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Abstract: The underlying genetic susceptibility for Alzheimer’s disease (AD) is not yet fully under-
stood. The heterogeneous nature of the disease challenges genetic association studies. Endophenotype
approaches can help to address this challenge by more direct interrogation of biological traits related
to the disease. AD endophenotypes based on amyloid-β, tau, and neurodegeneration (A/T/N)
biomarkers and cognitive performance were selected from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort (N = 1565). A genome-wide association study (GWAS) of quantitative phe-
notypes was performed using an SNP main effect and an SNP by Diagnosis interaction (SNP × DX)
model to identify disease stage-specific genetic effects. Nine loci were identified as study-wide
significant with one or more A/T/N endophenotypes in the main effect model, as well as additional
findings significantly associated with cognitive measures. These nine loci include SNPs in or near
the genes APOE, SRSF10, HLA-DQB1, XKR3, and KIAA1671. The SNP × DX model identified three
study-wide significant genetic loci (BACH2, EP300, and PACRG-AS1) with a neuroprotective effect in
later AD stage endophenotypes. An endophenotype approach identified novel genetic associations
and provided insight into the molecular mechanisms underlying the genetic associations that may
otherwise be missed using conventional case-control study designs.

Keywords: genetics; GWAS; endophenotype; APOE; genetic interaction; cerebrospinal fluid
biomarkers; magnetic resonance imaging; amyloid-PET; FDG-PET

1. Introduction

The complex nature of Alzheimer’s disease (AD) is clear from multiple studies that
have identified genetic risk factors and potential contributors to the disease, but the under-
lying drivers of disease are not well understood. The known genetic risk factors still do not
fully explain the genetic heritability of AD. There is increasing evidence that late onset AD
is largely determined by multiple, small effects and low penetrance genetic factors [1,2].
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Identifying novel genetic effects that influence AD risk is important for enhancing the
understanding of the pathogenesis of the disease. Alternative approaches are needed to
further identify the missing genetic contributors to susceptivity and progression of AD and
to facilitate the path toward genetically informed therapeutic approaches.

The National Institute on Aging and Alzheimer’s Association (NIA-AA) established a
research framework for defining AD by its biomarkers rather than its clinical consequences.
This framework categorizes the biomarkers of AD into three primary groups: β amyloid
deposition (A), pathologic tau (T), and neurodegeneration (N) [3]. Biomarker endophe-
notypes for AD have been used to increase statistical detection power and can provide
valuable insight into the molecular mechanisms underlying AD [4]. An ideal endopheno-
type lies downstream of genetics risk and upstream of the “observable” phenotype, in this
case, cognitive changes in AD. The A/T/N framework represents the pathophysiology
underlying the disease, providing quantifiable measures of the pathology of the disease for
genetic association.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort provides a wide
variety of biomarkers highly associated with AD, and several studies have utilized this
dataset for genetic analysis [5]. The ADNI also provides an opportunity to evaluate multiple
endophenotypes together in a shared dataset, allowing a comprehensive analysis of genetic
associations with AD endophenotypes.

In this study, two models were used to evaluate genetic associations with AD endophe-
notypes: A main effect model of overall genetic associations with baseline measures of
endophenotypes and an SNP by Diagnosis (SNP × DX) interaction model of genetic associ-
ations within diagnostic stages of AD. The main effect model follows a traditional linear
regression approach applied to the individual biomarkers and identifies overall genetic
effects on endophenotypic measures across all subjects and diagnostic classification groups.
Cognitive measures were included in this analysis as a quantitative marker for clinical
outcomes. Primary consideration is given to SNPs that meet significance in biomarker
endophenotypes, particularly those that meet significance in multiple endophenotypes.

The SNP × DX model analyzes the relation between genetic variation and endopheno-
type in the context of stage-specific clinical diagnostic classification: cognitively normal
older adults (CN), early mild cognitive impairment (EMCI), late MCI (LMCI), and AD.
Progression along the stages of the clinical syndrome of AD varies across patients, with
evidence that genetic factors influence the heterogeneity of this disease [6,7]. Previous
studies in the ADNI cohort have suggested an interaction with specific known AD genes
and diagnostic groups, but a robust genome-wide analysis across multiple phenotypes
has not been performed [8]. The main effect model is well suited for identifying genetic
effects that influence endophenotypes across all subjects and diagnostic groups, providing
a contrast between individuals that are cognitively normal and those that are on the AD
spectrum of diagnosis. However, genetic contributors that influence stage-specific patho-
physiological changes may not be detected by this approach. Including an interaction term
between genetic markers and diagnostic group is hypothesized to facilitate identification of
stage-specific genetic effects. Here, we present analysis of the ADNI endophenotype data
by a model including both SNP mail effects and SNPxDX interactions.

