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Abstract: Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern
worldwide. Crustacean shellfish is one of the “Big Eight” allergens designated by the U.S. Food and
Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most
consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past
decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection
methods. With the availability of genomic data for penaeid shrimp and other technological advance-
ments like transcriptomic approaches, new shrimp allergens have been identified and directed new
insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we
summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans
and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their
protein characteristics, and cross-reactivity among shrimp and other organisms.
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1. Introduction

Food allergy refers to the adverse immune responses triggered by the consumption
or exposure to proteins present in various types of food, predominantly resulting from
immunoglobulin E (IgE)-mediated Type I hypersensitivity reactions. Up to 10% of the
world’s population suffers from food allergies [1–3]. Shellfish, a term commonly used
in fisheries and colloquial speech, refers to aquatic invertebrates possessing exoskeletons
and harvested for sustenance. This diverse category encompasses mollusks, crustaceans,
and echinoderms. Though the majority are gathered from saline environments, certain
varieties inhabit limnic habitats as well. Shellfish allergy specifically involves an allergic
reaction to proteins present in shellfish, including some crustaceans in the order Decapoda
(e.g., shrimp, lobster, and crab) and mollusks from the class Bivalvia (e.g., clam, mussel,
and oyster). The prevalence of shellfish allergy ranges from 0% to 10.3%, depending on
the method of diagnosis and population (usually more prevalent in Asia) [4–6] and is
increasing in both developed and developing countries [7–10]. In some instances, exposure
to cooking vapor containing shellfish allergens can also provoke an allergic reaction [11].
Apart from being one of the “Big Eight” allergens designated by the U.S. Food and Drug
Administration, shellfish is also the top food item leading to admission to an emergency
department [12].

Shellfish allergies can manifest in a wide range of symptoms, ranging from mild to
severe and, in some cases, life-threatening. Common symptoms include skin reactions
(e.g., hives, itching, swelling), gastrointestinal distress (e.g., nausea, vomiting, diarrhea),
respiratory symptoms (e.g., coughing, wheezing, shortness of breath), and in severe cases,
anaphylaxis, a severe allergic reaction that can cause difficulty in breathing, a drop in
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blood pressure, and loss of consciousness [13]. When an individual with a shellfish allergy
consumes or comes into contact with specific shellfish proteins, their immune system
recognizes these proteins as foreign and initiates an allergic reaction. The exact reasons why
allergies occur are not fully understood, but several factors contribute to the development of
food allergies, including genetic predisposition [13–16] and environmental factors [14,17].
While most children outgrow food allergies for eggs and milk with age, an allergy to
shellfish typically lasts a lifetime [18].

There are four primary groups of shrimps that are commonly recognized. These
include the suborder Dendrobranchiata and the infraorders Procarididea, Stenopodidea,
and Caridea. Shrimp, in particular the penaeid shrimp (family Penaeidae), are the most
consumed crustacean food item, and shrimp allergy is among the most common shellfish
allergies, especially in regions where shrimp consumption is widespread [7,19,20]. Knowing
the specific allergens responsible for triggering food allergies is paramount for effectively
managing allergies. This aids in developing advanced diagnostic tools, more targeted
therapies, and potential preventive strategies, such as immunotherapy or allergen-specific
treatments. At present, there are a total of ten shrimp allergens registered with the World
Health Organization and International Union of Immunological Societies (WHO/IUIS)
Allergen Nomenclature Database (Table 1). Among the registered allergens, nine were
identified from penaeid shrimps, including greasyback shrimp Metapenaeus ensis (De Haan,
1844), brown shrimp Penaeus (Farfantepenaeus) aztecus (Ives, 1891), Indian prawn Penaeus
(Fenneropenaeus) indicus (H. Milne Edwards, 1837), western king prawn Penaeus (Melicertus)
latisulcatus (Kishinouye, 1896), black tiger shrimp Penaeus monodon (Fabricius, 1798), and
whiteleg shrimp Penaeus (Litopenaeus) vannamei (Boone, 1931). Six of the shrimp allergens
were identified in caridean shrimp (infraorder Caridea), including North Sea shrimp
Crangon. crangon (Linnaeus, 1758), Siberian prawn Exopalaemon modestus (Heller, 1862),
giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879), and northern shrimp
Pandalus borealis (Krøyer, 1838).
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Table 1. Allergens characterized in shrimp.aq.

Biochemical
Identity 1 MW (kDa) 2 Heat Stability Route of

Exposure

Allergen Nature
and Physiological

Function
Species Allergen Identity

IUIS Name

GenBank
Protein

Accession No.

Protein Size
(aa) 3

Sensitization Rate (IgE
Binding) References

Tropomyosin 34–38
highly heat stable
and IgE reactive

ingestion
inhalation

Muscle contraction
coiled-coil protein
that binds to actin
and regulates the

interaction of
troponin and myosin

Crangon. crangon
(North Sea shrimp) Cra c 1 ACR43473 284 11/25 (44%) in

immunoblot [21]

Exopalaemon modestus
(Siberian prawn) Exo m 1 __ __ 18/18 (100%) in

immunoblot and ELISA [22]

Macrobrachium
rosenbergii (Giant

freshwater prawn)
Mac r 1 ADC55380 284 10/13 (78%) in ELISA [23]

Metapenaeus ensis
(Greasyback shrimp) Met e 1 AAA60330 274 __ [24]

Pandalus borealis
(Northern shrimp) Pan b 1 CBY17558 284

7/8 (88%) in
skin-prick test

4/6 (67%) in positive
basophil activation

5/5 (100%) in
immunoblot.

4/4 (100%) in ELISA

[25]

Penaeus aztecus
(Brown shrimp) Pen a 1 AAZ76743 284 28/34 (82%) in

skin-prick test [26]

Penaeus indicus
(Indian prawn) Pen i 1 __ __ __ [27]

Penaeus latisulcatus
(Western king prawn) Mel l 1 AGF86397 284 10/18 (56%) in

immunoblot [28]

Penaeus monodon
(Black tiger shrimp) Pen m 1 AAX37288 284 11/16 (69%) in

immunoblot [29]

Penaeus vannamei
(Whiteleg shrimp) Lit v 1 ACB38288 284 15/15 (100%) in peptide

microarray analysis [30]

Arginine kinase 40–45
labile but can elicit

IgE-binding
ingestion
inhalation

Enzyme catalyzes
the reversible
transfer of the

phosphoryl group
from ATP to arginine

C. crangon
(North Sea shrimp) Cra c 2 ACR43474 356

3/8 (38%) in immunoblot.
9/31 (29%) in
ImmunoCAP

[21]

M. rosenbergii
(Giant freshwater

prawn)
Mac r 2 ADN88091 355

8/48 (18%) in
skin-prick test

37/48 (77%) in basophil
hexosaminidase test

[31]

P. monodon
(Black tiger shrimp) Pen m 2 AAO15713 356 5/18 (27%) in

immunoblot [29]

P. vannamei
(Whiteleg shrimp) Lit v 2 ABI98020 356 __ [32]
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Table 1. Cont.

