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Simple Summary: Predicted breeding values significantly influence the selection of suitable individ-
uals for further breeding. For traits with low heritability, including fertility, the reliability of breeding
value tends to be low, and it increases gradually with increasing performance records and offspring.
A large number of beef cattle are raised extensively, where they are grazed on pasturelands, but this
system provides only limited opportunities for data collection. Incorporating genomic information for
individuals leads to an increase in the reliability of the predicted genomic breeding value. However,
the increase in reliability is not uniform among individuals, and it varies among breeding groups
within a breed. In our study, the benefit was observed for all genotyped individuals, especially
in young individuals of both sexes. No significant increase in the reliability of genomic breeding
values was observed for nongenotyped individuals; however, this trend may change as the number
of individuals in the population are genotyped.

Abstract: The aim of this study was to assess the impact of incorporating genomic data using the
single-step genomic best linear unbiased prediction (ssGBLUP) method compared to the best linear
unbiased prediction (BLUP) method on the reliability of breeding values for age at first calving,
calving interval, and productive longevity at 78 months in Charolais cattle. The study included
48,590 purebred Charolais individuals classified into four subgroups based on genotyping and
performance records. The results showed that considering genotypes significantly improved genomic
estimated breeding values (GEBV) reliability across all categories except nongenotyped individuals.
For young genotyped individuals, the increase in reliability was up to 27% for both sexes. The highest
average reliability was achieved for genotyped proven bulls and cows with performance records,
and the inclusion of genomic data further improved the reliability by up to 22% and 21% for cows
and bulls, respectively. The gain in reliability was observed mainly during the first three calvings,
and then the differences decreased. The imported individuals showed lower estimated breeding
values (EBV) and GEBV reliabilities than the domestic population, probably due to the weak genetic
connection with the domestic population. However, when the progeny of imported heifers were
sired by domestic bulls, the reliability increased by up to 24%. For nongenotyped individuals, only
a slight increase in reliability was observed; however, the number of genotyped individuals in the
population was still relatively small.

Keywords: genomic selection; reliability; Charolais; animal breeding

1. Introduction

High stability and accuracy of predicted breeding values are desirable for targeted
long-term selection and the credibility of the entire genetic evaluation system for breeders.
The accuracy of breeding value prediction is measured by the correlation between the
true genetic value and the predicted genetic value; when we square this correlation, we
obtain the reliability of the breeding value [1]. Several approaches can be used for reliability
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calculation [2]. When the population is small, the direct matrix inversion of the best linear
unbiased prediction (BLUP) mixed-model equations can be applied [3]. In the opposite
case, it is necessary to use an approximation method for reliability calculation [2]. Generally,
the reliability of breeding values for reproductive traits is low [4–7]. This is attributed to
the low heritability coefficient and limited availability of information in beef cattle [8,9].
Incorporating genomic information into breeding value prediction increases the amount
of information considered in genomic breeding value (GEBV) prediction [10]. The global
spread of genotyping has led to a reduction in genotyping cost per animal, resulting
in a significant increase in the numbers of genotyped individuals of both sexes. The
number of genotyped individuals in the Czech Republic has rapidly increased since 2018,
when parentage verification based on single nucleotide polymorphism (SNP) markers was
implemented. The effort to include an increasing number of genotypes resulted in the
initiation of routine genomic evaluation for beef cattle fertility traits in 2023. The single-step
genomic BLUP (ssGBLUP) method allows the prediction of GEBVs for genotyped and
nongenotyped individuals together [11], so all available information across individuals
in the entire population, their performances, and the genomic relationship between them
will be considered in GEBV prediction. The increased reliability when using ssGBLUP has
been reported by many authors [12–15]. However, the Charolais population is composed of
several groups based on age, sex, origin, and performance records. The benefit of genomic
evaluation varies for each group depending on the available information (performance
record, genotype, parents’ reliability), contemporary group, or heritability coefficient. The
aim of this study was to compare the reliabilities of breeding values predicted based on the
BLUP and ssGBLUP methods for different breeding groups of the Charolais population in
the Czech Republic.