2. Materials and Methods
2.1. Study Participants

Participants from the Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI-
1) and the next two extensions (ADNI-GO/2) [9] were included in this study and were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu (accessed on 10 September 2023)). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild



Genes 2023, 14, 2010 3 of 16

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org (accessed on 10 September 2023). Further information about
these studies, participant enrollment, protocols, and other information can be found at
www.adni-info.org. Written informed consent was obtained from each participant, and all
protocols were approved by each site’s Institutional Review Board.

2.2. Genotyping and Imputation

Whole blood samples from the ADNI participants were genotyped on the Illumina
Human 610-Quad BeadChip, the Illumina HumanOmniExpress Beadchip, or the Illumina
Omni 2.5 M platform (Illumina, Inc., San Diego, CA, USA). After standard quality control
(QC) procedures of GWAS data for samples and SNPs [10], genotype imputation and calling
was performed over each data set separately using the Haplotype Reference Consortium
Panel r1.1. APOE genotypes for rs429358 and rs7412, described as APOE ε2/ε3/ε4 status,
were genotyped separately, as described previously [8]. Due to data limitations, to avoid
population stratification confounding from underrepresented populations present in the
dataset, non-Hispanic ADNI participants of European ancestry (N = 1565) were selected for
this analysis by genetic clustering using HapMap 3 genotype data and multidimensional
scaling (MDS) analysis. We note that this restricted analysis was performed to reduce the
well-known influence of population stratification effects on genetic associations [11,12].
Separate large-scale efforts are underway to address the differential genetic architecture
of AD in multi-ethnic populations, and the latest phase of ADNI is explicitly focusing on
racial/ethnic diversity.

2.3. Selected Phenotypes

Biomarkers were selected based on previous studies for association with AD pathol-
ogy [13]. Measures of 17 phenotypes at baseline were selected to represent the key
A/T/N biomarker groups of AD, and an additional Cognitive performance (C) category.
Amyloid-β (A) biomarkers are represented by one region of interest (ROI) measured from
[18F]Florbetapir amyloid PET scans and CSF amyloid-β 1-42 peptide (Aβ1-42), Tau (T)
biomarkers by CSF total tau (t-tau) and phosphorylated tau (p-tau), Neurodegeneration (N)
biomarkers measured from MRI scans (8 ROIs) and FDG PET scans (3 ROIs), and Cognitive
performance (C) as composite scores developed by Crane et al. [14] for memory (MEM)
and executive functioning (EF). Selection of MRI and FDG ROIs was based on previous
studies of AD pathology and progression and to cross-sectionally represent the disease
across stages [15,16]. Table 1 presents the full list of phenotypes and sample sizes.

Table 1. List of selected endophenotypes, their N, and covariates applied during regression analysis
indicated by •. * Analysis performed with and without APOE covariate. † Values were pre-adjusted
for MRI-Field strength where applicable.

Selected Endophenotype N

G
enetic

PC
1

G
enetic

PC
2

A
PO

E
E2/E3/E4

A
llele

*

A
ge

Sex

Education

IntracranialV
olum

e

M
R

I
Field

Strength
†

Memory Composite Score 1565 • • • • • •
Executive Function Composite Score 1565 • • • • • •
Bilateral mean hippocampus volume 1555 • • • • • • • •

Bilateral mean entorhinal cortex thickness 1555 • • • • • • • •

www.adni-info.org
www.adni-info.org
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Table 1. Cont.