Biochemical
Identity 1 MW (kDa) 2 Heat Stability Route of

Exposure

Allergen Nature
and Physiological

Function
Species Allergen Identity

IUIS Name

GenBank
Protein

Accession No.

Protein Size
(aa) 3

Sensitization Rate (IgE
Binding) References

Myosin light
chain 2 17–20 stable ingestion

Regulatory function
in smooth muscle
contraction when

phosphorylated by
MLC kinase

P. monodon
(Black tiger shrimp) Pen m 3 ADV17342 177 7/10 (70%) in

immunoblot and ELISA [29]

P. vannamei
(Whiteleg shrimp) Lit v 3 ACC76803 177 17/19 (90%) in

immunoblot [33]

Sarcoplasmic
calcium-binding

protein
20–25 stable ingestion

Binds to cytosolic
calcium (Ca2+) and

acts as a calcium
buffer regulating

calcium-based
signaling

C. crangon
(North Sea shrimp) Cra c 4 ACR43475 193

3/8 (38%) in immunoblot
11/31 (35%) in
ImmunoCAP

[21]

P. monodon
(Black tiger shrimp) Pen m 4 ADV17343 193 8/16 (50%) in ELISA [34]

P. vannamei
(Whiteleg shrimp) Lit v 4 ACM89179 193 31/52 (60%) in

immunoblot [35]

Myosin light
chain 1 17.5 kDa stable ingestion

Regulatory function
in smooth muscle
contraction when

phosphorylated by
MLC kinase

C. crangon
(North Sea shrimp) Cra c 5 ACR43477 153

5/8 (63%) in immunoblot
6/31 (19%) in
ImmunoCAP

[21]

Troponin C
16.8–21 stable ingestion

Regulates the
interaction of actin
and myosin during
muscle contraction

on binding to
calcium

C. crangon
(North Sea shrimp) Cra c 6 CR43478 150

4/8 (50%) in immunoblot
9/31 (29%) in
ImmunoCAP

[21]

P. monodon
(Black tiger shrimp) Pen m 6 ADV17344 150 8/35 (23%) in

immunoblot and ELISA [36]

Hemocyanin 76 stable ingestion Transports oxygen
throughout the body

P. monodon
(Black tiger shrimp) Pen m 7 AEB77775 683 3/17 (18%) in ELISA [37]

Triosephosphate
isomerase 27–28 labile ingestion

inhalation

Key enzyme in
glycolysis; catalyzes

the conversion of
dihydroxyacetone

phosphate to
glyceraldehyde

3-phosphate

C. crangon
(North Sea shrimp) Cra c 8 ACR43476 249

5/8 (63%) in immunoblot
7/31 (23%) in
ImmunoCAP

[21]

P. monodon
(Black tiger shrimp) Pen m 8 ADG86240 266

12/30 (40%) in ELISA
2/12 (17%) in basophil

activation test
[37]

Cytoplasmic
fatty-acid-binding

protein
15–20 __ ingestion

Facilitates the
transfer of fatty acids
between extra- and

intracellular
membranes

P. monodon
(Black tiger shrimp) Pen m 13 AEP84100 136

20/30 (67%) in ELISA
7/12 (58%) in basophil

activation test
[37]

P. vannamei
(Whiteleg shrimp) Lit v 13 ADK66280 136 10/36 (28%) in ELISA [38]

Glycogen
phosphorylase-

like protein
95 __ ingestion

Enzymes catalyze
the rate-limiting step
in glycogenolysis in

animals

P. monodon
(Black tiger shrimp) Pen m 14 URW11955 852

8/17 (47%) in ELISA
3/17 (18%) in basophil

activation
[37]

1 For allergen proteins, see www.allergen.org. 2 MW, molecular weight. 3 aa, amino acid. — = data deficient

www.allergen.org
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2. Shrimp Allergens Identified by Immunodetection

Conventionally, the identification of novel allergens relies on immunodetection and
mainly immunoblotting. In these experimental studies, shrimp proteins are extracted
from the muscle and screened using sera from shellfish-allergic subjects for detecting IgE-
binding proteins. These proteins are subsequently identified with mass spectrometry for
their peptide fingerprints, followed by matching to protein databases, such as NCBI and
UniProt. For instance, our group recently identified ten IgE-binding proteins from the
shrimp P. monodon based on immunodetection and comprehended a shrimp allergen panel
comprising 11 recombinant shrimp allergens [37]. These include tropomyosin (TM, Pen m
1), arginine kinase (AK, Pen m 2), myosin light chain (MLC, Pen m 3), sarcoplasmic calcium-
binding protein (SCP, Pen m 4), troponin C (TnC, Pen m 6), hemocyanin (Hc, Pen m 7),
triosephosphate isomerase (TIM, Pen m 8), fatty-acid-binding protein (FABP, Pen m 13),
and glycogen phosphorylase (GP, Pen m 14), plus two potential allergens, enolase (Eno)
and aldolase (ALDA).

