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Abstract: The FKBP (FK506-binding protein) gene family is an important member of the PPlase pro-
tease family and plays a vital role during the processes of plant growth and development. However,
no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes
were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic anal-
ysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup
exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the
promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting
elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that
12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes,
and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The
tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while
others were only highly expressed in part of the 10 types of tissues. The expression profile analysis
of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was
differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod)
and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica,
angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an
important role in the growth and development of cucumber. The interaction protein analysis showed
that most of the proteins in the FKBP gene family interacted with each other. The results of this study
will lay the foundation for further research on the molecular biological functions of the cucumber
FKBP gene family.
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1. Introduction

Multiple proteins, such as transcription factors, protein kinases, and immunophilins,
have been reported to be involved in the responses to various stresses in plants [1–3].
Immunophilin is a cellular receptor protein of immunosuppressive drugs, which binds
FK506, cyclosporin-A (CsA), and rapamycin [4]. According to the sensitivity to immuno-
suppressive drugs, immunophilin has been classified into two subfamilies as cyclophilin
(cyclosporin A-binding protein) and FKBP (FK506/rapamycin-binding protein). FKBP is
not sensitive to any of these immunosuppressive agents [5]. FKBP belongs to the peptidyl-
proline cis-trans isomerase (PPlase) superfamily [6] and has been implicated in a wide
spectrum of biological processes, including protein folding, hormone signaling, growth
and development, and stress responses, which are widely found in bacteria, fungi, plants,
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and animals [7–10]. Every FKBP gene contains at least one FK506-binding domain (FKBd),
a conserved peptide sequence of about 110 amino acids also known as FKBP12 [11,12].
Single-domain (low molecular weight) FKBPs have a single FKBd, while multidomain
(high molecular weight) FKBPs contain up to three FKBds, along with tetratricopeptide
repeat (TPR), coiled-coil domain (CCD), or C-terminal calmodulin-binding domains (CaM-
BDs) for protein–protein interactions or recognition or for the assembly of multiprotein
complexes [13,14].

The FKBP gene family has been reported in a lot of plant species with the further
development of plant genome sequencing technology [15]. For example, 22, 29, 30, 24,
71, 23, 21, and 38 FKBP genes have been identified in Arabidopsis [4], rice [16], maize [17],
tomato [18], wheat [19], strawberry [20], peach [21], and apple [22], respectively. The FKBP
genes regulate stress responses [23,24], growth and development [25], photosynthesis [26],
and the expression levels of other genes [27]. In Arabidopsis, ROF1 (AtFKBP62) and ROF2
(AtFKBP65) responded to high-temperature stress and affected the accumulation of the heat
shock transcription factor HsfA2. The overexpression of maize FKBP gene ZmFKBP20-1
significantly enhanced the tolerances to drought and salt in Arabidopsis [17]. The functional
destruction of the AtFKBP42 gene caused a dwarf phenotype with additional disorientated
growth of all organs [28]. In wheat, transgenic lines overexpressing wFKBP77 showed major
morphological abnormalities, specifically relating to height, leaf shape, spike morphology,
and sterility, and the grain weight and composition were altered after overexpressing
the wFKBP73 gene [29]. In rice, the OsFKBP20-1a gene was significantly upregulated
after desiccation treatments, while the expression level of the OsFKBP20-1b gene was
increased under salt and desiccation stresses [30]. The AtFKBP65 gene could induce callose
accumulation in the plant cell wall for preventing the infection of Pseudomonas syringae [23].
Taken together, the FKBP gene family plays different roles in plant growth and development
and the response to stress.

Cucumbers (Cucumis sativus L.) are one of the most important vegetable crops world-
wide [31,32]. The cucumber genome data became publicly available as early as 2009 [33].
Along with the rapid development of next-generation sequencing technology, the cucumber
genome is constantly being updated and has been updated now to ChineseLong_V3 [34].
Many gene family studies have been carried out using the published high-quality genomic
information of cucumber, such as WRKY [35], Histone [36], B-BOX [37], CLE [38], and so
on. However, studies on the cucumber FKBP gene family have not been performed. In this
study, 19 FKBP genes in cucumber were identified through whole-genome identification,
and then, the chromosomal location, gene structure, phylogeny, and synteny analyses were
performed. To investigate the expression profiles of cucumber FKBP genes in different
tissues and under different stresses, the publicly available cucumber transcriptome se-
quencing big data of different tissues and stresses were reanalyzed by combining with the
newly published cucumber genome (ChineseLong_V3 version). This study will be helpful
for understanding the biological functions of FKBP genes during cucumber growth and
development and provide valuable information for the further functional verification of
FKBP genes and molecular breeding in cucumber.

