTrans protocol confirmed the three dark biomarkers in Table 1 using the
independent validation dataset GSE19188. The strong dark biomarker 229625_at (gene
symbol: GBP5) showed a significant association (mqTrans-p = 3.54 × 10−3) with lung cancer
in dataset GSE19188, while its original expression maintained very stable expression levels
with a p-value = 0.9113 between the two groups of lung cancer and control samples. The
weak dark biomarker 203954_x_at (gene symbol: CLDN3) also showed stable expression
levels (p-value = 0.6916) between the lung cancer and control samples, while its mqTrans
values were significantly associated with lung cancer (mqTrans-p = 4.34 × 10−3). The other
weak dark biomarker 204994_at (gene symbol: MX2) had similar patterns in the dataset.

3.7. Biological Observation of the Strong Dark Biomarker GBP5

The strong dark biomarker GBP5 encodes the Guanylate-Binding Protein 5 [50] and is
actively involved in the innate immune system and the interferon γ signaling pathway [51].
GBP5 was recently observed to be significantly differentially expressed in liver cells under
different interferon γ treatments and may potentially facilitate the finding of effective
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treatment for the Hepatitis B Virus (HBV) [52]. Recent studies also found that GBP5,
together with a few other genes, served as an ideal and stable diagnosis biomarker set for
pulmonary tuberculosis (TB) [53].

Although no literature supported any connections between GBP5 and lung cancer,
its co-transcribed paralog GBP1 was observed to be involved in lung adenocarcinoma
(LUAD). Yamakita et al. experimentally demonstrated that GBP1 facilitated the metastasis
process of LUAD and that its expression needed to be actively repressed to control the
LUAD’s progression [54]. The resistance to the first-line erlotinib treatment of LUAD might
be promoted by the up-regulated GBP1 expression [55]. The close correlation of GBP1
with advanced LUAD’s profiles was successfully utilized in the prognosis prediction and
management of LUAD patients [55].

A curation of the long non-coding RNAs’ overlapping with the 13 dark biomarker
features was collected from the LncBook database [56] (the phenotype “Lung cancer”
in Supplementary Table S2). GBP5 has an antisense long non-coding RNA (lncRNA),
HSALNG0005054, without detailed investigations in the literature. HSALNG0005054
was only transcribed in infant (after 18 weeks) and elderly livers and had no detectable
expression in newborn or adolescent livers [57]. No expression was detected in the devel-
opment of the other six organs. The data suggested that this lncRNA was under a precise
transcription regulation of its functions.

This study analyzed three independent datasets to show that the expression levels
of GBP5 did not show differential expression in lung cancer but that its quantitative
correlations with its upstream TFs were significantly altered. Combined with the above
observations in the literature, how GBP5 is involved in the onset of lung cancer might be
worth further experimental investigations.

3.8. RNA-Seq Dark Biomarkers of Late-Stage LUAD and LUSC

We evaluated the proposed mqTrans protocol on the dark biomarkers of late-stage
lung cancer using the RNA-seq transcriptomes from The Caner Genome Atlas (TCGA)
database [48]. Due to the fact that the number of control samples is extremely small in the
TCGA database, this section focused on the two classes of early- and late-stage lung cancer.
The two subtypes lung adenocarcinoma (LUAD) and lung squamous-cell carcinoma (LUSC)
of lung cancer were used for the evaluation. Stages I and II were denoted as early-stage
lung cancer, and stages III and IV were the late-stage cancer samples. Only the samples
with annotations of the stages I/II/III/IV were used for the analysis in this section. We
randomly extracted 70% of the early-stage samples to train the regression models and
conducted a Kaplan–Meier (KM) survival analysis based on the original expression and
the mqTrans values of the detected dark biomarkers of each lung cancer subtype [58].

Supplementary Table S3 shows that fourteen and two dark biomarkers were detected
for the late-stage LUAD and LUSC samples, respectively. Their overlapping lncRNAs
are listed in the phenotypes “Late LUAD” and “Late LUSC” in Supplementary Table S2.
The transcription regulation of these 16 dark biomarkers was significantly altered in the
late-stage lung cancer samples, while their original expression levels remained unchanged
compared to the early-stage samples. It is interesting to observe that the novel transcript
ENSG00000267249 (gene symbol: RP11-973H7.3) maintained very stable expression levels
(raw-p = 0.4012) between the early- and late-stage LUAD samples, while it showed signifi-
cantly different mqTrans values (mqTrans-p = 8.28 × 10−4). ENSG00000267249 also showed
very stable expression levels across different human organs, while it was highly expressed
in the brain cerebellar hemisphere and the brain cerebellum (Supplementary Figure S3)
based on the UCSC Genome Browser [59]. This gene had no orthologs across rats, zebrafish,
and flies. So, ENSG00000267249 might be a good candidate for the investigation of how
human-specific lung adenocarcinoma develops, since this gene has received very limited
attention in the literature.