Selected Endophenotype N

G
enetic

PC
1

G
enetic

PC
2

A
PO

E
E2/E3/E4

A
llele

*

A
ge

Sex

Education

IntracranialV
olum

e

M
R

I
Field

Strength
†

Bilateral mean frontal lobe thickness 1555 • • • • • • • •
Bilateral mean cingulate thickness 1555 • • • • • • • •

Bilateral mean parietal lobe thickness 1555 • • • • • • • •
Bilateral mean temp. lobe thickness 1555 • • • • • • • •

Bilateral mean medial temp. lobe thickness 1555 • • • • • • • •
Bilateral mean lateral temp. lobe thickness 1555 • • • • • • • •

Mean FDG PET SUVR in Angular Gyrus 1158 • • • • •
Mean FDG PET SUVR in Cingulate 1158 • • • • •

Mean FDG PET SUVR in Bilateral Mean Temp. Lobe 1158 • • • • •
[18F]Florbetapir amyloid PET 791 • • • • •

CSF amyloid-β 1-42 peptide 981 • • • • •
CSF Total Tau 1103 • • • • •

CSF Phosphorylated Tau 1103 • • • • •

2.4. Genetic Association Analysis

Genome-wide association analysis for the main effect was performed separately for
each phenotype in PLINK v1.9 [17]. Association was evaluated across 5,406,480 genotyped
and imputed variants for each phenotype. All phenotypes were adjusted for age, sex, and
the first two principal components of the genetic population by inclusion in the linear
model. MRI and cognitive measures were additionally adjusted for education, and MRI
measures were adjusted for intracranial volume.

The analysis was performed with and without the APOE e2/e3/e4 genotype as a
covariate to account for the effects of the APOE allele on genetic effects. To fully account for
an APOE genotypic effect, the APOE genotype was coded as dummy variables indicating
1 = e2e2, 2 = e2e3, 3 = e3e3, 4 = e2e4, 5 = e3e4, and 6 = e4e4.

MRI field strength was identified as an additional covariate for MRI phenotypes;
however, MRI field strength was directly tied to the ADNI phase with ADNI Phase 1
participants and ADNI GO/2 participants receiving 1.5 Tesla and 3 Tesla MRI, respectively.
No significant effect from the ADNI phase was identified in non-MRI measures. MRI
phenotypes were adjusted for age, sex, education, ICV, and MRI field strength by using a
regression model based on the cognitive normal group. The resulting β coefficient of the
MRI field strength was then used to adjust the MRI phenotype across all subjects using the
following formula:

Field Strength-Adjusted MRI Phenotype = MRI Phenotype − (βMRI Field Strength × (MRI Field Strength −Mean
CN MRI Field Strength))

The field strength-Adjusted MRI phenotype variable was then treated the same as the
remaining phenotypes and run in the linear model with the remaining selected covariates.

Principal component analysis of the 17 selected phenotypes identified 6 principal compo-
nents, explaining 85% of the variance across phenotypes. An adjusted study-wide significance
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threshold, based on the conventional 5 × 10−8, was set at p ≤ 8.33 × 10−9 (5 × 10−8 divided
by 6 components). The conventional genome-wide threshold of p ≤ 5 × 10−8 and a sugges-
tive association threshold p ≤ 1 × 10−5 were noted for the purpose of comparison across
phenotypes and for additional analyses.

To identify the peak SNPs for a genetic region, SNPs meeting at least the suggestive
association threshold were trimmed based on Linkage Disequilibrium (LD) analysis. SNPs
were sorted by p-value, and those in LD with R2 greater than 0.2 were considered to be in
the same gene region for the purposes of identifying top SNPs for a genetic region.

A separate analysis was performed adjusting for diagnosis to remove the main effect
of diagnosis, identifying SNP-phenotype associations not specific to AD. Diagnosis was
categorized as CN, EMCI, LMCI, and AD.

2.5. SNP × DX Interaction Analysis

The SNP × DX interaction analysis was performed through linear regression computed
in R, with each phenotype as the dependent variable and SNP, diagnosis, and the interaction
term (SNP × DX) as independent variables. The same covariates as above were applied
(Table 1). DX in the interaction term was coded as an ordinal logistic variable, interpreted in
four groups: CN, EMCI, LMCI, and AD. Ordinal coding interpreted these groups as having
linear relationships between them with unknown spacing (CN < EMCI < LMCI < AD). The
same thresholds and trimming methods as the main effect analysis above were applied on
the interaction term of the model to determine significant interaction effects.

2.6. Functional Analysis

Variants were annotated for variant position and nearest gene using ANNOVAR
(Version 2017-07-17). Study-wide significant results were submitted to the Genotype-Tissue
Expression (GTEx) Portal to determine cis expression quantitative trait locus (eQTL) effects.
RegulomeDB [18] was referenced for potential regulatory effects for SNPs of interest.