3. Shrimp Allergens Identified by the Transcriptomic Approach

With the advances in sequencing technologies and bioinformatics analysis, the tran-
scriptomic approach has been adopted to identify shrimp allergens and characterize poten-
tial cross-reactivity [39]. In a novel study, Karnaneedi et al. [40] uncovered and compared
the complete transcriptome of shrimp and identified 39 potential novel shrimp allergens
from five species. The authors conducted a de novo assembly and analysis of the tran-
scriptomes from five commonly consumed penaeid shrimp species, including P. vannamei,
P. monodon, banana shrimp Penaeus (Fenneropenaeus) merguiensis (De Man, 1888), P. latisul-
catus, and endeavor shrimp Metapenaeus endeavouri (Schmitt, 1926), and established an
in-house reference allergen database by collecting the amino acid sequences of 2172 aller-
gens from two allergen databases (WHO/IUIS Allergen Nomenclature Database and Food
Allergy Research and Resource Program (FARRP) Allergen Protein Database). A pairwise
identity cut-off value of 50% was then used to indicate potential allergenicity and assess
the probability of a shrimp protein being an allergen. As a result, BLAST analysis revealed
a significant number of matches to allergen sequences, primarily associated with shellfish,
mites, and fungi, resulting in the identification of 40 allergen sequences from P. vannamei,
44 from P. monodon, 42 from P. merguiensis, 44 from P. latisulcatus, and 50 from M. endeavouri.
In total, seven previously identified crustacean allergens were confirmed among the five
shrimp species (TM, AK, SCP, MLC, TnC, TnI, TIM), and the variances in the abundance of
each allergen within individual shrimp species were investigated. On the other hand, other
unreported potential allergens were identified, including heat shock protein 70 (HSP 70),
α-tubulin, chymotrypsin, β-enolase, Eno, aldolase A, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), and cyclophilin (CyPs), which are possibly responsible for clinical
cross-reactivity, such as among crustaceans, mites, and insects. This research provides
evidence that the transcriptomic approach offers advantages in discovering and compar-
ing the whole repertoire of shellfish allergens at high resolution in addition to putative
novel allergens.

4. Genomic and Proteomic Characteristics of Shrimp Allergens

Based on the WHO/IUIS allergen registry, the most comprehensive allergen profile
was delineated from P. monodon, comprising nine registered shrimp allergens, including
TM, AK, MLC2, SCP, Tn, Hc, TIM, FABP, and GP. These allergens are mostly identified
by conventional immunodetection methods as mentioned. Yet the availability of the
genome assembly data of penaeid shrimp has revolutionized our understandings on gene
regulation, including information on chromosome locations, repetitive elements, alternative
splicing, translational regulation, and methylation. Such knowledge is crucial not only
for unraveling the intricate mechanisms underlying gene expression and its impact on
biological processes but also has led to new allergen discoveries in penaeid shrimp.
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4.1. Genome Assembly of Penaeus

Among shrimp, the genome assembly data for four Penaeus species, namely, P. chinensis
(Osbeck, 1765), P. japonicus (Spence Bate, 1888), P. monodon, and P. vannamei, along with
annotation information, are available in the NCBI (National Center for Biotechnology Infor-
mation) database (Table 2). A high-quality genome assembly of P. indicus was also reported,
but unfortunately, the annotation information for this species is currently unavailable.

Zhang et al. [41] presented the first high-quality genome in penaeid shrimp, on the
most commercially important species, P. vannamei. The genome sequence of P. vannamei
spans approximately 1.66 gigabases (Gb) with a scaffold N50 of 605.56 kilobases (kb) and
contains 25,596 protein-coding genes. The genome exhibits a high proportion of simple
sequence repeats (>23.93%). The expansion of genes related to vision and locomotion
suggests adaptations to a benthic environment. The intensified ecdysone signal pathway,
facilitated by gene expansion and positive selection, may explain the frequent molting
observed in penaeid shrimp.

Researchers utilized Illumina and Oxford Nanopore Technologies platforms to gen-
erate a draft genome assembly of P. japonicus [42]. The assembly spanned 1.70 Gb with
18,210 scaffolds and had a scaffold N50 of 234.9 kb, exhibiting 34.38% GC content. The
genome displayed a high proportion of simple repeats (27.4%) and included 26,381 pre-
dicted protein-coding gene models, with functional annotations available for 68.2% of
the genes.

The whole genome of P. monodon was reported based on a chromosome assembly [43].
The researchers successfully assembled a high-quality genome sequence by utilizing a
combination of long-read sequencing technologies including Pacific Biosciences (PacBio),
Chicago, and Hi-C. The final assembly covered 92.3% of the estimated genome size, totaling
2.39 Gb, with a scaffold N50 of 44.9 megabases (Mb), and consisted of 44 pseudomolecules,
reflecting the haploid chromosome number. A significant portion of the assembly (62.5%)
was composed of repetitive elements, the highest reported among crustacean species.

Katneni et al. [44] presented a high-quality genome assembly of P. indicus, which
spans 1.93 Gb with a scaffold N50 of 34.4 Mb and contains 28,720 protein-coding genes and
49.31% repeat elements. Notably, the P. indicus assembly exhibits the highest proportion of
simple sequence repeats (31.99%) among sequenced animal genomes and demonstrates
a superior sequence contiguity compared to other shrimp genomes. The assembly also
provides valuable resources, including 15,563 coding single nucleotide polymorphisms
(SNPs), for genetic improvement programs, evolutionary studies, and stock management
in penaeid shrimp fisheries and culture.

A chromosome-level genome assembly of P. chinensis revealed significant genomic
adaptations [45]. The assembled genome, with a size of 1.47 Gb, including 57.73% repetitive
sequences, anchors to 43 pseudochromosomes, with a scaffold N50 of 36.87 Mb. In total,
25,026 protein-coding genes were predicted. It displays contraction compared to other
penaeid species, potentially due to migration. The genome also exhibits expanded gene
families associated with cellular and metabolic processes, as well as contracted gene families
linked to virus infection processes, indicating the species adaptation to migration and cold
environments. Additionally, the analysis identified genes associated with metabolism,
phototransduction, and the nervous system in cultured shrimps, suggesting targeted
artificial selection during domestication and providing valuable insights for understanding
genetic changes during evolution.

The availability of whole genome sequence assemblies in the above species allows for
the identification of genetic markers associated with allergen genes in Penaeus shrimp. These
markers can be used to predict the presence or absence of allergen genes in individuals,
enabling the selection of breeding candidates with reduced allergenicity. This approach
can contribute to the development of hypoallergenic shrimp varieties, enhancing the safety
and acceptance of shrimp products for allergic individuals.
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Table 2. Gene information of allergens characterized in Penaeus shrimps.

Species Genome Assembly References

Gene ID and Location 1

Tropomyosin Arginine Kinase Myosin Light
Chain 2

Sarcoplasmic
Calcium-Binding

Protein

Myosin Light
Chain 1 Troponin C Hemocyanin Triosephosphate

Isomerase
Fatty-Acid-Binding

Protein

Glycogen
Phosphorylase-like

Protein

P. chinensis

size: 1.47 Gb;
contig N50: 472.84 kb;

scaffolds:1060;
scaffold N50: 36.9 Mb;
repetitive sequences:

57.73%.