2. Materials and Methods
2.1. Phenotypic and Pedigree Data

The analysis was performed on a database of performance testing of the Czech Beef
Cattle Association, comprising data from 1995 to 2023. This database is used for the routine
genetic evaluation of beef cattle in the Czech Republic. Although the database contained
performance records from 25 beef breeds and their crosses, we focused our detailed analysis
solely on the most frequent breed, Charolais (n = 48,590). Beef cattle populations are often
managed extensively, which complicates the data collection for many traits. However,
existing or previously collected data can be used for some reproductive traits. The analysis
focused on reproductive performance, specifically considering age at first calving (AFC),
first calving interval (CI), and productive longevity in 78 months (PL78), as all these traits
were obtained using individual birth dates or date of culling. The acceptable ranges for each
trait were defined as follows: age at first calving should fall between 650 and 1600 days, and
the first calving interval must be within the range of 280 to 800 days; performance values
outside the range were defined as missing. The productive longevity in 78 months (PL78)
was defined as the number of calvings (achieved or expected) until the age of 78 months. If
the cow was younger than 78 months (or its PL78 was set as missing due to AFC and CI
values outside the allowed range), PL78 was predicted based on the methodology described
in detail in Brzáková et al. [5] and Venot et al. [16].

2.2. Genotypic Dataset

The dataset included 3850 individuals (288 bulls and 3562 cows) genotyped with
various types of SNP chips (Table 1). Imputation between SNP chips was not performed,
and only the overlap of common SNPs with Illumina BovineSNP50BeadChip V3 (Illumina
Inc., San Diego, CA, USA) was applied. The number of overlapping SNPs was 36,035.
During quality control, SNPs with unknown positions were removed, and parent–progeny
conflicts were checked and corrected. Furthermore, data for positions on nonautosomal
chromosomes, with call rates less than 90% (n = 423), with minor allele frequencies (MAFs)
lower than 5% (n = 3314), with monomorphic SNPs (n = 309), and from animals with a
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call rate less than 90% (n = 2) were removed. Quality control was performed by preGSf90
software [17]. After quality control, the number of included SNPs was reduced to 32,327.

Table 1. Number of genotyped animals and microarray technology used.

Microarray Technology Number of SNPs Number of Animals

Illumina BovineSNP50 BeadChip V3 53,218 1022
Euro G MD v2 51,376 1059
Euro G MD v3 59,963 808
Euro G MD v1 44,847 588

Geneseek GGP 150k 138,974 286
Other 41,766–66,068 87

Total 3850

2.3. Statistical Methods
2.3.1. Genetic Parameter Estimation

The genetic parameters and heritability (h2) were estimated separately for both meth-
ods (traditional BLUP method and ssGBLUP method) using average information REML
(AIREML) of the blupf90 family programs [11,17]. An appropriate data structure and
connectedness must be ensured for genetic parameter estimation. For this purpose, a
contemporary group incorporating the effect of herd-year-season (HYS) was created. The
seasons were defined by combining the months of the year every three consecutive months
from January. Each HYS had to meet the following conditions: at least three cows in the
HYS that are the progeny of at least two sires. These edits reduced the dataset from 17,703
to 10,801 records for Charolais, of which 1562 were genotyped (121 bulls, 1441 cows). The
pedigree included four generations (N = 26,713) of ancestors and an unknown parent group.
Other significant environmental effects were chosen based on biological importance and
the significance level (p < 0.05), which was determined using the GLM procedure in SAS
9.4 [18]. The effect of calving difficulty was divided into four categories: easy calving
without assistance (1), calving with assistance (2), difficult calving (3), and cesarean section
(4). The average calving difficulty during the cow’s productive life was calculated from
these four categories. Genetic parameters for age at first calving, first calving interval, and
productive longevity in 78 months were estimated with a multitrait animal model, with the
individual equations as follows:

AFCijk = BYi+ HYSj + Animk + eijk (1)

where AFCijk is the age at first calving in months; BYi is the fixed effect of birth year (class
effect); HYSj is the random effect of herd-year-season of the first calving (class effect);
Animk is the random animal additive genetic effect of the kth animal (four generations are
included); and eijk is the random residual error.