2. Materials and Methods
2.1. Identification and Chromosomal Distribution of Cucumber FKBP Genes

The HMM file (PF00254) of the FKBP gene family was downloaded from the InterPro
database [39], and the cucumber FKBP genes were retrieved from the cucumber genome
database with the E value of 1 × 10−5 in HMMER [40]. The protein sequences of the
corresponding FKBP genes were extracted using perl script. Subsequently, all the putative
FKBP protein sequences were validated with the SMART [41] and NCBI [42] databases.
The protein sequences of the cucumber FKBP family members were uploaded to the online
website ExPASy [43] for the physicochemical characteristics analysis. The chromosomal
location of each validated FKBP gene was extracted from the ChineseLong_V3 GFF3 file
and mapped on the cucumber chromosomes using TBtools software (version 1.120) [44].
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2.2. Phylogenetic Analysis of FKBP Family Genes from Cucumber, Arabidopsis, and Rice

The sequences of 19 cucumber FKBP proteins, 22 Arabidopsis thaliana FKBP proteins,
and 29 rice FKBP proteins were retrieved and the phylogenetic analysis was performed
using MEGA11 software (version 11.0.13) [45]. The maximum likelihood method was
adopted to construct the phylogenetic tree with default parameters.

2.3. Gene Structure, Conserved Motif, and Cis-Acting Elements Analyses of Cucumber
FKBP Genes

Using TBtools software, the structures of the cucumber FKBP genes were analyzed.
The online website MEME [46] was used to analyze the conserved motifs of the cucumber
FKBP family genes. The parameters in MEME were set as the maximum motif number was
10, and the optimum width of motif was 6–100. Finally, the structure and conserved motifs
of the cucumber FKBP genes were visualized using TBtools. The cis-acting elements of the
promoters of the cucumber FKBP family genes were analyzed within the 2.0 kb upstream
sequences from the transcription start sites of the cucumber FKBP family genes using the
online website PlantCare [47].

2.4. Synteny Analysis of FKBP Family Genes from Cucumber, A. thaliana, and Rice

The tandem and segmental duplications in the cucumber FKBP gene family were
analyzed using TBtools software [44]. The collinearity relationships of the FKBP family
genes from cucumber, Arabidopsis, and rice were also analyzed and visualized with TBtools
software.

2.5. Tissue-Specific Expression Analysis of the Cucumber FKBP Family Genes

The published transcriptome sequencing data of different cucumber tissues
(PRJNA80169) [48] were combined with the cucumber ChineseLong_V3 genome data
to conduct the RNA-seq reanalysis, and then, the expression heatmap of the cucumber
FKBP genes in different cucumber tissues was illustrated with TBtools software.

2.6. Expression Patterns Analysis of the Cucumber FKBP Family Genes under Various Stresses

In total, 13 types of stresses, including 5 types of abiotic stresses (high temperature
(PRJNA634519) [35], salt and silicon (PRJNA477930) [49], waterlogging (PRJNA678740) [50],
photoperiod (PRJNA475903) [51], and different ratios of blue and red light (PRJNA476021) [52])
and 8 types of biotic stresses (downy mildew (PRJNA285071) [53], powdery mildew (PR-
JNA321023) [54], Prunus necrotic ringspot virus (PRJNA837466) [55], green mottle mosaic virus
(PRJNA646644) [56], Fusarium wilt (PRJNA472169) [57], Phytophthora capsici (PRJNA345040) [58],
angular leaf spot (PRJNA704621) [59], and root-knot nematode (PRJNA419665) [60]) were
downloaded and used for the expression patterns analysis of cucumber FKBP family genes.
The published cucumber transcriptome data under different stresses were combined with
the cucumber V3 genome data for the RNA-seq reanalysis. Finally, expression heatmaps of
the cucumber FKBP family genes in response to different stresses were drawn with TBtools
software.

2.7. Protein Interaction Analysis of FKBP Family Gene in Cucumber

The ChineseLong_V3 protein sequences and the cucumber FKBP family protein se-
quences were uploaded to the online website STRING (http://string-db.org/cgi (accessed
on 25 March 2023)), and then, the target protein CsaV3_1G007080 and the cucumber FKBP
proteins were analyzed for protein interaction prediction.

3. Results
3.1. Identification and Physicochemical Characteristics of Cucumber FKBP Genes

In this study, 19 FKBP family genes were identified in the cucumber genome (Chinese
Long_V3). The CDS sizes ranged from 339 (CsaV3_7G006970) to 1866 (CsaV3_4G025730) bp, en-
coding a number of amino acids ranging from 112 (CsaV3_7G006970) to 621 (CsaV3_4G025730),

http://string-db.org/cgi
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and the molecular weight varied from 11.94 (CsaV3_7G006970) to 69.96 (CsaV3_4G025730) kD.
The theoretical isoelectric points of the 19 FKBP proteins were between 5.23 (CsaV3_3G015840)
and 9.49 (CsaV3_4G037510). The instability index analysis showed that eight FKBP proteins
were unstable (instability coefficient < 40), including CsaV3_3G015840, CsaV3_3G032060,
CsaV3_4G002230, CsaV3_6G001250, CsaV3_6G053090, CsaV3_7G006970, CsaV3_7G026570, and
CsaV3_7G026580, and the remaining FKBP proteins were stable. The aliphatic indexes of the
cucumber FKBP proteins were between 61.28 (CsaV3_3G016330) and 93.77 (CsaV3_7G023830).
The grand average hydropathicity values of all the FKBP proteins were less than zero, indicat-
ing that all the FKBP proteins in the cucumber were hydrophilic. The prediction of subcellular
localization revealed that nine FKBP genes were located in chloroplast, and the remain-
ing FKBP genes were distributed in the nucleus, cytoplasm, cytoskeleton, and peroxisome,
respectively (Table 1).