[45]

ID: 125048035;
Chromosome 42,

NC_061860.1
(2872728..2923947)

ID: 125046934;
Chromosome 39,

NC_061857.1
(23292279..23322424)

ID: 125032710;
Chromosome 2,

NC_061820.1
(36562377..36563543)

ID: 125043149;
Chromosome 33,

NC_061851.1
(2573366..2588962,

complement)

ID: 125040575;
Chromosome 29,

NC_061847.1
(27675878..27684529,

complement)

ID: 125028981;
Chromosome 1,

NC_061819.1
(25531203..25539418)

ID: 125046232;
Chromosome 38,

NC_061856.1
(21846290..21853098)

ID: 125028271;
Chromosome 8,

NC_061826.1
(13786682..13788417,

complement)

ID: 125029003;
Chromosome 9,

NC_061827.1
(10506608..10523531)

ID: 125029446;
Chromosome 10,

NC_061828.1
(34855913..34890537,

complement)

P. japonicus

size: 1.70 Gb;
contig N50: 132.8 kb;

scaffolds: 18,210;
scaffold N50: 234.9 kb;

simple sequence repeats:
27.4%.

[42]
ID: 122251322;

NW_025030369.1
(4708..55143)

ID: 122249885;
NW_025030159.1

(44864..71320,
complement)

ID: 122266134;
NW_025035186.1

(37625..38804)

ID: 122264462;
NW_025034254.1
(89818..105301)

ID: 122259789;
NW_025032380.1

(8332..16949,
complement)

ID: 122262516;
NW_025033339.1

(96181..103665,
complement)

ID: 122243277;
NW_025037757.1

(41553..44524)

ID: 122250573;
NW_025030266.1
(162108..163787)

ID: 122257811;
NW_025031762.1
(205217..217336,

complement)

ID: 122246447;
NW_025029730.1
(398826..415764,

complement)

P. monodon

size: 2.39 Gb;
contig N50: 45.2 kb;

scaffolds: 26634;
scaffold N50: 44.9 Mb;

repetitive elements:
62.5%.

[43]

ID: 119594951;
Chromosome 35,

NC_051420.1
(921718..971934

ID: 119591270;
Chromosome 28,

NC_051413.1
(1599636..1601570,

complement)

ID: 119570076;
Chromosome 4,

NC_051389.1
(10051929..10053917,

complement)

ID: 119585264;
Chromosome 19,

NC_051404.1
(46480220..46495804)

ID: 119587760;
Chromosome 23,

NC_051408.1
(7267583..7276463)

ID: 119578966;
Chromosome 11,

NC_051396.1
(43393497..43401039)

ID: 119590770;
Chromosome 27,

NC_051412.1
(30008096..30012410,

complement)

ID: 119572953;
Chromosome 5,

NC_051390.1
(9171969..9173836)

ID: 119574570;
Chromosome 6,

NC_051391.1
(45560875..45573117,

complement)

ID: 119580811;
Chromosome 14,

NC_051399.1
(6470562..6490308,

complement)

P. vannamei

size: 1.66 Gb;
contig N50: 86.9 kb;
scaffolds: 4682 kb;

scaffold N50: 605.6 kb;
simple sequence repeats:

>23.93%

[41]
ID: 113820940;

NW_020870691.1
(252085..301985)

ID: 113816366;
NW_020870178.1

(42354..45892)

ID: 113816291;
NW_020870168.1
(222691..223847)

ID:113814611;
NW_020870007.1
(194583..205932)

ID: 113822686;
NW_020870901.1
(724534..733535,

complement)

ID: 113828663;
NW_020872422.1

(8101..17716)

ID: 113823617
NW_020871007.1

(22864..26603,
complement)

ID: 113802550;
NW_020872930.1
(498965..500845)

ID: 113815521;
NW_020870091.1

(1715084..1730731)

ID: 113800223;
NW_020872700.1
(140879..160091,

complement)

1 Gene ID (GenBank) and location are retrieved from NCBI (National Center for Biotechnology Information).
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4.2. Tropomyosin

TM belongs to a family of muscle proteins and has been identified as the primary
allergenic component responsible for triggering allergic reactions in individuals with
shrimp allergies. In 1981, Hoffman et al. [46] initially characterized TM as an allergen
in P. aztecus (Pen a 1). Subsequently, it was also identified as an allergen in P. monodon
(Pen m 1) by Shanti et al. in 1993, and in M. ensis (Met e 1) by Leung et al. in 1994 [24].
Subsequently, TM was identified as an allergen in other shrimp species, including other
penaeid shrimps, such as P. vannamei and P. indicus, as well as caridean shrimps, including
C. crangon, E. modestus, giant freshwater prawn M. rosenbergii, and northern shrimp P.s
borealis (Table 1). TM accounts for allergic reactions in at least 80% of individuals allergic
to shrimp, as it binds approximately 80% of the shrimp-specific IgE in these subjects. In
shrimp, the coding DNA sequence (CDS) size of TM is 855 bp, while the gene length
differs among different species (Table 1). The location of the TM gene in P. monodon
is Chromosome 35, NC_051420.1 (921718..971934, complement), with 24 exons. At the
protein level, the length of TM is approximately 284 amino acid residues(AA), with a
molecular weight (MW) of 34–38 kDa. The structural stability and resistance to heat
and digestion of TM contribute to its allergenicity [47,48]. Efforts have been made to
mitigate or diminish the allergenicity of shrimp, minimize potential health risks through
different processing methods, and provide strategies for the immunotherapy of shrimp
allergy. Various food processing technologies have been shown to have the potential
to reduce the allergenic properties of shrimp TM, including ultrasound-assisted high
temperature–pressure [48], high-methylglyoxal during thermal processing [49], glycation
modification [50–54], peroxidation product modification [55,56], and dietary polyphenol
treatment [57].