CIijkl = BYi + HYSj + CDk + Animl + eijkl (2)

where CIijkl is the first calving interval in days; BYi is the fixed effect of birth year (class
effect); HYSj is the random effect of herd-year-season of the first calving (class effect); CDk
is the calving difficulty of the first calving; Animl is the random animal additive genetic
effect; and eijkl is random residual error.

PLijkl = BYi + ACDj+ HYSk + Animl + eijkl (3)

where PLijkl is productive longevity at 78 months; BYi is the fixed effect of birth year (class
effect); ACDj is the linear regression of the average calving difficulty during the cow´s life;
HYSk is the random effect of herd-year-season of the last calving (class effect); Animl is the
random animal additive genetic effect; and eijk is random residual error.
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2.3.2. Breeding Value Prediction

Genetic evaluation was performed by traditional pedigree-based BLUP and single-step
GBLUP using the default options in BLUPF90 software (version 1.68) [11,17]. In the genetic
evaluation, our estimated genetic parameters were used. For fertility trait evaluation, a
multitrait animal model was applied based on the model equations mentioned above (1–3).
The number of records was 17,703 for AFC and PL78, and the number of CI records was
12,564. The direct animal effect included four generations of ancestors, which corresponded
to 48,590 individuals.

It was assumed that the direct animal effect and random residual effect were normally
distributed: N

(
0, Aσ2

u
)

or N
(
0, Hσ2

u
)

and N
(
0, Iσ2

e
)
, where A represents the additive

relationship matrix, H is the relationship matrix adjusted to include genomic information,
I is an identity matrix of order equal to the number of observations, σ2

u represents additive
genetic variance, and σ2

e represents error variance and independent Cov(u,e) = 0. The
ssGBLUP method is identical to BLUP, except that the inverse of the numerator relationship
matrix A−1 is replaced with matrix H−1. Matrix H−1 was generated using preGSf90
software [17] and has the following structure:

H−1 = A−1 +

[
0 0
0 G−1 − A−1

22

]
where H is the relationship matrix adjusted to include genomic information, A is the
pedigree-based relationship matrix, A22 specifically pertains to genotyped individuals
within the pedigree-based relationship matrix, and G is the genomic relationship matrix [11].
The reliability of the predicted conventional and genomic breeding values was calculated
by accf90GS software [17].

3. Results and Discussion

Table 2 shows descriptive statistics for the reproductive performance of Charolais. The
average AFC is approximately 36 months, corresponding to an age of 3 years. The average
CI exceeds the target of 365 days. It might appear that the longer CI is caused by more
frequent calving difficulties in this breed, but only 4% of records were affected by calving
difficulty or cesarean section. The average number of calvings until the age of 78 months
was 3.

Table 2. Descriptive statistics for reproductive performance.

Trait N Mean ± SD Min. Max.

AFC 17,703 36.26 ± 4.787 19.80 52.46
CI 12,564 433.77 ± 108.31 284 799

PL78 17,703 2.98 ± 1.27 1 5.88
AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months.

The estimated genetic parameters and heritability are shown in Table 3. Heritability
was calculated as h2 = σ2

a/
(
σ2

a + σ2
e
)
, where σ2

a is the additive genetic variance and σ2
e is

the residual variance. The heritability of all reproductive traits was low (0.06–0.19), and
there were only minor differences between the two approaches (BLUP, ssGBLUP). The
finding of only small differences in heritabilities was also reported by other authors [12,19].
The phenotypic correlation (Table 4) between AFC and CI was close to zero, while for the
other two combinations of traits, it was negative (−0.20 and −0.28 for AFC/PL78 and
CI/PL78, respectively). Genetic correlations estimated based on BLUP were −0.34, 0.08,
and −0.33 for AFC/CI, AFC/PL78, and CI/PL78, respectively. Similar genetic correlations
were estimated using ssGBLUP, at −0.27, −0.03, and −0.37 for AFC/CI, AFC/PL78, and
CI/PL78, respectively. According to Montesinos-López et al. [20], the primary benefit of
genetic or genomic multitrait evaluation lies in incorporating the genetic relationships
between studied traits.
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Table 3. Variance components, heritabilities, and their standard errors estimated by BLUP and
ssGBLUP.