Table 1. The physiochemical characteristics of 19 cucumber FKBP family genes.

Gene ID CDS Size
(bp)

Number of
Amino

Acid (aa)

Molecular
Weight
(kDa)

Theoretical
pI

Instability
Index

Aliphatic
Index

Grand Average
of

Hydropathicity

Prediction of
Subcellular

Location

CsaV3_1G007080 759 252 26.96 6.76 48.72 81.98 −0.25 Chloroplast
CsaV3_1G046550 678 225 24.48 7.89 53.13 81.56 −0.11 Chloroplast
CsaV3_3G007570 783 260 29.38 9.17 60.58 68.19 −0.517 Chloroplast
CsaV3_3G015840 1728 575 64.27 5.23 35.08 76.63 −0.69 Peroxisome
CsaV3_3G016330 1524 507 56.14 5.55 43.65 61.28 −1.044 Nucleus
CsaV3_3G032060 1110 369 42.17 5.61 36.60 73.25 −0.66 Cytoskeleton
CsaV3_3G036610 696 231 24.71 9.41 52.50 89.44 −0.142 Chloroplast
CsaV3_4G002230 774 257 27.95 8.90 35.49 76.61 −0.248 Chloroplast
CsaV3_4G002650 684 227 24.34 5.97 50.79 91.06 −0.116 Chloroplast
CsaV3_4G025730 1866 621 69.96 5.32 43.73 71.26 −0.567 Nucleus
CsaV3_4G037510 684 227 24.75 9.49 60.44 78.59 −0.483 Nucleus
CsaV3_6G001250 564 187 20.04 6.77 31.63 78.34 −0.506 Nucleus
CsaV3_6G006170 1692 563 62.13 5.42 48.46 61.28 −0.956 Nucleus
CsaV3_6G045680 648 215 22.57 8.63 43.99 85.26 0.021 Chloroplast
CsaV3_6G053090 645 214 22.40 9.23 31.06 88.88 −0.01 Chloroplast
CsaV3_7G006970 339 112 11.94 7.76 30.67 73.93 −0.171 Chloroplast
CsaV3_7G023830 576 191 21.73 5.76 43.00 93.77 −0.192 Cytoplasm
CsaV3_7G026570 1626 541 60.17 5.45 25.01 81.48 −0.554 Cytoplasm
CsaV3_7G026580 501 166 17.86 6.30 36.12 78.67 −0.375 Cytoplasm

3.2. Chromosome Distribution of Cucumber FKBP Genes

Based on the chromosomal locations of the cucumber FKBP family genes, a distribution
map of the cucumber FKBP genes on the chromosomes was drawn. The results showed
that 19 FKBP genes were distributed on chromosomes 1, 3, 4, 6, and 7, respectively. The
largest number of FKBP genes (five FKBP genes) were mapped on chromosome 3. Four
FKBP genes were distributed on chromosomes 4, 6, and 7, respectively, and only two FKBP
genes were distributed on chromosome 1. Among them, the CsaV3_3G016330 gene on
chromosome 3 and CsaV3_6G006170 gene on chromosome 6 were segmental duplication
gene pairs. The CsaV3_7G026570 and CsaV3_7G026580 genes on chromosome 7 were
tandem duplication gene pairs (Figure 1).
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3.3. Phylogenetic Analysis of FKBP Family Genes in Cucumber, Arabidopsis, and Rice

The phylogenetic tree was constructed with the FKBP proteins from cucumber, Ara-
bidopsis, and rice (Figure 2). The results showed that the phylogenetic tree was divided
into three subfamilies, such as GROUP I, II, and III. There were 27 FKBP genes in GROUP
I, 6 FKBP genes in GROUP II, and 38 FKBP genes in GROUP III. The phylogenetic anal-
ysis revealed that nine pairs of orthologous FKBP genes were found between cucumber
and Arabidopsis, including CsaV3_4G025730/AT3G54010, CsaV3_7G023830/AT4G26555,
CsaV3_3G007570/AT3G60370, CsaV3_4G002230/AT5G13410, CsaV3_1G046550/AT1G19930,
CsaV3_1G007080/AT1G73655, CsaV3_3G036610/AT3G10060, CsaV3_4G037510/AT1G20810,
and CsaV3_6G053090/AT5G45680, and three pairs of orthologous FKBP genes were found
between cucumber and rice, such as CsaV3_6G006170/Os09g0293900, CsaV3_6G045680/
Os02g0751600, and CsaV3_4G002650/Os08g0541400. The FKBP genes with similar evo-
lutionary relationships were similar in gene structure and function; thus, the biological
functions of the cucumber FKBP genes could be predicted based on studies of the gene
functions of the FKBP genes in Arabidopsis and rice.