4.3. Arginine Kinase

After tropomyosin, AK has been identified as crustaceans’ second most important
allergen. It shows positive IgE binding in 10–51% of individuals with shrimp allergies [58].
AK is an enzyme that plays a crucial role in cellular energy metabolism and provides
a rapid and localized energy source for muscle contraction. In 2003, Yu et al. [59] first
identified arginine kinase as a new allergen (Pen m 2) in P. monodon with all six selected
shrimp-allergic patients reacting positive with natural Pen m 2 in a skin test. Similar
results were subsequently demonstrated in other shrimp species, including C. crangon,
P. vannamei, and M. rosenbergii (Table 1). In shrimp, the CDS size of AK in C. crangon,
P. monodon, and P. vannamei is 1071 bp, and in M. rosenbergii, 1068 bp, while the gene
length differs among different species (Table 1). The location of the AK gene in P. monodon
is Chromosome 28, NC_051413.1 (1599636..1601570, complement), with two exons. At
the protein level, the length of AK is approximately 356 AA, with a MW of 40–45 kDa.
AK is unstable under thermal processing and easier to degrade in acidic conditions than
in alkaline conditions [60]. Moreover, AK is relatively stable at 20–40 ◦C and begins to
unfold and lose its secondary structure at 55–70 ◦C, followed by the cleavage of disulfide
bonds at 70–80 ◦C and aggregate formation at 90–100 ◦C. During pH processing, acidic
conditions (pH ≤ 5) resulted in more damage to the secondary structure [61]. Yet AK
remains a significant food allergen despite its unstable physicochemical properties. Mei
et al. [62] modified the conformational structure and epitopes of AK from the mud crab
Scylla paramamosain (Estampador, 1950) by site-directed mutagenesis. Fei et al. [63] reported
that the enzymatic cross-linking of AK using tyrosinase and caffeic acid, followed by
thermal polymerization, shows promising potential in reducing its IgE-binding activity
and allergenicity. This process involves modifying the molecular and immunological
characteristics of the allergen.
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4.4. Myosin Light Chain

MLC is a component of the myosin protein complex, which is responsible for muscle
contraction. There are two types of myosin light chains: the essential light chain (MLC1)
and the regulatory light chain (MLC2). MLC2 was first identified as a shrimp allergen in
P. vannamei (Lit v 3) in 2008 [33]; in this study, immunoblotting demonstrated IgE binding
by 21/38 (55%) serum samples with recombinant MLC. While tropomyosin is recognized
as the most prevalent allergen in crustaceans, it is noteworthy that some patients exhibited
predominant binding to Lit v 3. In two patients, Lit v 3 was the sole allergen recognized.
This indicates that the inclusion of Lit v 3 in future diagnostic and therapeutic strategies
holds significant importance. Later, MLC2 was identified as an allergen in P. monodon (Pen
m 3), and MLC1 was identified as an allergen in C. crangon (Cra c 5) (Table 1). The CDS size
of Lit v 3 and Pen m 3 is 534 bp (MLC 2), and the size of Cra c 5 (MLC1) is 462 bp. The gene
length differed in different species (Table 1). The location of the MLC2 gene in P. monodon is
Chromosome 4, NC_051389.1 (10051929..10053917), with one exon. At the protein level,
the length of MLC is approximately 153 AA, with a MW of 17–20 kDa. MLC stayed stable
when exposed to different temperatures, even up to 100 ◦C. Also, its allergenicity did not
change much between 30 and 100 ◦C [64], and it remained stable at various pH levels, both
acidic and alkaline. As a minor allergen, the abundance of MLC is substantially lower than
other primary allergens in muscle.

4.5. Sarcoplasmic Calcium-Binding Protein

SCP is a protein in muscle cells that plays a crucial role in calcium regulation and
muscle contraction. SCP has been recognized as a significant allergen in our recent study on
P. monodon, comparable in importance to TM [37]. Approximately 29% to 50% of individuals
with shrimp allergies exhibit positive IgE binding to SCP, with an even higher frequency of
59% observed among children. However, unlike TM, which has been extensively studied,
research on SCP remains relatively limited. SCP was identified as an allergen in C. crangon
(Cra c 4), with 3/8 (38%) shrimp-allergic patients having IgE binding to recombinant Cra c 4
in immunoblotting and 11/31 (35%) patients having positive binding on ImmunoCAP [21].
It was named Lit v 4 by Ayuso et al., with 31/52 (60%) pediatric shellfish-allergic subjects
recognizing SCP in the boiled P. vannamei extract. In P. monodon, it was named Pen m 4
with 8 of 16 crustacean-allergic sera reacting to natural Pen m 4 by fluorescence ELISA [35].
Our study showed that SCP has a sensitization rate of 28% by ELISA with recombinant
Pen m 4 [37]. The CDS size and gene length of shrimp SCP is 582 bp, and the location
of the Pen m 4 gene is Chromosome 19, NC_051404.1 (46480220..46495804), with eight
exons (Table 1). At the protein level, the protein length of SCP is approximately 192 AA,
with a MW of 20–25 kDa. It has been reported that SCP exhibits high resistance to acid–
alkali conditions and heat [65]. Zhao et al. [66] examined the immunological properties
and structural changes of the recombinant Lit v 4 (rLit v 4) under various temperature
conditions. They found that rLit v 4 exhibits a distribution of secondary structures as
follows: 60.62% α-helix, 4.15% β-sheet, 12.95% β-turn, and 22.28% random coil. Moreover,
rLit v 4 exhibited stable IgE-binding reactivity up to 80 ◦C, but higher thermal processing
led to a significant decline in the capacity to bind IgG/IgE, accompanied by changes in
both secondary and tertiary structures.

4.6. Troponin

Troponin is a complex of three proteins, troponin C (TnC, Ca2+-binding subunit),
troponin I (TnI, tropomyosin-binding subunit), and troponin T (TnT, which inhibits the
interaction between actin and myosin T), that play a crucial role in regulating muscle
contraction. Among these subunits, TnC and Tn I exhibit IgE reactivity. TnC is a less
common crustacean allergen, with an allergic sensitization rate around 20%. This is lower
than the sensitization rates of TM, AK, or SCP. It was identified as an allergen in C. crangon
(Cra c 6), with 9 of 31 shrimp-allergic sera having positive binding on ImmunoCAP [21].
In P. monodon, 8 of 35 shrimp-allergic individuals had IgE that reacted to TnC (Pen m
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6) in immunoblot and ELISA [36] (Table 1). The CDS size and gene length of shrimp
TnC is 453 bp, and the location of the Pen m 6 gene is Chromosome 19, NC_051396.1
(43393497..43401039), with six exons (Table 1). At the protein level, the length of Cra c 6
and Pen m 6 is 150 AA, with a MW of 16.8–21 kDa. TnC has been reported as a heat-stable
allergen in the Asian green mussel Perna viridis (Linnaeus, 1758) as it retained IgE reactivity
in the immunoblots of extracts from cooked mussels [67].