Method Trait σ2
a ± SE σ2

hys ± SE σ2
e ± SE h2

AFC 0.87 ± 0.117 3.75 ± 0.104 0.19
BLUP CI 80.38 ± 31.17 1247.9 ± 35.33 0.06

PL78 0.15 ± 0.023 0.41 ± 0.024 0.92 ± 0.022 0.14

AFC 0.85 ± 0.114 3.76 ± 0.102 0.19
ssGBLUP CI 77.44 ± 31.088 1251.5 ± 35.24 0.06

PL78 0.18 ± 0.025 0.39 ± 0.023 0.89 ± 0.023 0.17
AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months.

Table 4. Phenotypic and genetic correlations between reproductive traits.

Trait Combination Phenotypic Genetic Genomic

AFC/CI 0.02 −0.34 −0.27
AFC/PL78 −0.20 0.08 −0.03
CI/PL78 −0.28 −0.33 −0.37

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months.

Predictions of EBVs and GEBVs were made using the BLUP and ssGBLUP methods.
The Pearson correlations between EBVs and GEBVs were statistically significant, with val-
ues of 0.98, 0.97, and 0.98 for AFC, CI, and PL78, respectively. Similarly, high correlations
exceeding 80% were also reported by Mancusidor et al. [21] in Huacaya Alpaca and Sharko
et al. [22] in the Black-and-White cattle population. The EBV and GEBV reliabilities are
presented in Table 5. These reliabilities were low. The average reliability was low for both
methods (below 0.23), which is the expected value for fertility traits. The highest average
accuracy was observed for AFC, while the lowest was observed for CI. Theory predicts
that the largest increase in reliability will be observed for the trait with the lowest heri-
tability [23], but our results did not confirm this trend. Generally, low reliability is caused
by many factors, such as a low heritability coefficient, the proportion of explained genetic
variance, the chosen statistical method, the size and structure of the population, the quality
and quantity of genotypic and phenotypic data or a slow increase in available information
connected to the individual [8,24]. Genomics provides many benefits for reproductive traits
and other traits with low heritability. A significant benefit is the creation of a genomic
relationship between animals instead of a pedigree relationship [11]. While the BLUP
method operates with an expected relationship of 0.5 for siblings, the realized relationship
could be in the range of 0.3 to 0.6 [13]. For this reason, incorporating the ssGBLUP method
including genotyped and nongenotyped individuals together is even better than using
methods including only genotyped individuals and contributes to increasing the reliability
of GEBVs [2]. Considering the entire Charolais population (Table 5), this increase is not
enormous; for AFC and CI, an increase in reliability of approximately 1% was observed,
while for PL78, the increase was more significant (+4%). According to Mohammaddiyeh
et al. [25], the improvement in reliability occurs when only 3% of genotyped individuals
are included. In the population in this study, nearly 8% of animals were genotyped.

The reliability of predicted EBVs and GEBVs is also affected by contemporary group-
ing [26]. Genetic linkage between contemporary groups can help increase EBV/GEBV
reliability through shared information from multiple contemporary groups. When the
genetic connection is poor, there may be an increase in prediction error variance, and the
predicted breeding value is over- or underestimated [27]. Artificial insemination is not used
as often in beef cattle as in dairy cattle [9], so the most effective way to reduce bias is genetic
linkage through common sires across herds [28]. This strategy is also implemented by our
breeders, especially those breeding a high proportion of imported individuals. Achieving
a sufficient number of individuals in a contemporary group is more problematic in beef
cattle than in dairy cattle. The size of the contemporary group was on average 5.7 ± 7.3 for
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the herd-year-season of the first calving and on average 5.9 ± 7.4 for the herd-year-season
of the last calving.

Table 5. Reliability of predicted conventional and genomic breeding values for fertility traits.

BLUP ssGBLUP

Trait N Mean ± SD Min Max Mean ± SD Min Max Diff

AFC 48,590 0.22 ± 0.138 0 0.94 0.23 ± 0.152 0 0.94 +0.01
CI 48,590 0.12 ± 0.089 0 0.73 0.13 ± 0.096 0 0.73 +0.01

PL78 48,590 0.18 ± 0.122 0 0.92 0.22 ± 0.148 0 0.94 +0.04

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; Diff—difference
between EBV and GEBV reliabilities.