3.4. Gene Structure and Conserved Motif Analysis of Cucumber FKBP Genes

According to the structural diagram of the cucumber FKBP family genes (Figure 3),
there were 6 cucumber FKBP genes in GROUP I, 2 cucumber FKBP genes in GROUP II,
and 11 cucumber FKBP genes in GROUP III. The average number of exons and introns
in GROUP II were the highest at 11 and 10.5, respectively, while the average number of
exons and introns in GROUP III were the lowest at 6.23 and 5.55, respectively. GROUP I
contained an average of 10.67 exons and 10.12 introns. The online software MEME (version
5.1.0) was used to analyze the conserved motifs in the cucumber FKBP genes, and 10 motifs
were obtained (Table 2). The conserved motif analysis showed that the FKBP genes in
GROUPS II and III contained the same ordered motifs: 7, 4, 8, 2, 1, and 3, which predicted
that the FKBP genes in these two subfamilies may share similar biological functions. The
motifs in GROUP I were significantly different from those in the other two subfamilies
and significantly different within their subfamily, which indicated that the FKBP genes in
GROUP I may be contributed to functional diversification.
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Table 2. The information of ten motifs in cucumber FKBP proteins.

Motif Sequence Number of Amino Acids Pfam
Annotation

motif 1 GVKGMKVGEKRRLTIPPELGYG 22 FKBP
motif 2 DDGRPFKFRLGEGQVIKGWDE 21 FKBP
motif 3 PNIPPNATLVFDVELVSV 18 FKBP
motif 4 PKDGDEVKVHYTGKLEDGTVF 21 FKBP

motif 5 QAKALKNPCNLNNAACKLKLKEYKEAEKLCTKV
LELDSSNVKALYRRGQAYIQLGDLDLAEEDIKKA 67 -

motif 6 IPPSEYTTTPSGLKYYDIKVGSGP 24 -
motif 7 IEAAGKKKEEGNVLFKEGKFERASKRYEKAVRYIEYDSSF 40 -
motif 8 MGFWGIEVKPGKPFTQKFDDFKGKLRISQATLGFGSAKEKSILQCN 46 -
motif 9 VGNKSPIFLCSLFPEKIECCPLDLEFEEDEEIIFSVIGPRSIHLSGYFLGNCRH 54 -

motif 10 GVLKKILKEGEGWE 14 -

3.5. Synteny Analysis of FKBP Genes among Cucumber, Arabidopsis, and Rice

Synteny analysis of the cucumber FKBP genes was performed to further understand-
ing the evolution of the FKBP genes in cucumber (Figure 4). The results showed that
there was only one segmental duplication (CsaV3_3G036610/CsaV3_6G006170) among the
19 FKBP genes in the cucumber. Twelve kinds of syntenic relationships were detected
between 11 cucumber FKBP genes (CsaV3_1G007080, CsaV3_4G037510, CsaV3_4G002650,
CsaV3_3G036610, CsaV3_3G007570, CsaV3_4G025730, CsaV3_6G001250, CsaV3_3G016330,
CsaV3_6G045680, CsaV3_4G002230, and CsaV3_7G006970) and 12 Arabidopsis FKBP genes
(AT1G18170, AT1G73655, AT1G20810, AT2G43560, AT3G10060, AT3G60370, AT3G54010,
AT3G55520, AT4G25340, AT4G39710, AT5G13410, and AT5G64350). Three kinds of syn-
tenic relationships were observed between two cucumber FKBP genes (CsaV3_6G001250
and CsaV3_6G045680) and three rice FKBP genes (Os01g0844300, Os02g0751600, and
Os05g0458100). The remaining seven cucumber FKBP genes (CsaV3_1G046550,
CsaV3_3G015840, CsaV3_3G032060, CsaV3_6G053090, CsaV3_7G023830, CsaV3_7G026570,
and CsaV3_7G026580) had no syntenic relationships with either Arabidopsis or rice.

3.6. Analysis of the Cis-Acting Elements in Cucumber FKBP Genes

A total of 14 types of cis-acting elements were identified in the promoter sequences
of 19 cucumber FKBP genes (Figure 5). Among them, the light response and anaerobic
response cis-acting elements were distributed in all 19 FKBP genes, and the auxin response
cis-acting element was only distributed in the CsaV3_1G007080 gene (Figure 5a). The
hormone-related (auxin, abscisic acid, gibberellin, methyl jasmonate, and salicylic acid)
cis-acting elements accounted for the highest proportion (37%), followed by the light
responsiveness cis-acting elements (26%) (Figure 5b). In addition, cis-acting elements
related to the stress (drought, low temperature, and defense) response, circadian control,
endosperm expression, and meristem expression were also identified. These cis-acting
elements might play corresponding roles during cucumber growth and development.
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3.7. Tissue-Specific Expression Analysis of Cucumber FKBP Genes

Tissue-specific expression analysis of the cucumber FKBP family genes showed that
four FKBP genes, including CsaV3_6G001250, CsaV3_7G026570, CsaV3_7G026580, and
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CsaV3_7G006970, were highly expressed in 10 types of cucumber tissues, whereas the
CsaV3_7G023830, CsaV3_6G045680, and CsaV3_1G046550 genes were expressed at low
levels in all tissues. Four FKBP genes, including CsaV3_3G015840, CsaV3_7G026580,
CsaV3_7G006970, and CsaV3_3G032060, were specifically expressed in the tendrils and ten-
dril base. Five FKBP genes, including CsaV3_4G037510, CsaV3_3G036610, CsaV3_1G007080,
CsaV3_3G007570, and CsaV3_6G053090, were specifically expressed in the leaves. The
CsaV3_3G016330 gene was highly expressed in all tissues, with the exception of female
flowers. In addition, the expression levels of the 19 FKBP genes in the female flowers
were higher than those in the male flowers, which indicated that these FKBP genes may be
involved in the formation of fruits (Figure 6).
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3.8. Expression Patterns Analysis of Cucumber FKBP Genes under Abiotic Stresses