We further investigated how the mqTrans features could improve the Kaplan–Meier
(KM) survival analysis of lung cancer compared to the original expression levels of these
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dark biomarkers, as shown in Figure 8 and in Supplementary Figure S4. The KM analysis
excluded the samples without death time and with missing values in these dark biomarker
genes. We divided all the samples into high-risk or low-risk groups using the same method
as in [58]. The KM survival analysis was conducted on the original expression levels and
the mqTrans values of each dark biomarker gene. Figure 8 illustrates that the original
expression levels of the novel transcript ENSG00000267249 had no capability in discrimi-
nating the high-risk and low-risk groups of LUAD patients (p = 0.7000), while its mqTrans
values showed a much improved statistical significance (p = 0.0051) in discriminating the
high-risk LUAD patients from the low-risk group. The statistical significance of the KM
plot of this gene was on the same level as in [58]. Similar patterns may be found in the KM
analysis of all the 16 detected dark biomarkers of lung cancer in Supplementary Figure S4.

Genes 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

capability in discriminating the high-risk and low-risk groups of LUAD patients (p = 
0.7000), while its mqTrans values showed a much improved statistical significance (p = 
0.0051) in discriminating the high-risk LUAD patients from the low-risk group. The 
statistical significance of the KM plot of this gene was on the same level as in [58]. Similar 
patterns may be found in the KM analysis of all the 16 detected dark biomarkers of lung 
cancer in Supplementary Figure S4. 

 
(a) (b) 

Figure 8. Kaplan–Meier (KM) survival analysis of the dark biomarker ENSG00000267249 (gene 
symbol: RP11-973H7.3) in the LUAD experiment. The KM plots of (a) the original expression levels 
and (b) the mqTrans values of this dark biomarker are generated for LUAD, respectively. 

3.9. Overlapping lncRNAs Could Be a Disturbing Factor 
Many genes overlapped with lncRNAs, and the transcripts of both an mRNA gene 

and its overlapping lncRNAs could not be easily discriminated. We collected the known 
lncRNAs overlapping with the detected dark biomarkers in the three experiments from 
the LncBook database [56] (Supplementary Table S2). We can see that most of the detected 
dark biomarkers have overlapping lncRNAs.  

We took the gene STIM2 (Stromal Interaction Molecule 2) as an example. STIM2 was 
a dark biomarker associated with late-stage LUAD and overlapped with one sense and 
three antisense lncRNAs, as shown in Supplementary Table S2. The LncBook database 
proposed a novel approach to calculate the expression levels of some lncRNAs whose 
transcripts were discriminable from the overlapping genes [56]. The lncRNA 
HSALNG0033503 resided completely within the region of STIM2, and it had medium 
expression levels in 42.14% of the 337 biological conditions in the LncBook database. The 
three antisense lncRNAs, HSALNG0033504, HSALNG0033505, and HSALNG0033510, 
also showed a recognizable expression in many biological conditions. Considering the 
technical limitations of many existing expression calculation approaches, we proposed 
that the lncRNAs overlapping with an mRNA gene might have contributed transcripts 
disturbing the precise determination of this gene’s expression level. 

4. Conclusions 
This study proposed a computational protocol for analyzing transcriptomes from the 

view of high-dimensional inter-feature correlations. The mqTrans regression models 
employed also ensured the explainability of the engineered features. The demonstrative 

Figure 8. Kaplan–Meier (KM) survival analysis of the dark biomarker ENSG00000267249 (gene
symbol: RP11-973H7.3) in the LUAD experiment. The KM plots of (a) the original expression levels
and (b) the mqTrans values of this dark biomarker are generated for LUAD, respectively.

3.9. Overlapping lncRNAs Could Be a Disturbing Factor

Many genes overlapped with lncRNAs, and the transcripts of both an mRNA gene
and its overlapping lncRNAs could not be easily discriminated. We collected the known
lncRNAs overlapping with the detected dark biomarkers in the three experiments from
the LncBook database [56] (Supplementary Table S2). We can see that most of the detected
dark biomarkers have overlapping lncRNAs.

We took the gene STIM2 (Stromal Interaction Molecule 2) as an example. STIM2 was
a dark biomarker associated with late-stage LUAD and overlapped with one sense and
three antisense lncRNAs, as shown in Supplementary Table S2. The LncBook database
proposed a novel approach to calculate the expression levels of some lncRNAs whose tran-
scripts were discriminable from the overlapping genes [56]. The lncRNA HSALNG0033503
resided completely within the region of STIM2, and it had medium expression levels in
42.14% of the 337 biological conditions in the LncBook database. The three antisense
lncRNAs, HSALNG0033504, HSALNG0033505, and HSALNG0033510, also showed a rec-
ognizable expression in many biological conditions. Considering the technical limitations
of many existing expression calculation approaches, we proposed that the lncRNAs over-
lapping with an mRNA gene might have contributed transcripts disturbing the precise
determination of this gene’s expression level.
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4. Conclusions

This study proposed a computational protocol for analyzing transcriptomes from
the view of high-dimensional inter-feature correlations. The mqTrans regression models
employed also ensured the explainability of the engineered features. The demonstrative
experiment detected two strong dark biomarkers and eleven additional weak dark biomark-
ers of lung cancer. These dark biomarkers showed no differential expression in at least
one of the three independent datasets and, therefore, could be ignored in a conventional
differential expression analysis. But, all these 13 dark biomarkers showed a significantly
differential expression from the view of the mqTrans features.