Subsequently, we decided to divide the whole population into smaller groups so that
we could analyze a specific benefit or disadvantage for them. The groups were as follows:
genotyped individuals with performance values, genotyped individuals without perfor-
mance values, nongenotyped individuals with performance values, and nongenotyped
individuals without performance values. When forming groups, the progeny number
was not considered. As shown in Table 6, the performance records play an important
role because, on average, cows with performance values (genotyped or nongenotyped)
showed the highest reliability values when the BLUP method was used. The average
GEBV reliability of cows with performance values and genotype information increased by
0.18, 0.12, and 0.22 for AFC, CI, and PL78, respectively. Additionally, the minimum and
maximum increased. This was followed by the values for genotyped individuals without
performance values. This group prediction was greatly improved by the consideration of
genomic information (increase up to 0.26), mainly because there was a large proportion
of proven genotyped bulls or young bulls and heifers. In this group, incorporation of
genomic data helped correct the relationship between genotyped individuals through
population information. Differences in EBV and GEBV reliabilities in individuals with
performance records and nongenotyped individuals without performance records were
not observed, except for PL78, where the random contemporary group of last calving was
used. If there are enough genotyped individuals, GEBV reliability can also increase for
nongenotyped individuals [29]. This could be beneficial because if an individual does not
have performance records or a genotype, EBV and GEBV are predicted only based on the
relationships in matrix A or corrected relationships in matrix H, and for that reason, the
calculated reliabilities are often low.

The Charolais population can also be divided by sex. The benefit of incorporating
genomic data for GEBV reliability for both sexes was observed in young and proven
individuals [24]. Since we delve more deeply into heifers and productive cows in more
detail later in the text, Table 7 shows the consideration of genomic information for young
and proven genotyped bulls only. Nongenotyped bulls were not considered because
they are a disparate group of bulls, many of which show high EBV reliability because
of accumulated historical data. Analysis was performed only on genotyped young and
proven bulls, which were assumed to be preselected based on their performance and
exterior quality for producing the next generation. A young bull was defined as a bull born
between 2019 and June of 2023, thus reaching a maximum age of 4.5 years. The average EBV
and GEBV reliabilities in young genotyped bulls were slightly higher than those in heifers,
but the gain in reliability was higher for heifers. More accurate bull GEBVs than heifer
and cow GEBVs have been reported by many authors [14,24]. Sharko et al. [22] reported a
similar pattern for the EBV reliability of genotyped bulls and cows, but when evaluating
GEBV reliability, the trend was reversed. A high gain in reliability in young bulls (when
ssGBLUP was applied) was also reported by Bauer et al. [29]. They stated that the increase
in reliability in young bulls was from 0.276 to 0.505, while in proven bulls, it was only from
0.828 to 0.855. Lee et al. [14] reported an increase in EBV reliability from 0.22 (young bulls)
to 0.71 (proven bulls), and in GEBV reliability, it was from 0.39 to 0.75. The reason for this is
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that young bulls have either no or a very small number of offspring, and the incorporation
of genomic data is comparable to having up to approximately 10 offspring, reflecting a
reliability increase [30].

Table 6. Reliability of predicted conventional and genomic breeding values for different breeding
groups.

BLUP ssGBLUP

Trait Group N Mean ± SD Min Max Mean ± SD Min Max Diff

G + P 1 2055 0.33 ± 0.056 0.01 0.51 0.51 ± 0.033 0.30 0.63 +0.18
AFC G 1795 0.21 ± 0.106 0 0.90 0.46 ± 0.060 0.24 0.91 +0.25

P 1 15,648 0.32 ± 0.069 0 0.54 0.32 ± 0.068 0 0.54 0
Ped 29,092 0.14 ± 0.126 0 0.94 0.14 ± 0.123 0 0.94 0

G + P 1 2055 0.16 ± 0.050 0 0.35 0.28 ± 0.041 0.11 0.43 +0.12
CI G 1795 0.11 ± 0.066 0 0.72 0.25 ± 0.051 0.10 0.73 +0.14

P 1 15,648 0.17 ± 0.059 0 0.37 0.17 ± 0.059 0 0.37 0
Ped 29,092 0.09 ± 0.090 0 0.73 0.09 ± 0.089 0 0.72 0