To examine the expression patterns of cucumber FKBP genes under various abiotic
stresses, the published cucumber transcriptome sequencing data of high temperature,
salt and silicon, waterlogging, photoperiod, and different ratios of blue and red light
were reanalyzed (Figure 7). Under high-temperature stress, the expression levels of the
CsaV3_7G006970 and CsaV3_3G036610 genes were significantly reduced after 3 h and 6 h of
high-temperature treatment, respectively. The expression levels of the CsaV3_1G007080
and CsaV3_3G015840 genes were only significantly increased after 3 h of high-temperature
treatment, while the CsaV3_3G016330 and CsaV3_6G006170 genes were simultaneously
significantly upregulated after 3 h and 6 h of high-temperature treatment (Figure 7a).
Under the salt and silicon stresses, the expression level of the CsaV3_1G007080 gene was
significantly reduced under both salt and silicon stresses, while the expression levels of the
CsaV3_4G037510 and CsaV3_6G053090 genes were only significantly reduced under silicon
stress (Figure 7b). Under waterlogging stress, the expression levels of four FKBP genes,
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including CsaV3_1G046550, CsaV3_6G001250, CsaV3_6G006170, and CsaV3_3G016330, were
significantly increased in both resistant and sensitive materials. The expression levels of the
CsaV3_3G032060 and CsaV3_7G006790 genes were significantly reduced in both resistant
and sensitive materials. The CsaV3_4G025730 gene was only significantly upregulated in
the sensitive material. The CsaV3_7G026580 gene was only significantly downregulated
in the sensitive material. The CsaV3_7G026570 and CsaV3_3G015840 genes were only
significantly downregulated in the resistant material (Figure 7c). Under the photoperiod
treatments, compared to the equal day treatment, only two differentially expressed FKBP
genes were found after the short day photoperiod treatment. Compared to the control, the
CsaV3_1G007080 gene was significantly upregulated, and the CsaV3_7G026570 gene was
significantly downregulated (Figure 7d). Under the different ratios of blue and red light
stress, significantly downregulated expression of the CsaV3_3G016330 and CsaV3_4G002230
genes occurred at 10 days after the red and blue light treatment (Figure 7e).
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and HT_6h: high-temperature treatment for 0, 3, and 6 h, respectively. (b) The expression heatmap
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of cucumber FKBP genes in response to salt and silicon stresses. CT: control treatment; Na: NaCl
treatment; Si: silicon treatment. (c) The expression heatmap of cucumber FKBP genes in response
to waterlogging stress. S: sensitive plant; R: resistant plant; Ctrl: untreated plants cultivated under
optimal conditions; 1xH: non-primed plants waterlogged for 7 days only once; Rec: plants after
7 days of waterlogging and 14 days of recovery; 2xH: primed plants waterlogged for 7 days and after
14 days of recovery, then waterlogged again. (d) The expression heatmap of cucumber FKBP genes
in response to photoperiod stress. LD1: long-day treatment for 7, 14, and 21 days; LD2: long-day
treatment for 37 and 44 days; SD1: short-day treatment for 7, 14, and 21 days; SD2: short-day
treatment for 37 and 44 days. (e) The expression heatmap of cucumber FKBP genes in response to
different ratios of blue and red light stress. R2B1: red light: blue light = 2:1; R4B1: red light: blue
light = 4:1; 5, 10, and 15: treatment for 5, 10, and 15 days, respectively. The data in the left expression
heatmaps were the original FPKM values; the data in the right boxes were log2 (fold change) values
highlighted by red (upregulation) and green (downregulation) colors.