ADNI microarray gene expression profiling from blood samples and post-mortem
brain tissue RNA sequencing data from the Accelerating Medicines Partnership Alzheimer’s
Disease (AMP-AD) consortium were used for expression quantitative trait loci (eQTL) anal-
ysis. The top SNPs from the results of this study were evaluated within these datasets using
the MatrixEQTL 2.1.0 R package [19] to identify potential functional expression effects in
blood and across different brain regions.

3. Results
3.1. Genome-Wide Association Results

After LD trimming, a total of 27 genetic regions were identified as having study-wide
significance with at least one endophenotype. Figure 1 provides an overview of these
top SNPs and their associations with each endophenotype. The majority of findings are
associated with composite scores for memory or executive functioning. Of primary interest
are the nine SNPs that met study-wide significance in the A/T/N endophenotypes in
addition to the cognitive scores. Many associations showed effect directions suggesting
a neuroprotective effect, with four findings apart from APOE showing a risk direction
in association with the minor allele: rs2501374 and rs2506085 in an intergenic region
on chromosome 1, rs9503939 intergenic on chromosome 19, and rs116622204 intronic to
pseudogene ZNF826P.



Genes 2023, 14, 2010 6 of 16Genes 2023, 13, x FOR PEER REVIEW  6  of  16 

Figure 1. Matrix of main effect analysis results. Each row indicates the top SNP for a genetic region 

after LD trimming, and each column represents an AD endophenotype. Ordered based on minimum 

p-value across the row. The asterisks represent the p-value of the association with [***] indicating

meeting the study-wide significant threshold (p ≤ 8.33 × 10−9), [**] the conventional genome-wide

threshold (p ≤ 5 × 10−8), and [*] the suggestive association threshold (p ≤ 1 × 10−5). The color and box

size relate to the β value effect size for a given association, with larger box size relating to distance

from zero in either positive (blue, suggesting neuroprotective) or negative (red, suggesting neuro-

pathological effect) direction. † SNP retains significance when including DX as a covariate.

3.2. Known AD‐Associated Genetic Regions 

Association  analysis  identified  rs429358  (APOE  e4  allele)  on  chromosome  19  as 

strongly associated with 13 of the 17 endophenotypes, with suggestive influence on the 

others. APOE e4 was most strongly associated with measures of amyloid-β, followed by 

measures of tau, glucose metabolism, and overall cognitive memory score. Strong associ-

ations were observed for surrounding SNPs in LD with APOE e4 in and near TOMM40, 

APOC1, and NECTIN2 genes on chromosome 19. 

Associations were also observed for regions in or near HLA‐DQA1, HLA‐DPA1, and 

HLA‐DRB1, which have been identified in large-scale AD case/control studies [20]. 

Figure 1. Matrix of main effect analysis results. Each row indicates the top SNP for a genetic region
after LD trimming, and each column represents an AD endophenotype. Ordered based on minimum
p-value across the row. The asterisks represent the p-value of the association with [***] indicating
meeting the study-wide significant threshold (p ≤ 8.33 × 10−9), [**] the conventional genome-wide
threshold (p ≤ 5 × 10−8), and [*] the suggestive association threshold (p ≤ 1 × 10−5). The color
and box size relate to the β value effect size for a given association, with larger box size relating to
distance from zero in either positive (blue, suggesting neuroprotective) or negative (red, suggesting
neuropathological effect) direction. † SNP retains significance when including DX as a covariate.

Including the APOE e2/e3/e4 allele as a covariate reduced the 27 study-wide signifi-
cant genetic regions to 16. Six SNPs maintained study-wide significance in a non-cognitive
measure, rs5748614 (near XKR3), rs2501374 (near SRSF10), rs9503939 (near LOC100507506),
rs9608356 (near KIAA1671), rs8076152 (within MAPT), and rs116622204 (within ZNF826P).

Including diagnosis as a covariate identified only one SNP that retained study-wide
significance, rs8076152, which is intronic to MAPT, associated with parietal lobe cortical
thickness (MRI). A suggestive association was also found in frontal and lateral temporal
lobe cortical thicknesses (MRI).



Genes 2023, 14, 2010 7 of 16

3.2. Known AD-Associated Genetic Regions

Association analysis identified rs429358 (APOE e4 allele) on chromosome 19 as strongly
associated with 13 of the 17 endophenotypes, with suggestive influence on the others. APOE
e4 was most strongly associated with measures of amyloid-β, followed by measures of
tau, glucose metabolism, and overall cognitive memory score. Strong associations were
observed for surrounding SNPs in LD with APOE e4 in and near TOMM40, APOC1, and
NECTIN2 genes on chromosome 19.