G + P 1 2055 0.27 ± 0.055 0.01 0.45 0.49 ± 0.035 0.28 0.62 +0.22
PL78 G 1795 0.18 ± 0.097 0 0.88 0.44 ± 0.061 0.22 0.90 +0.26

P 1 15,648 0.28 ± 0.066 0 0.49 0.31 ± 0.068 0 0.52 +0.03
Ped 29,092 0.13 ± 0.115 0 0.92 0.14 ± 0.121 0 0.94 +0.01

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; G + P—genotyped
individuals with performance values; G—genotyped individuals without performance values; P—nongenotyped
individuals with performance values; Ped—nongenotyped individuals without performance values;
Diff—difference between EBV and GEBV reliabilities. 1 only females.

Table 7. Reliability of predicted conventional and genomic breeding values for young and
proven bulls.

BLUP ssGBLUP

Trait Bulls N Mean ± SD Min Max Mean ± SD Min Max Diff

AFC
Young 98 0.18 ± 0.067 0 0.30 0.45 ± 0.036 0.33 0.52 +0.27
Proven 235 0.35 ± 0.183 0 0.90 0.54 ± 0.107 0.33 0.91 +0.19

CI
Young 98 0.10 ± 0.043 0 0.22 0.25 ± 0.035 0.16 0.35 +0.15
Proven 235 0.19 ± 0.116 0 0.72 0.31 ± 0.087 0.16 0.73 +0.12

PL78
Young 98 0.16 ± 0.061 0 0.28 0.43 ± 0.037 0.31 0.51 +0.27
Proven 235 0.31 ± 0.169 0 0.88 0.52 ± 0.108 0.31 0.90 +0.21

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; Diff—difference
between EBV and GEBV reliabilities.

When the cow has performance records, higher reliability in both genotyped and
nongenotyped individuals is guaranteed (Table 6). The proportion of phenotyped individ-
uals in the population also affects the prediction accuracy [31]. According to our results,
the ssGBLUP method did not increase the GEBV reliability of nongenotyped cows with
performance records (except for a slight contribution to PL78). Table 8 shows basic statistics
for EBV and GEBV reliabilities for genotyped cows with performance records. Usually,
as performance records and the number of progeny increase, the reliability of EBVs and
GEBVs increases. The results of our study confirmed this hypothesis. The greatest benefit
of genomic information was observed at first calving for all reproductive traits. With an
increasing number of offspring, the importance of genomic data as additional sources of
information slightly decreases. This phenomenon has been observed in many studies [14].
However, the contribution of genomic data is evident in all four categories, as seen in the
average reliability values and in the maximum achieved reliabilities. A gain in reliability
(EBV, GEBV) during the first three calvings in dairy cattle was reported by Lee et al. [14],
but it was lower than that in our study.
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Table 8. Reliability of predicted conventional and genomic breeding values for genotyped cows with
performance records.

BLUP ssGBLUP

Trait Calving
Order N Mean ± SD Min Max Mean ± SD Min Max Diff

AFC

1st 520 0.31 ± 0.049 0.01 0.41 0.50 ± 0.036 0.23 0.57 +0.19
2nd to 3rd 819 0.31 ± 0.052 0.06 0.44 0.50 ± 0.036 0.29 0.59 +0.19
4th to 7th 575 0.34 ± 0.051 0.10 0.45 0.52 ± 0.033 0.34 0.58 +0.18

8th and later 141 0.39 ± 0.055 0.19 0.51 0.54 ± 0.034 0.44 0.63 +0.15

CI

1st 520 0.12 ± 0.037 0 0.27 0.25 ± 0.036 0.06 0.37 +0.13
2nd to 3rd 819 0.17 ± 0.044 0.02 0.35 0.28 ± 0.039 0.11 0.43 +0.11
4th to 7th 575 0.19 ± 0.042 0.05 0.32 0.30 ± 0.037 0.12 0.39 +0.11