4.7. Hemocyanin

Hc is a copper-containing metalloprotein that is an oxygen carrier in the blood
(hemolymph) of various invertebrates. They are typically present in the hemolymph
rather than enclosed in blood cells like hemoglobin in the red blood cells of vertebrates. Hc
molecules can be large, composed of hexamers or multi-hexamers, and often consisting of
multiple subunits with a MW of ~75 kDa [68]. As the circulatory tissues are not always
removed during food preparation, there may be high concentrations of Hc present in
cooked shrimp. Mendoza et al. [68] verified the presence of at least 12 distinct Hc isoforms
in shrimp hemolymph and confirmed putative Hc gene assemblies using transcriptomic
data. These findings facilitate the observation of specific Hc isoform expression in shrimp
hemolymph under various environmental, nutritional, and pathogenic conditions. Hc
was first identified as a heat-stable allergen in M. rosenbergii by Piboonpocanun et al. in
2011 [69,70] and was also identified as an allergen in Lanchester’s freshwater prawn M.
lanchesteri (De Man, 1911) [70]. Our group recognized Hc as an allergen in P. monodon
(Pen m 7), with seven of 32 subjects with DBPCFC-confirmed shrimp allergy showing IgE
binding by ELISA to a recombinant Hc expressed in insect cells [37] (Table 1). The CDS
size and gene length of Pen m 7 is 2052 bp, and the location of the gene is Chromosome 19,
NC_051396.1 (43393497..43401039), with six exons (Table 1). At the protein level, the length
of Hc in shrimp is usually 662–683 AA, with a MW of around 76 kDa. Guillen et al. [71]
found that Hc in P. vannamei seems to lose its allergenicity at high temperatures (heating
shrimp extract at 60 ◦C for 10 min), as no IgE binding was observed in the heated extract.
However, Piboonpocanun et al. [50] indicated that dissociated or monomeric forms of Hc
were not precipitated and not degraded when boiled. Following their investigation using
SDS gel and immunoblot analysis of dialyzed and boiled hemolymph from both P. monodon
and M. rosenbergii, the authors concluded that boiling does not cause the degradation or
impairment of IgE binding ability in the monomeric form of Hc.

4.8. Triosephosphate isomerase

TIM is an essential enzyme in glycolysis, a metabolic pathway that breaks down
glucose to produce energy in the form of ATP. TIM is found in nearly all living organisms,
from bacteria to humans, and its structure and function are highly conserved across species.
TIM was characterized as a crustacean allergen for the first time in C. crangon (Cra c 8) with
5/8 (63%) shrimp-allergic patients showing IgE binding to Cra c 8 in immunoblotting, and
7/31 (23%) shrimp-allergic sera having positive binding to Cra c 8 on ImmunoCAP [21].
TIM was later identified as Pen m 8 in P. monodon with 12/30 (40%) of P. monodon-allergic
subjects showing positive IgE binding to this allergen on ELISA, and 2/12 (17%) subjects
being positive in a basophil activation test (Table 1). The CDS size and gene length of Cra
c 8 is 750 bp, while the 1466 bp long Pen m 8 has a CDS of 800 bp. Pen m 8 is located at
Chromosome 5, NC_051390.1 (9171969..9173836), with four exons (Table 1). At the protein
level, the length of TIM in shrimp is usually 249–288 AA, with a MW of 27–28 kDa. Utilizing
far-ultraviolet CD spectra, it was determined that native TIM contains 31.7% α-helices,
12.4% antiparallel extended strands, and 7.4% parallel extended strands [72]. It was also
demonstrated by dot-blot analysis that the secondary structure was notably affected during
heat treatment, particularly at 100 ◦C, and the IgE-binding activity of TIM decreased as the
temperature exceeded 60 ◦C. In addition, extreme acidic conditions (pH 1.0) or alkaline
conditions (pH 11.0) resulted in a reduction in α-helices in the structure. Notably, the
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IgE-binding activity of TIM remained relatively stable under acidic and alkaline conditions.
Intriguingly, an increase in IgE-binding activity was observed at pH 2–3.

4.9. Fatty-Acid-Binding Protein

FABPs are a family of small, conserved proteins involved in the intracellular transport
and metabolism of fatty acids. As shown in Table 1, it was reported as an allergen in
P. vannamei (Lit v 13) with 10/36 (28%) shrimp-allergic subjects having IgE binding to
recombinant Lit v 13 by ELISA [38]. In P. monodon (Pen m 13), 20/30 (67%) allergic
subjects reacted positively on ELISA, and 7/12 (58%) showed positive basophil activity
to the recombinant allergen [37]. Yet FABP has not yet been recognized as an allergen in
other shellfish species. The CDS size of Lit v 13 and Pen m 13 is 411 bp, while the gene
length differs slightly (Table 1). The FABP gene in P. monodon is located at Chromosome 6,
NC_051391.1 (45560875..45573117, complement), with four exons. At the protein level, the
length of FABP in shrimp is 246 AA, with a MW of 15–20 kDa. The heat and pH stability of
this allergen is unknown.

4.10. Glycogen Phosphorylase

GP is an enzyme that plays a key role in the breakdown of glycogen, a branched
polymer of glucose that serves as the primary energy storage molecule in animals. The
heat stability of this allergen is unknown. The sole study reporting GP as an allergen was
conducted by our group [37], with 8/17 (47%) oral-food-challenged confirmed shrimp-
allergic subjects reacting positively on ELISA against recombinant GP, while 3/17 (18%)
also showed positive basophil reactivity upon GP stimulation. The CDS size of the GP
gene is 2559 bp, with a total gene length of 2701 bp (Table 1). The GP gene of P. monodon
is located on Chromosome 14, NC_051399.1 (6470562..6490308, complement), with seven
exons. At the protein level, the length of GP in shrimp is around 852 AA, with a MW of
about 95 kDa. The heat and pH stability of this allergen is unknown.