Associations were also observed for regions in or near HLA-DQA1, HLA-DPA1, and
HLA-DRB1, which have been identified in large-scale AD case/control studies [20].

3.3. SNPxDiagnosis Results

The SNP × DX model identified three study-wide significant interaction SNPs
(Figure 2). The first two were primarily associated with parietal lobe cortical thickness,
rs1065272 located in the 3′ untranslated region of BACH2 on Chromosome 6 and rs35823862
intronic to EP300 on Chromosome 22. The BACH2 SNP also showed suggestive associations
with the Frontal Lobe and Lateral Temporal Lobe cortical thickness measures. A study-
wide significant SNP was also associated with FDG PET in the cingulate and is located
in an intergenic region on Chromosome 6 near PACRG-AS1. The three SNPs showed a
neuroprotective effect in later stages of AD, as represented in Figure 3 with rs1065272
in BACH2.
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Figure 2. Matrix of SNP x Diagnosis analysis results. Each row indicates the top SNP for a genetic region
after LD trimming, and each column represents an AD endophenotype. Endophenotypes showing no
level of significance were removed for clarity. The asterisks represent the p-value of the association with
[***] indicating meeting the study-wide significant threshold (p ≤ 8.33 × 10−9), [**] the conventional
genome-wide threshold (p ≤ 5 × 10−8), and [*] the suggestive threshold (p ≤ 1 × 10−5). The color
and box size relate to the β value effect size for a given association, with larger box size relating to
distance from zero in either positive (blue, suggesting neuroprotective) or negative (red, suggesting
neuropathological effect) direction.
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Figure 3. Violin and boxplot distribution of Parietal Lobe Cortical Thickness, stratified by
(A) rs1065272 SNP, (B) Diagnosis, and (C) SNP and Diagnosis. (A) represents the main effect analysis,
(B) the association with Diagnosis, and (C) the SNP× DX interaction association, with DX codes as an
ordinal logistic variable of distinct categories with known ordinal relation (CN < EMCI < LMCI < AD).
The asterisks represent the p-value of the association with [***] indicating meeting the study-wide
significant threshold (p ≤ 8.33 × 10−9).

The additional six genetic regions met the less strict conventional genome-wide signif-
icant threshold (p ≤ 5 × 10−8) (Figure 2). Including APOE genotype as a covariate in the
SNP × DX model identified the same SNPs as without APOE adjustment.

3.4. Functional Results

The RegulomeDB analysis identified a score of 2b for the SNP rs2501374, indicating
that there is evidence for transcription factor binding with a DNase footprint and DNase
peak but no matched transcription factor. Other SNPs did not show suitable evidence in
the RegulomeDB.

In the GTEx database, ADNI whole blood, and AMP-AD eQTL analysis, nine main
effect SNPs were identified as being associated with altered expression. For the SNP × DX
analysis, two SNPs were associated with altered expression. Table 2 provides a summary
of eQTL findings between these approaches.
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Table 2. Summary of eQTL findings in ADNI whole blood analysis, GTEx database lookup, and
AMP-AD brain eQTL. • indicates significant eQTL association with the SNP in the indicated brain
region. “NA” indicates there was no association with the gene in the dataset, “-“ indicates the SNP
was not available in the dataset. An * indicates the SNP is from the SNP × DX association analysis.
WB = Whole blood, Brain-Hipp = Brain Hippocampus, Brain-cb = Brain-Cerebellum.