8th and later 141 0.22 ± 0.047 0.10 0.32 0.31 ± 0.041 0.23 0.41 +0.09

PL78

1st 520 0.25 ± 0.046 0.01 0.36 0.48 ±0.036 0.21 0.56 +0.23
2nd to 3rd 819 0.26 ± 0.052 0.05 0.40 0.48 ± 0.037 0.27 0.57 +0.22
4th to 7th 575 0.29 ± 0.050 0.09 0.40 0.50 ± 0.034 0.32 0.56 +0.21

8th and later 141 0.33 ± 0.054 0.16 0.45 0.52 ± 0.035 0.42 0.62 +0.19

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; Diff—difference
between EBV and GEBV reliabilities.

Selecting young individuals for herd replacement is an important aspect of breeding
management and ensuring further breeding progress. Heifers do not have performance
records or progeny, so their EBV is calculated based on pedigree information only. For this
reason, the EBV reliability is generally low. When a heifer is genotyped, the amount of
information and GEBV reliability increase, enabling more precise selection. For genotyped
heifers of domestic origin, the gain in reliability when using ssGBLUP was 0.27 for AFC and
PL78 and 0.15 for CI (Table 9). A gain in reliability of 13% was reported by Lee et al. [14]
during the first three calvings in Holstein heifers. In the case of the ssGBLUP method,
genomic information is additionally adjusted for the realized genomic relationship between
genotyped individuals. In nongenotyped heifers, EBV and GEBV reliabilities were low,
and only a mild gain in reliability was observed for PL78. These reliabilities were slightly
higher (by 5 to 7%) for heifers originating from the domestic population than for those from
foreign countries (Slovakia, France). Unfortunately, there were no genotyped imported
heifers in the dataset, but we assumed the same trend (but milder) would exist as in the
domestic genotyped population.

Table 9. Reliability of predicted conventional and genomic breeding values for heifers.

Trait Heifer’s Group N
BLUP ssGBLUP

Mean ± SD Min Max Mean ± SD Min Max Diff

Domestic genotyped 1218 0.17 ± 0.056 0.02 0.35 0.44 ± 0.033 0.24 0.54 +0.27

AFC Domestic
non-genotyped 9493 0.19 ± 0.083 0.01 0.37 0.19 ± 0.083 0 0.36 0

Foreign non-genotyped 87 0.14 ± 0.041 0 0.23 0.14 ± 0.040 0 0.23 0

Domestic genotyped 1218 0.09 ± 0.036 0.01 0.30 0.24 ± 0.031 0.1 0.39 +0.15

CI Domestic
non-genotyped 9493 0.13 ± 0.088 0 0.33 0.13 ± 0.088 0 0.33 0

Foreign non-genotyped 87 0.06 ± 0.021 0 0.13 0.06 ± 0.021 0 0.12 0

Domestic genotyped 1218 0.15 ± 0.051 0.02 0.33 0.42 ± 0.034 0.22 0.52 +0.27

PL78 Domestic
non-genotyped 9493 0.18 ± 0.082 0.01 0.34 0.19 ± 0.083 0 0.36 +0.01

Foreign non-genotyped 87 0.12 ± 0.035 0 0.21 0.13 ± 0.038 0 0.22 +0.01

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; Diff—difference
between EBV and GEBV reliabilities.
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Due to the small size of the Czech Republic, importing individuals or genetic ma-
terial (semen, embryos) from abroad is a part of Charolais breeding. France, Slovakia,
Germany, and Canada are among the most common countries from which animals have
been imported since 2015. Imported individuals contribute to increasing genetic diversity
or production but usually have limited genetic linkage to the domestic population and
lack performance records (existing or recorded in available databases). Therefore, the EBVs
of these individuals are often predicted on the basis of no or only a small number of rela-
tionship connections. Without genetic linkage to the rest of the population, the predicted
breeding value of the imported individual is relative to the population average and may
not correspond to the real genetic value. The accuracy of EBV prediction is also reflected in
low reliability. The highest average values are achieved for genotyped individuals without
performance records (Table 10), which is attributed to the high representation of foreign
bulls, accounting for nearly 87% of all records (the rest of animals are heifers), and these
bulls, on average, have approximately 35 offspring (min. 2 and max. 196 offspring). Due to
the amount of data, genomic correction of the relationship matrix contributes to increasing
individual reliability. For these individuals, it was observed that the GEBV reliability
increased by 0.15, 0.33, and 0.19 for AFC, CI, and PL78, respectively, compared to the
EBV reliability.