3.9. Expression Patterns Analysis of Cucumber FKBP Genes under Biotic Stresses

To examine the expression patterns of cucumber FKBP genes under various biotic
stresses, the available cucumber transcriptome sequencing data of downy mildew, pow-
dery mildew, Prunus necrotic ringspot virus, green mottle mosaic virus, Fusarium wilt,
P. capsici, angular leaf spot, and root-knot nematodes were reanalyzed by combining with
the cucumber ChineseLong_V3 genome data, and the expression heatmaps were drawn
using TBtools software (Figure 8). Under downy mildew stress, compared to the control,
the expression level of the CsaV3_3G032060 gene was significantly reduced in the suscepti-
ble material, the expression level of the CsaV3_1G046550 gene was significantly reduced in
the resistant material, and the expression level of the CsaV3_6G053090 gene was signifi-
cantly reduced in the susceptible material and significantly increased in the resistant mate-
rial. Seven FKBP genes, including CsaV3_7G023830, CsaV3_6G045680, CsaV3_4G002650,
CsaV3_3G007570, CsaV3_4G002230, CsaV3_4G035710, and CsaV3_3G036610, were signifi-
cantly downregulated in the resistant material. The CsaV3_7G026580 and CsaV3_7G006970
genes were significantly upregulated in both resistant and susceptible plants, whereas the
CsaV3_6G006170 and CsaV3_3G016330 genes were significantly downregulated in both
resistant and susceptible plants. Notably, the CsaV3_1G007080 gene was significantly
downregulated after 1 day of treatment, followed by being upregulated in the resistant
material (Figure 8a). Under powdery mildew stress, the CsaV3_3G015840 gene was signifi-
cantly upregulated in both resistant and susceptible materials, the CsaV3_3G032060 gene
was only significantly upregulated in the susceptible material, and the CsaV3_6G045680
gene was only significantly downregulated in the resistant material (Figure 8b). Under
infection of the Prunus necrotic ringspot virus, compared to the control, four FKBP genes,
including CsaV3_4G037510, CsaV3_6G053090, CsaV3_6G045680, and CsaV3_4G002650,
were significantly downregulated (Figure 8c). Under infection of the green mottle mo-
saic virus, compared to the control, two FKBP genes, including CsaV3_4G025730 and
CsaV3_6G001250, were significantly upregulated at 3 and 20 days post-infection, whereas
the CsaV3_3G036610 gene was significantly downregulated at 3 and 20 days post-infection.
The CsaV3_3G015840 gene was significantly downregulated at 3 days post-infection, while
the CsaV3_7G026570, CsaV3_3G016330, and CsaV3_6G006170 genes were significantly
upregulated at 20 days post-infection. Five FKBP genes, including CsaV3_1G007080,
CsaV3_6G053090, CsaV3_6G045680, CsaV3_4G002650, and CsaV3_4G037510, were signif-
icantly downregulated at 20 days post-infection (Figure 8d). Under Fusarium wilt stress,
compared to the control, the CsaV3_1G007080 gene was significantly upregulated at 24 hpi,
48 hpi, and 96 hpi (hours post-inoculation). The CsaV3_3G036610 gene was significantly
upregulated at 48 hpi and 96 hpi, while the CsaV3_6G053090 gene was only significantly
upregulated at 96 hpi. The CsaV3_3G015840 gene was significantly downregulated at 24 hpi
but significantly upregulated at 96 hpi (Figure 8e). Under infection of P. capsici, seven FKBP
genes, including CsaV3_7G026580, CsaV3_4G037510, CsaV3_3G007570, CsaV3_4G002650,
CsaV3_1G007080, CsaV3_3G036610, and CsaV3_6G045680, were significantly downreg-
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ulated in both resistant and susceptible cucumber materials, and the CsaV3_4G002230
gene was only significantly downregulated in the susceptible material (Figure 8f). Under
angular leaf spot stress, the CsaV3_7G026580 gene was significantly upregulated in both
resistant and susceptible materials, whereas the CsaV3_1G007080 gene was significantly
downregulated in both resistant and susceptible materials. The CsaV3_1G015840 gene
was only significantly downregulated in the resistant material, and the CsaV3_3G036610
gene was only significantly downregulated in the susceptible material (Figure 8g). Under
root-knot nematode stress, two FKBP genes, CsaV3_1G007080 and CsaV3_3G036610, were
significantly upregulated in both resistant and susceptible cucumber materials (Figure 8h).
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Figure 8. The expression patterns of cucumber FKBP genes in response to biotic stresses. (a) The
expression heatmap of cucumber FKBP genes in response to downy mildew stress. S: susceptible
plant; R: resistant plant; CT, 1 dpi, 2 dpi, 3 dpi, 4 dpi, and 6 dpi were 0, 1, 2, 3, 4, and 6 days
post-inoculation, respectively. (b) The expression heatmap of cucumber FKBP genes in response
to powdery mildew stress. S: susceptible plant; R: resistant plant; CT: control treatment; 48 h: 48 h
post-inoculation. (c) The expression heatmap of cucumber FKBP genes in response to Prunus necrotic
ringspot virus stress. CT: control treatment; PNRSV: inoculation with Prunus necrotic ringspot virus.
(d) The expression heatmap of cucumber FKBP genes in response to cucumber green mottle mosaic
virus stress. CT, 3 dpi, and 20 dpi: 0, 3, and 20 days post-inoculation, respectively. (e) The expression
heatmap of cucumber FKBP genes in response to Fusarium wilt stress. FOC: Fusarium wilt treatment;
CT, 2 hpi, 48 hpi, 96 hpi, and 192 hpi: 0, 2, 48, 96, and 192 h post-inoculation, respectively. (f) The
expression heatmap of cucumber FKBP genes in response to P. capsici stress. S: susceptible plant;
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R: resistant plant; 8 dpp and 16 dpp: 8 and 16 days post-pollination, respectively. (g) The expression
heatmap of cucumber FKBP genes in response to angular leaf spot stress. S: susceptible plant;
R: resistant plant; CT, 1 dpi, and 3 dpi: 0, 1, and 3 days post-inoculation, respectively. (h) The
expression heatmap of cucumber FKBP genes in response to root-knot nematode stress. S: susceptible
plant; R: resistant plant; CT, 1 dpi, 2 dpi, and 3 dpi: 0, 1, 2, and 3 days post-inoculation, respectively.
The data in the left expression heatmaps were the original FPKM values; the data in the right boxes
were log2 (fold change) values highlighted by red (upregulation) and green (downregulation) colors.