SNP eQTL Gene
ADNI Blood eQTL

FDR p-Value GTEx Tissue

AMP-AD FDR Significant
MSBB Mayo

B
M

-1
0

B
M

-2
2

B
M

-3
6

B
M

-4
4

C
er

eb
el

lu
m

Te
m

po
ra

l
C

or
te

x

rs2506085 RCAN3 NA NA •
rs2506085 FUCA1 NA Whole Blood

rs28383392 HLA-DQA1 3.15 × 10−93 - • • • • •

rs28383392 HLA-DQB1 9.15 × 10−92 - • • • • • •

rs3117640 FCAR 1.38 × 10−3 -

rs3117640 KIR2DS4 7.93 × 10−19 -

rs3117640 KIR3DL1 6.53 × 10−4 -

rs3803018 * RDH16 NA Brain-cb

rs3803018 * STAT6 3.92 × 10−4 NA

rs5748614 TPTEP1 NA Whole Blood

rs5748614 XKR3 2.96 × 10−14 Whole Blood

rs587750081 ZNF826P 1.19 × 10−18 -

rs631717 KIR2DS4 7.26 × 10−29 Whole Blood

rs631717 KIR3DL1 8.78 × 10−12 Whole Blood

rs631717 KIR3DL2 3.68 × 10−6 Whole Blood

rs8076152 KANSL1-AS1 NA Whole
Blood/Brain-Hipp • • • •

rs8076152 KANSL1-AS1 NA Brain-cb • • • • •

rs8076152 LRRC37A4P 8.40 × 10−20 Whole
Blood/Brain-Hipp • •

rs8076152 ARL17B NA Brain-cb • •

rs8076152 MAPK8IP1 2.48 × 10−7 Whole
Blood/Brain-Hipp

rs9265235 HLA-B 9.87 × 10−6 NA • •

rs9265235 C4A NA Brain-Hipp •

rs9275051 HLA-DQA1 1.23 × 10−50 Whole Blood • • • • • •

rs9275051 HLA-DQA2 NA Whole
Blood/Brain-Hipp

rs9275051 HLA-DQB2 NA Whole
Blood/Brain-Hipp

rs9275051 HLA-DQB1 7.66 × 10−45 Whole
Blood/Brain-Hipp • • • • •

rs9275051 HLA-DRB1 NA Brain-cb • • • •
rs35823862 * ADSL NA NA •
rs35823862 * MCHR1 NA Brain-cb •
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4. Discussion

Systematic analysis of genetic associations with key AD endophenotypes identified
nine significant genetic regions, including regions previously associated with AD as well as
several novel genetic associations. Analysis with a stage-specific approach further identified
genetic effects that modulate endophenotypes in later stages of AD. The significant genes
and their relation to AD from the main effect and SNP× DX approaches are summarized in
Table 3. The differences in genetic association detected by the two models highlight the need
for thoughtful consideration and assessment of analytic models for AD as a complex disease.
The variants detected are among many that have been identified as contributing to AD
risk. Understanding how, where, and when these variants are affecting the disease through
models such as those used in this study will be important for an enhanced understanding
of the disease and developing genetically informed therapeutic approaches.

The SNPs identified in the main effect approach are largely in intergenic or uncharac-
terized regions, making functional analysis more challenging. The intergenic SNP rs2501374
proved particularly robust in this analysis. There is evidence of transcription factor binding
in this region, though no direct eQTL evidence is available for this SNP within evaluated
datasets. The nearest gene, SRSF10, is an alternative splicing gene which has general
implications with AD pathogenesis [21,22]. SRSF10 has known effects in enhanced lipogen-
esis [23] and affects alternative splicing of IL1RAP [24], which has been associated with AD
pathology [25]. An SNP in the same region that might be separate in relation to linkage
disequilibrium, rs2506085, shows an eQTL effect on RCAN3. This gene has been previously
shown to be differentially expressed in AD [26]. The RCAN family, particularly RCAN1,
has been shown to be associated with the inverse link between AD and cancer [27] as well
as related to mitochondrial disruption in AD [28]. Another robust SNP is near XKR3, which
belongs to a family of phospholipid scramblases which have potential implications in
apoptotic signaling [29], with eQTL evidence supporting a functional effect on expression
in whole blood samples.

The HLA region has proven to be of interest in AD, particularly the HLA Class II
region [20,30–32], with evidence for the HLA Class I regions as well [33,34]. Five indepen-
dent HLA genetic regions were identified as having study-wide significance in at least one
endophenotype, with additional HLA Class I related markers in KIR3DL1 and KIR2DL4.
eQTL analysis identified an association of these HLA region SNPs with HLA gene expres-
sion levels. However, study-wide significance is reduced in the HLA-related SNPs when
adjusting for APOE allele status, with only rs9265235 near HLA-B and rs9277531 near HLA-
DPB1 maintaining study-wide significance in cognitive measures. Further study in how
HLA-related genes associate and interact with AD endophenotype pathology is warranted.