Table 10. Reliability of predicted conventional and genomic breeding value for imported individuals.

BLUP ssGBLUP

Trait Group N Mean ± SD Min Max Mean ± SD Min Max Diff

AFC

G + P 172 0.26 ± 0.062 0.10 0.44 0.47 ± 0.041 0.34 0.58 +0.21
G 84 0.42 ± 0.241 0 0.86 0.57 ± 0.142 0.33 0.58 +0.15

P 1 1465 0.25 ± 0.086 0 0.48 0.25 ± 0.085 0 0.47 0
Ped 12,996 0.06 ± 0.102 0 0.94 0.06 ± 0.100 0 0.94 0

CI

G + P 172 0.12 ± 0.048 0.04 0.29 0.25 ± 0.043 0.12 0.38 +0.13
G 84 0.23 ± 0.152 0 0.56 0.56 ± 0.116 0.16 0.58 +0.33

P 1 1465 0.11 ± 0.063 0 0.28 0.11 ± 0.062 0 0.27 0
Ped 12,996 0.03 ± 0.062 0 0.73 0.03 ± 0.061 0 0.72 0

PL78

G + P 172 0.21 ± 0.061 0.09 0.39 0.45 ± 0.042 0.32 0.56 +0.24
G 84 0.37 ± 0.224 0 0.82 0.56 ± 0.143 0.31 0.86 +0.19

P 1 1465 0.20 ± 0.079 0 0.42 0.23 ± 0.083 0 0.45 +0.03
Ped 12,996 0.05 ± 0.091 0 0.92 0.06 ± 0.098 0 0.94 +0.01

AFC—age at first calving; CI—first calving interval; PL78—productive longevity in 78 months; G + P—genotyped
individuals with performance values; G—genotyped individuals without performance values; P—nongenotyped
individuals with performance values; Ped—nongenotyped individuals without performance values;
Diff—difference between EBV and GEBV reliabilities. 1 only females.

When imported heifers have progeny (sired by a domestic bull), it leads to genetic
linkage with the domestic population and increases reliability. Additionally, due to the large
amount of data, genomic correction of the relationship matrix contributes to increasing the
individual reliability by 0.21, 0.13, and 0.24 for AFC, CI, and PL78, respectively. The genetic
connection with the rest of the population through these progeny helped increase the gain
in the GEBV reliability by up to 3% for imported cows compared to cows of domestic
origin; however, domestic cows had higher EBV and GEBV reliabilities. Lourenco et al. [32]
claimed that the inclusion of more than two or three generations of phenotypic records in
GEBV prediction (as in our study) may increase the accuracy for young domestic animals
but may also reduce the reliability for imported individuals. However, a detailed analysis
was not performed in our study. The results for nongenotyped imported individuals were
hardly affected.
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4. Conclusions

Genomic evaluation in animal breeding offers several advantages. While the genetic
parameter estimates for ssGBLUP were only slightly different from those for BLUP, incor-
porating a genomic relationship matrix improves GEBV reliability, enhancing precision
in future breeding selection. Including genotypes of young bulls and heifers significantly
increased GEBV reliability for reproductive traits by up to 27%. Cows with performance
records had the highest EBV and GEVB reliabilities, and the inclusion of genomic informa-
tion further increased GEBV reliability by 12 to 22%. The most benefits were observed in the
first three calvings, with diminishing differences thereafter. Using the ssGBLUP method can
increase GEBV reliability by an average of 19% for individuals with performance records
and 22% for individuals without performance records (primarily proven bulls) among
genotyped imported animals that are negatively impacted by limited genetic ties with the
domestic population. The impact on the GEBV reliability of nongenotyped individuals was
minimal. We can conclude that incorporation of genomic information for the Charolais
population enhances GEBV reliability and enables more precise selection of individuals
throughout the entire population for all studied reproductive traits.
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