3.10. Regulation Patterns of Cucumber FKBP Genes under Stresses

Based on the above expression profiling analysis of the cucumber FKBP family genes,
the differentially expressed FKBP genes were classified and labeled, and the relevant
heatmap was drawn (Figure 9). It showed that 19 cucumber FKBP genes were all involved in
the stress responses; among which, the CsaV3_1G007080 gene was differentially expressed
under the largest number of stresses, including 10 types of stresses, indicating that the
CsaV3_1G007080 gene was actively involved in the stress response. The differentially
expressed gene in response to the lowest number of stresses was CsaV3_7G023830, which
was only differentially expressed in response to downy mildew. Some cucumber FKBP
genes, such as CsaV3_6G045680, CsaV3_3G007570, CsaV3_4G002650, and CsaV3_7G023830,
were only differentially expressed under biotic stresses. Most of the cucumber FKBP
genes were differentially expressed under abiotic and biotic stresses, but the expression
patterns were different, which could provide references for further research on the biological
functions of cucumber FKBP genes.

3.11. Protein–Protein Interaction Analysis of Cucumber FKBP Proteins and the
CsaV3_1G007080 Protein

In order to further study the cucumber FKBP family genes, the interacting proteins
of the cucumber FKBP family proteins and CsaV3_1G007080 protein were predicted by
the online website STRING (Figure 10). The prediction results of the interacting proteins
in the cucumber FKBP gene family showed that CsaV3_3G061330 did not interact with
any of the other 18 FKBP proteins, while CsaV3_7G006970 interacted with 13 FKBP pro-
teins (Figure 10a). Nine cucumber proteins interacted with CsaV3_1G007080, including
CsaV3_1G006440, CsaV3_1G006440, CsaV3_1G042300, CsaV3_2G004440, CsaV3_3G012710,
CsaV3_3G017550, CsaV3_3G005200, CsaV3_3G039540, and CsaV3_4G031200 (Figure 10b).
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4. Discussion

Plants encounter a variety of stresses during growth, which will decrease the quality
and yield of plants and directly lead to plant death in severe cases [61,62]. FKBP is a
relatively conserved gene family comprised of proteins with PPlase activity, which plays an
important role in response to stress during plant growth and development [25]. In recent
years, with the rapid development of next-generation sequencing technology, a lot of plant
genomes have been gradually published, and more and more bioinformatics resources are
currently available [63]. The FKBP gene family has been identified in many plant species,
such as Arabidopsis [6], rice [16], maize [17], tomato [18], wheat [19], strawberry [20],
peach [21], apple [22], and so on. Although cucumbers are an important vegetable that is
widely grown around the world and was the first vegetable crop to finish its entire genome
sequencing [33], the genome-wide identification of the FKBP gene family in cucumber
has not been conducted, which greatly limits the research on the biological function of
FKBP genes in cucumber. Therefore, here, the identification and expression profiling of
the cucumber FKBP gene family were performed, which will provide reference for further
research on the biological functions of cucumber FKBP genes and provide favorable genes
for cucumber resistance breeding.

In this study, the FKBP gene family was identified for the first time in cucumber based
on the latest cucumber genome information. A total of 19 FKBP genes were identified in
cucumber, which was less than the number of FKBP family genes in Arabidopsis (22) [6],
rice (29) [16], maize (30) [17], tomato (24) [18], wheat (71) [19], strawberry (23) [20], peach
(21) [21], and apple (38) [22]. The number of FKBP genes in different plants was diverse,
which may be related to the evolution of plants [64]. The phylogenetic tree analysis of
the 19 FKBP genes divided them into three subgroups, namely GROUP I, GROUP II, and
GROUP III, which was same with the results of the phylogenetic analysis of the FKBP
family genes in maize [17], tomato [18], wheat [19], strawberry [20], and apple [22]. The
phylogenetic analysis of FKBP proteins among cucumber, Arabidopsis, and rice showed
that the more orthologous genes were found between cucumber and Arabidopsis but not
between cucumber and rice. This may be because cucumber and Arabidopsis are both
dicotyledon plants and have a closer genetic relationship. The gene duplication analysis of
the cucumber FKBP gene family showed that there was one pair of segmental duplication
and one pair of tandem duplication, indicating that the expansion of cucumber FKBP genes
mainly results from segmental and tandem duplications. This phenomenon is also common
in other plant gene families [65,66]. The synteny analysis of the FKBP family genes in
cucumber, Arabidopsis, and rice found that 12 kinds of syntenic relationships were detected
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between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were
observed between cucumber and rice FKBP genes, indicating that these genes may have
partially similar functions [67].

High-throughput sequencing technology has become increasingly advanced, and the
cost of transcriptome sequencing has decreased [68]. Researchers have performed a large-
scale transcriptome sequencing of cucumber and finally formed cucumber transcriptome
sequencing big data. The transcriptome sequencing data have been verified by qRT-
PCR analysis and peer review, which have been widely recognized [69,70]. Therefore,
making full use of these transcriptome data is conducive to improving research efficiency
and reducing costs. In this study, the expression patterns of 19 cucumber FKBP genes
in different tissues and under different stresses were analyzed based on the published
cucumber transcriptome sequencing big data.