SNPs with study-wide significance in a cognitive measure but suggestive association
in other endophenotypes may provide insight as well. An SNP near POL2RA (rs11657741)
shows a significant eQTL effect on CHRNB1, an acetylcholine receptor protein. There is
evidence to suggest a role of the cholinergic system in AD [35]. PRIM2 plays a role in DNA
replication through Okazaki fragment formation, with DNA replication stress playing a
potential role in AD pathology [36]. The SNP rs11486842 intronic to SYN3 shows evidence
of a small eQTL effect on TIMP3, which has been shown to regulate APP processing and
APOE receptor proteolysis [37]. SYN3 itself is involved in neurotransmitter release and
synaptogenesis, and has been shown to be downregulated in hippocampal CA1 neurons in
a tauopathy mouse model [38].

An SNP intronic to MAPT (rs8076152) is of potential interest, as it resides within
the tau protein gene and is associated with neuroprotective effects in the parietal lobe.
Evidence from this study suggests that the SNP is not directly related to AD as it retains its
association with MRI measures when diagnosis is included as a covariate. While ADNI is
an AD-focused cohort, this effect may be related to other forms of dementia present within
the dataset. MAPT is an important gene in a variety of tauopathies [39,40].

The main effect analysis showed many significant associations with the composite cog-
nitive measures. This is in part due to the cognitive scores having the highest N, resulting
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in better statistical detection power for association. MRI measures were close in sample
size and corroborated many of the cognitive associations. Cognitive measures differ from
classic endophenotypes but act as surrogate quantitative measures for dimensions driving
diagnostic decisions, and therefore represent the downstream effects of other biological
marker-based phenotypic changes. Based on these results, utilizing a quantitative trait
representative of diagnosis rather than a binary case/control status indicator could enhance
the detection of genetic association in AD. However, caution is needed in interpreting
the cognitive measures alone without other endophenotypes, as those measures may be
confounded by non-AD factors.

Many of the findings within this study indicate a neuroprotective effect direction in
relation to the minor allele, that is, they are associated with a healthier measure of the
associated phenotype such as less atrophy in MRI measures. While often the genetic risk
effects, or neuropathological effect direction in this study, are of more interest due to their
contribution to disease risk, in the context of this study, these SNPs may provide insight
into factors that contribute to resistance and resilience to pathological change [41,42]. Both
protective and risk effects can aid in understanding what biological pathways are involved
in the course of the disease, and what mechanisms might be targetable for therapeutic
development. These loci may be preferentially engaged in certain aspects of the pathology
compared to others, and thus influence the heterogeneity of disease progression [43,44].
There may also be regional implications for cerebral pathology. For example, the risk SNP
near SRSF10 shows little association effect size for hippocampal volume measures, yet very
strong association effects with temporal lobe cortical measures.

Due to sample size differences, this dataset is best suited for evaluating MRI and cog-
nitive phenotypes and lacks some power in PET and CSF measures for proper comparison
across measures. However, the observed effect sizes can provide insight into shared associ-
ation as well as patterns of effect magnitude across endophenotypes. Where sample size is
lacking power to yield statistical significance, the effect sizes demonstrate patterns across
endophenotypes. Despite sample size differences, SNPs rs2501374 and rs950939 showed
suggestive association in CSF amyloid-β levels, consistent with study-wide significance
seen in those SNPs in MRI and cognitive measures.

Outside of APOE and its surrounding regions, there was very little significance seen
in Amyloid-β and Tau biomarkers. This is in part due to the lower sample size of these
measures, but other factors may contribute. Amyloid deposition in cognitively normal in-
dividuals [45] may affect detection power of AD-specific genetic effects, and more complex
models to account for these subjects may be needed. Additionally, polygenic risk score
studies have provided evidence of common AD genetic markers having little contribution
toward risk of amyloid deposition, distinct from APOE, which contributes greatly toward
amyloid deposition [46].

The analysis performed here for main effect of SNP does not consistently replicate the
top genetic regions identified in large-scale AD GWAS studies [20,47], outside of APOE
and genes in the HLA class II region. The main difference is approach, with the large-
scale GWAS utilizing a case/control analysis where this study utilized an endophenotype
approach. Despite the relatively smaller sample size, the endophenotype approach may
provide power for identifying genetic effects specific to selective aspects of AD-related
pathology. These genetic effects relate directly to AD mechanisms or AD-relevant biology
(Table 3) that contribute to differences in disease pathology, where case/control targets
more generalized risk. In a highly heterogeneous disease like AD, a generalized approach
may not capture genetic effects specific to biology that will be important in developing a
more personalized medicine approach.