5. Other Potential Shrimp Allergens

Besides the allergens discussed above, several other proteins present in shrimp have
also been reported as potential allergens. A study showed that eleven (68%) and seven
(43%) patients demonstrated IgE-binding activity to titin (Ttn) (identified by mass spec-
trometry) in raw and heated P. monodon extracts, respectively [29]. Phosphopyruvate
hydratase/enolase in P. monodon was identified as a novel, putative shrimp allergen but
with a limited number of patients and pediatric patients involved only [73]. Khanaruk-
sombat et al. [74] also identified enolase as a potential important allergen in the muscle
of P. merguiensis, accompanied with the potential allergen myosin heavy chain (MHC).
Moreover, GAPDH showed allergenic reactions in the muscle and shell of P. merguiensis,
and vitellogenin (VG) exhibited a high intensity in immunoblot analysis across all vitel-
logenic stages which indicated it as an important allergen in the ovaries of P. merguiensis.
Additionally, the authors suggested ovarian peritrophin 1 precursor (SOPs), β-actin, and
14-3-3 protein as novel but minor allergens in P. merguiensis. Similarly, the purification
of the protein is needed to confirm its allergenicity. Our group also demonstrated the
IgE-binding ability of enolase and aldolase from P. monodon by immunoblot, but their recog-
nition frequency was low, while the recombinant protein also showed low sensitization
rates [37]. Pyruvate kinase in P. vannamei showed a high specific IgE binding in raw and
cooked shrimp extracts in seven (100%) and four (57%) of seven allergic patients’ sera,
respectively [75]. The registration of these allergens has been partly hindered by the lim-
ited sample size and/or the absence of protein purification necessary for confirming their
allergenicity. Despite this, the identified proteins hold potential diagnostic and therapeutic
values for studies on shrimp allergies.
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6. Cross-Reactivity of Shrimp Allergens

Patients with shrimp allergy often exhibit allergic symptoms to other crustaceans
and mollusks, as well as IgE cross-reactivity with nonedible arthropods such as insects
(cockroaches) and arachnids (mites) due to the highly conserved allergens. Among all, TM
contributed to the majority of cross-reactivity detected. Due to its involvement in essential
biological processes across various organisms, TM is a widely distributed invertebrate
pan-allergen with highly conserved sequences and structures [47,76,77], and thus it exhibits
strong cross-reactivity. Studies have demonstrated that TM is an important allergen in
other crustaceans, such as crabs (Cha f 1, Por p 1, Scy p 1) and lobsters (Pan s 1, Hom a 1,
Pan s 1), as well as mollusks such as oysters (Cra a 1, Cra g 1, Sac g 1), gastropods (Hal l 1,
Hal m 1, Hel as 1), and squid (Tod p 1) (Table 3). In addition to shellfish, it is characterized
as a food allergen in herring worm (Ani s 3) [78], common roundworm (Asc l 3), silk moth
(Bomb m 3) [79], and Mozambique tilapia (Ore m 4) [80], as an airway allergen in mosquitoes
(Aed a 10) [81], cockroaches (Bla g 7, Per a 7) [82,83], mites (Blo t 10, Cho a 10, Der f 10, Der
p 10, Lep d 10, Tyr p 10) [84–89], and termites (Copt f 7) [81], and as an injection allergen
in midges (Chi k 10) [90]. AK is also a widely distributed invertebrate pan-allergen with
remarkably conserved sequences and shows cross-reactivity with allergens from crab (Cal b
2, Scy p 2) and oyster (Cra a 2) (Table 3). Moreover, it has been identified as a food allergen
in moths (Cal b 2, Plo i 1) [91,92] and as an airway allergen in cockroaches (Bla g 9) [93,94]
and mites (Der f 20, Der p 20, Per a 9, Tyr p 20) [95–97]. MLC shows cross-reactivity among
crustacean shellfish, viz. crab (Scy p 3), lobster (Hom a 3), and crayfish (Pro c 5) (Table 3).
Interestingly, it was also identified as a food allergen in vertebrates including chicken
(Gal d 7) [98] and cattle (Bos d 13) [99], and as an airway allergen in cockroaches (Bla g
8, Per a 8) [100] and mites (Der f 26, Der p 26) [39]. Additionally, the cross-reactivity of
SCP was investigated through sequence and immunoblotting analyses by Zhao et al. [66].
They demonstrated that crustacean SCP showed high sequence identities ranging from
77% to 96%. The sequence homology of crustacean SCPs with those of insects, mites (and
their relative, the horseshoe crab), and mollusks was generally lower, ranging from 14%
to 55% [65]. Thus far, SCP shows cross-reactivity in crab (Scy p 4), oyster (Cra a 4), and
lobster (Pon l 4) (Table 3). It was also identified as an airway allergen in mosquito (Aed
a 5) [81] and cattle (Bos d 3) [101]. TnC was identified as an allergen in American lobster
(Hom a 6) recognized by 24% of the patients. On the other hand, TnI has been identified
in narrow-clawed crayfish Pontastacus leptodactylus (Eschscholtz, 1823) as 2/25 (8%) of
shrimp-allergic patients had IgE that reacted with Pon l 7 in IgE immunoblotting [102]. TnC
has also been identified as an airway allergen in cockroaches (Bla g 6, Per a 6) [103] and
mites (Der f 39, Der p 39, Tyr p 34) [104,105]. It was shown that 5/87 (5.75%) of house-dust-
mite patients reacted with Der p 39, and 5/47 (10.6%) of the tested patients showed IgE
binding with Tyr p 34. Hc was found to exhibit IgE activity in crabs, such as purple mud
crab Scylla tranquebarica (Fabricius, 1798) [106] and Chinese mitten crab Eriocheir sinensis
(H. Milne Edwards, 1853) [106,107]. Additionally, it was identified as an airway allergen
in German cockroach (Blattella germanica) (Bla g 3) [108,109] and American cockroach
Periplaneta americana (Linnaeus, 1758) (Per a 3) [110]. TIM was found as a cross-reactivity
allergen in other crustaceans such as crab (Scy p 8) [111], lobster (Arc s 8), and crayfish (Pro
c 8) [89] (Table 3), as well as a food allergen in catfish (Pan h 8) [112]. Additionally, TIM has
been reported as an airway allergen in wheat (Tri a 31) [113], mold (Asp t 36) [114], tree
pollen extract (Pla a 7), and mite (Der f 25, Der p 25) [115], and as an injection or inhalation
allergen in mosquito (Aed a 12). In addition to shrimp, FABP was first recognized as an
allergen in storage mite Blomia tropicalis (Bronswijk, Cock and Oshima, 1973) (Blo t 13) in
1997 [116], followed by other mites (Aca s 13, Lep d 1, Tyr p 13, Der f 13, Der p 13) [117–120].
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Table 3. List of characterized shellfish allergens.