In previous studies, it has been reported that the FKBP genes play important roles in
the process of plant growth and development. For example, FKBP12 interacted with the
CONSTANS protein to affect flowering in Arabidopsis [71]. The Arabidopsis FKBP42 gene
promoted stamen elongation, anther dehiscence, and pollen maturation (to a lesser extent)
and was required for seed development [72]. The Arabidopsis FKBP15-1/15–2 genes were
expressed prominently in the vascular bundles of the root basal meristem region [73]. In
this study, the expression analysis of the 19 cucumber FKBP family genes in 10 types of
tissues was conducted, which revealed that the 19 cucumber FKBP genes were expressed
in different tissues. Some FKBP genes were expressed in all tissues, and some FKBP genes
were specifically expressed in some tissues, indicating that these FKBP genes exhibited
tissue-specific expression patterns. The tissue-specific expression patterns of these FKBP
family genes in different tissues cooperatively regulate the plant growth and development
of cucumber.

In plants, the FKBP genes also play important roles during abiotic and biotic stress
responses, including heat, cold, drought, salt, and pathogen infection stresses. For exam-
ple, wheat TaBI-1.1 regulated the heat tolerance by interacting with TaFKBP62 [74]. In
Arabidopsis, NBR1 mediated its degradation during heat stress by interacting with ROF1 [75].
ROF1 interacted with phosphatidylinositol-3-phosphate [PI(3)P] and phosphatidylinositol-
3,5-bisphosphate [PI(3,5)P2] through its FKBD domains under osmotic/salt stress [76].
Overexpressing Polytrichastrum alpinum PaFKBP12 in Arabidopsis showed enhanced resis-
tances to salt, heat, and drought treatments [77]. In Arabidopsis, AtFKBP15-1 positively
increased the plant resistance to Phytophthora infection [78]. The AtFKBP65 gene induced
callose accumulation in the cell wall under Pseudomonas syringe infection [23]. In our
study, the expression profiling analysis of the cucumber FKBP family genes under abiotic
stresses showed that more differentially expressed FKBP genes were identified under high-
temperature and waterlogging stresses. It was worth noting that the CsaV3_1G007080 and
CsaV3_3G015840 genes were increased after high-temperature treatment for 3 h and then
declined; this phenomenon was also found in maize FKBP genes, such as ZmFKBP15-3
(GRMZM2G031204_P01) and ZmFKBP16-4 (GRMZM2G001956_P01) [17]. The lesser FKBP
genes were differentially expressed genes under salt, the photoperiod, and different ratios
of blue and red light, with only three, two, and two differentially expressed FKBP genes,
respectively, indicating that the cucumber FKBP family genes did not actively respond
to these stresses. In addition to abiotic stress, we also analyzed the expression patterns
of the cucumber FKBP genes under biotic stresses. More FKBP genes were differentially
expressed in response to downy mildew, the green mottle mosaic virus, and Phytophthora
capsica, which indicated that these cucumber FKBP genes actively responded to these
stresses and played a certain role in resisting pathogenic microorganisms. The functional
characteristics analysis of the cucumber FKBP genes revealed that all 19 cucumber FKBP
genes were differentially expressed under abiotic and biotic stresses. Among them, the
CsaV3_1G007080 gene was differentially expressed under the largest number of stresses
(10 types of abiotic and biotic stresses), including high temperature, salt, silicon, pho-
toperiod, downy mildew, green mottle mosaic virus, fusarium wilt, Phytophthora capsica,
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angular leaf spot, and root-knot nematode. However, the expression patterns of the
CsaV3_1G007080 gene in response to different stresses were different, including upregu-
lation, downregulation, and both upregulation and downregulation phenomena, which
indicated that the CsaV3_1G007080 gene has various roles in cucumber resistance to stresses.
The specific biological function of the CsaV3_1G007080 gene could be further verified by
gene knockout or overexpression.

5. Conclusions

In this study, 19 FKBP family genes were systematically identified and characterized
in cucumber, which were distributed on chromosomes 1, 3, 4, 6, and 7 and divided into
three subgroups. The members of each subgroup were basically conserved, and the gene
structure and conserved motifs differed among the different subgroups. The synteny
analysis revealed that 12 kinds of syntenic relationships were detected between cucumber
and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between
cucumber and rice FKBP genes. The tissue-specific expression analysis showed that the
cucumber FKBP family genes were specifically expressed in different tissues, which syner-
gistically regulated the cucumber growth and development. The expression profile analysis
of the cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080
gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon,
and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium
wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that
the CsaV3_1G007080 gene played an important role in the growth and development of
cucumber. In this study, the expression patterns of the cucumber FKBP genes were ana-
lyzed with cucumber transcriptome sequencing big data, which could effectively identify
the favorable FKBP genes. These findings might be useful for further functional research
on cucumber FKBP genes and will aid in the further breeding of resistant varieties of
cucumber.
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