The SNP × DX approach provides an alternative assessment of genetic effects oc-
curring in specific stages of AD, with study-wide significant findings with AD-specific
implications. The top SNP in the BACH2 gene region is located in its 3′ UTR, suggest-
ing possible post-transcriptional regulatory effects of the SNP. BACH2 is a transcriptional
regulator involved in processes like NF-κB signaling, apoptosis in response to oxidative
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stress, nuclear import of actin, and CD4(+) T-cell differentiation. It has also been shown to
be upregulated in β-amyloid-treated SH-SY5Y neuroblastoma cells [48]. The top genetic
association in EP300 has some evidence of the eQTL effect (Table 2) and is one of many
strongly associated SNPs that blanket the EP300 gene. EP300 has been shown to be strongly
associated as a candidate “Master Regulator” in AD genetic network analysis [49], and
the p300 protein has been implicated in general neurodegeneration through its epigenetic
mechanisms [50] and promoting tau secretion and propagation [51]. Many of the findings
through this approach are significant in the parietal region. The parietal region is typically
affected later in AD disease progression [52]. Though this interaction approach might be
better powered for detecting changes in the final stages of disease, more complex modeling
would be necessary for detecting intermediate stage changes.

Table 3. Summary of significant genetic findings. • indicates SNPs within the gene were significant
in the indicated study. “-” indicates a novel finding within this study.

Gene Region

C
ro

ss
-S

ec
ti

on
al

SN
P
×

D
X

Previous Link to AD Potential Biological
Relevance in AD

APOE • Major AD Risk locus;
Multiple GWAS

Lipid Transporter involved
in CNS Maintenance

XKR3 • - Apoptotic signaling

SRSF10 • - Alternative splicing;
enhanced lipogenesis

RCAN3 • Differentially expressed in
AD [26]

Immune, T Cell
development

HLA-B • Multiple GWAS [33,34] Immune

KIAA1671 • AD Multi-Omic Weighted
GWAS [53] Immune

HLA-DQB1 • Multiple GWAS [20,30–32] Immune

HLA-DQA1 • Multiple GWAS [20,30–32] Immune

ZNF826P • - Unknown

BACH2 •
Upregulated in
β-amyloid-treated SH-SY5Y
neuroblastoma cells [48]

Apoptosis; Nuclear import
of actin; Transcriptional
regulator of NF-κB

EP300 •

Associated with altered bile
acids in AD; shown to be
involved in AD regulatory
network [49]

Mediates cAMP
gene regulation

PACRG-AS1 • - Lewy bodies; Heat
shock, apoptosis

SNPs that did not meet the study-wide significant threshold in the SNP × DX results
but met the less strict conventional genome-wide significant threshold are nonetheless still
of heuristic value and biological interest. The SNP intronic to the gene Amyloid β Precursor
Protein Binding Family B Member 2 (APBB2), which has been previously associated with
AD [54], was identified as being associated with larger volumes in the lateral temporal lobe
in later AD stages. Three SNPs are of note for being associated with a neurodegenerative
direction. Two show effect in the frontal lobe, and one shows a strong effect in the parietal
lobe within the RNA gene C9orf92. SNP × DX findings such as these can provide insight
into how different genetic mechanisms modify disease progression in AD.
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As with many GWAS studies, these findings are limited by the selected population and
sample sizes, and further replication in independent larger cohorts is warranted. Larger
sample sizes would benefit both models, and with the SNP × DX approach, it would allow
more sophisticated modeling of interactions in earlier stages of the disease that could not
be interpreted with confidence given the current sample size limitation. Future studies
will include gene and pathway enrichment, functional analysis in multi-omic datasets, and
application of endophenotypic associations in a polygenic risk score model.

In summary, our findings show that an endophenotype approach can identify novel
genetic associations with links to AD as well as provide insight into the identified associa-
tions. Endophenotypes allow for more complex models, such as the SNP × DX approach
used here, which may be necessary in identifying genetic effects that contribute to AD risk
and progression that might otherwise be missed in conventional models. The findings
identified here may provide insight into potential genetically informed therapeutic targets
or provide insight relevant for enhanced assessment of genetic risk. Expanding on the
techniques utilized in this study through more comprehensive modeling and larger samples
will likely provide further power for new discoveries.
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