Shellfish Species Tropomyosin * Arginine
Kinase *

Myosin Light
Chain 2 *

Sarcoplasmic
Calcium-Binding

Protein *

Myosin Light
Chain 1 *

Troponin C,
Troponin I * Hemocyanin * Triosephosphate

Isomerase * Filamin C * Paramyosin *
Cytoplasmic Fatty-

Acid-Binding
Protein *

Glycogen
Phosphorylase-like

Protein *

Crustaceans

Shrimp

Penaeid shrimp

Metapenaeus ensis
(Greasyback

shrimp)
Met e 1

Penaeus aztecus
(Brown shrimp) Pen a 1

Penaeus indicus
(Indian prawn) Pen i 1

Penaeus
latisulcatus

(Western king
prawn)

Mel l 1

Penaeus monodon
(Black tiger

shrimp)
Pen m 1 Pen m 2 Pen m 3 Pen m 4 Pen m 6 Pen m 7 Pen m 8 Pen m 13 Pen m 14

Penaeus vannamei
(Whiteleg
shrimp)

Lit v 1 Lit v 2 Lit v 3 Lit v 4

Caridean shrimp

Crangon. crangon
(North Sea

shrimp)
Cra c 1 Cra c 2 Cra c 4 Cra c 5 Cra c 6 Cra c 8

Exopalaemon
modestus (Siberian

prawn)
Pen a 1

Macrobrachium
rosenbergii (Giant

freshwater
prawn)

Mac r 1 Mac r 2

Pandalus borealis
(Northern
shrimp)

Pan b 1

Crab

Callinectes
bellicosus (Warrior
swimming brown

crab)

Cal b 2

Charybdis feriatus
(Crucifix crab) Cha f 1

Eriocheir sinensis
(Chinese mitten

crab)

Portunus pelagicus
(Blue swimmer

crab)
Por p 1

Scylla
paramamosain
(Mud crab)

Scy p 1 Scy p 2 Scy p 3 Scy p 4 Scy p 8 Scy p 9
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Table 3. Cont.

Shellfish Species Tropomyosin * Arginine
Kinase *

Myosin Light
Chain 2 *

Sarcoplasmic
Calcium-Binding

Protein *

Myosin Light
Chain 1 *

Troponin C,
Troponin I * Hemocyanin * Triosephosphate

Isomerase * Filamin C * Paramyosin *
Cytoplasmic Fatty-

Acid-Binding
Protein *

Glycogen
Phosphorylase-like

Protein *

Crustaceans

Lobster

Homarus
americanus
(American

lobster)

Hom a 1 Hom a 3 Hom a 6

Panulirus
stimpsonii (Spiny

lobster)
Pan s 1

Archaeopotamobius
sibiriensis Arc s 8

Crayfish

Pontastacus
leptodactylus

(Narrow-clawed
crayfish)

Pon l 4 Pon l 7

Procambarus
clarkii (Red

swamp crayfish)
Pro c 1 Pro c 2 Pro c 5 Pro c 8

Brine shrimp

Artemia
franciscana (San
Francisco brine

shrimp)

Art fr 5

Mollusks

Gastropod

Haliotis laevigata x
Haliotis rubra

(Jade tiger
abalone)

Hal l 1

Haliotis midae
(Perlemoen

abalone)
Hal m 1

Helix aspersa
[Cornu aspersum]
(Brown garden

snail)

Hel as 1

Rapana venosa
(Veined rapa

whelk)
Rap v 11

Bivalve

Crassostrea
angulata

(Portuguese
oyster)

Cra a 1 Cra a 2 Cra a 4

Crassostrea gigas
(Pacific oyster) Cra g 1

Saccostrea
glomerata (Sydney

rock oyster)
Sac g 1

Cephalopod
Todarodes pacificus
(Japanese flying

squid)
Tod p 1

* Allergens stated are registered with the WHO/IUIS Allergen Nomenclature.
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7. Allergens from Other Crustaceans and Mollusks

On top of the cross-reactive allergens, there are novel allergens identified in crustaceans
and mollusks that were not reported in shrimp. For instance, filamin C was identified as a
crab allergen named Scy p 9, with 30/100 shellfish-allergic subjects showing IgE binding
to natural and recombinant Scy p 9 as shown by Western blot, dot blot, and ELISA [121].
Yu et al. [122] found a 99 kDa protein paramyosin in whelk Rapana venosa (Valenciennes,
1846) that displayed specific IgE binding with sera from sea-snail-allergic patients, which
was then identified as a novel allergen named Rap v 11. Unlike filamin C, paramyosin has
also been identified as an allergen in herring worm (Ani s 2) [123] and mites (Blo t 11, Der f
11, Der p 11, Tyr p 11) [124–126].

8. Conclusions

To date, ten shrimp allergens have been registered in the WHO/IUIS Allergen Nomen-
clature Database (TM, AK, MLC2, SCP, MLC1, TnC, Hc, TIM, FABP, GP), and several
potential shrimp allergens have been reported. Cross-reactivity among different shellfish
species is widespread and encompasses components that extend beyond the major allergen
TM. Except for FABP and GP, most of the allergens show clinical cross-reactivity not only
between crustaceans and mollusks but also with other arthropods like mites and insects,
and in some cases, even vertebrates and plants. During the last two decades, significant
progress has been made in identifying and characterizing shrimp allergens and beyond.

The availability of whole genome sequence assemblies of penaeid shrimp species,
including P. chinensis, P. indicus, P. japonicus, P. monodon, and P. vannamei provides an
opportunity to reveal the genomic information of allergen genes in these species and the
influence of genomic features on transcriptional regulation, alternative splicing, and the
allergenicity of the proteins. With this comprehensive genomic information, the potential
for genomic selection in shrimp breeding programs can be further explored.

The advancement in sequencing technologies also improves the delineation of shellfish
allergens at high resolution compared to conventional immunodetection methods. In the
era of precision medicine and based on studies showing the heterogenous allergen profile
of shrimp- and shellfish-allergic patients, such a comprehensive panel allows precision
diagnosis using the component-resolved diagnosis approach. Recombinant technologies,
on the other hand, facilitate the modification of allergens to mitigate their allergenicity
and the recombinant fusion of allergens to suitable carriers for vaccine construction. In
summary, with our better understanding of shrimp allergens along with their genomic
information, the achievement of precision diagnosis and treatment of shellfish allergy will
just be a matter of time.
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