We recognize the possibility of new transcription factors involved in the regulation of
gene expression in a disease state. The models we have built are specific sets of transcription
factors obtained with learning in healthy samples and used to predict the expression of
the corresponding mRNA genes in a disease state. If new transcription factors emerge in
the disease state and our model does not integrate these new factors, the prediction will be
highly biased. We believe is the following to be one of the important contributions of our
study: although the original expression of an mRNA gene may maintain similar values
across diseased and healthy samples via different TF combinations, the mqTrans values
are calculated based on the reference transcriptional regulatory network trained on the
healthy samples and will change substantially in the disease samples, with new TFs for the
corresponding mRNA genes.

A dark biomarker was not differentially expressed between the two groups of lung
cancer and control samples, while the quantitative measurement of its transcription regu-
lation showed a statistically significant differential expression in the lung cancer samples
compared to the control group. Our detailed discussion of the strong dark biomarker
GBP5 suggested that the overlapping lncRNAs might have contributed to this interest-
ing phenomenon. Supplementary Table S2 provides additional evidence that many dark
biomarkers have overlapping lncRNAs on both sense and antisense strands. Due to the
inherent nature of microarray- and RNA-seq-based transcriptome profiling technologies,
it is difficult to determine whether a detected transcript came from the mRNA or the
lncRNA residing in the overlapping region. Therefore, the undifferential expression of
an mRNA might consist of the transcripts of both the mRNA and the lncRNAs overlap-
ping in the same region. Our mqTrans protocol provided a complementary way to detect
these dark biomarkers that would otherwise be ignored in a conventional differential
expression analysis.

We extend our analysis to single-cell RNA-seq (scRNA) datasets. The scRNA technol-
ogy has recently emerged as a popular transcriptomic view to investigate the phenotypes
of microbes, plants, and animals [60]. Two subsets of the GSE190725 study were used to
compare the mqTrans analyses of both the bulk and single-cell RNA-seq data, i.e., endocrine
cells and endocrine progenitor cells [61]. Supplementary Table S4 shows that the scRNA
dark biomarkers are slightly fewer than the bulk RNA-seq dark biomarkers. Additionally,
there are only four and seven dark biomarker genes supported by both the single-cell and
bulk RNA-seq data for the endocrine cells and the endocrine progenitor cells, respectively.
This suggests that an mqTrans analysis does not work well on scRNA data and may need
further tuning to account for the characteristics of single-cell data.

The detection of dark biomarkers serves as an important and complementary analysis
to the traditional differential expression analysis of transcriptomic biomarkers. Firstly, a
traditional differential expression analysis detected 12593 biomarkers (p-values < 0.05) from
the three datasets B/C/D and ignored 72.49% of the transcriptomic features. The mqTrans
analysis can detect dark biomarkers with differential representations of lung cancer from
the features ignored in a traditional biomarker analysis. Secondly, the mqTrans analysis pro-
vides supporting evidence for the protein-level phenotype associations of dark biomarkers
without differential expression in wet-lab studies. The YTH N6-Methyladenosine RNA-
binding protein C2 (YTHDC2) is an RNA-modification 6-methyladenine (m6A) reader [62]
and was detected as the dark biomarker gene of metastatic colon cancer (mCC) [63]. Liu et al.
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observed that multiple m6A RNA methylation regulators showed differential expression
in cancers except for YTHDC2 [64], and Tanabe et al. filled the gap with immunohisto-
chemistry technology, showing that YTHDC2 is positively correlated with mCC on its
protein levels [65]. Thirdly, some dark biomarkers show comparable expression levels to
traditional biomarkers and merit further wet-lab investigations. Yoshimura et al. identified
CD200 and CD200R1 as the differentially expressed biomarkers of lung cancer [66], while
Supplementary Figure S5 shows that the two strong dark biomarkers have similar or higher
expression levels compared to CD200 and CD200R1.

The proposed mqTrans protocol has a number of limitations to be resolved in future
studies. Firstly, the computational analysis showed the altered transcription regulation of
the dark biomarkers, and in vitro or in vivo investigations could be worth conducting on
the possible interference of the expression of the long non-coding RNAs overlapping with
these dark biomarkers. Secondly, regression was the main module of the mqTrans protocol
and may be improved with feature selection algorithms and deep learning algorithms.

In future studies, we will consider how to further refine the model to include potential
new transcription factors and continuously improve the accuracy and robustness of the
predictions. Different metrics like PCC and RMSE will also be evaluated to determine
the measurement between the predicted values and the original levels of a given mRNA
gene. The mqTrans analysis of various transcriptionally regulated targets like mRNA,
lncRNA, and microRNA (miRNA) in different cancer types and other diseases remains
largely unexplored and to be validated with wet-lab evidence.
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