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Abstract: Bemisia tabaci is an important invasive pest with worldwide distribution and strong temper-
ature tolerance. Previous studies have shown that temperature tolerance varies significantly between
the different invasive populations. Several key factors involved in epigenetic regulation have been
identified and verified in B. tabaci; therefore, epigenetic adaptation mechanisms may also exist. This
study aimed to detect changes in the chromatin accessibility landscape and genome-wide transcrip-
tome under different temperature stresses in B. tabaci. Assay for transposase-accessible chromatin
with high-throughput sequencing and RNA-seq analyses indicated that transcriptional activity of
the genes strongly correlates with chromatin accessibility. Chromatin transcription-activated gene
expression regulation is dominant during high-temperature stress in B. tabaci, mainly through the
transcriptional repression of genes related to low-temperature stress resistance. Furthermore, B. tabaci
resists low-temperature stress by regulating enzyme activities and withstands high-temperature
stress by regulating metabolism and synthesis of organic substances, both achieved by altering
chromatin accessibility. In summary, this study provides a theoretical basis for exploring changes
in gene expression and chromatin accessibility under different temperature stresses, offering a new
approach to unravelling regulatory mechanisms underlying the onset of molecular regulation in
response to various temperature stress conditions.

Keywords: temperature stress; chromatin accessibility; tolerance; epigenetic regulation

1. Introduction

The invasive species Bemisia tabaci is characterized by its rapid reproduction speed,
substantial egg production, considerable generational overlapping, and ability to spread
various viruses. It has spread worldwide, causing outbreaks in many countries, including
India, the United States, and China. Additionally, it has become an important pest that
seriously damages vegetables and garden plants. Global warming is a universal threat to
all species and ecosystems [1]. Insects are ectotherms, whose behavior and physiology are
heavily dependent on environmental conditions [2]. Ambient temperature affects physio-
logical activities of ectothermic animals to a greater or lesser extent. Therefore, temperature
tolerance in insects is critical for the existence and persistence of their populations.

Insect’s geographical distribution and dispersion, especially invasive insects, are
largely dependent on their temperature stress tolerance. Species such as Liriomyza spp.,
Hyphantria cunea, and B. tabaci can adapt to new conditions, allowing them to spread from
their origins and establish populations in new countries with different abiotic conditions,
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such as temperature [3–5]. Therefore, these organisms usually have strong invasiveness and
wider distribution ranges, resulting in stronger resistance to varied temperatures, rendering
them difficult to control. Exposure of widely dispersed species to different ambient temper-
atures often results in varied phenotypic selection and intraspecific variation. Intraspecific
variations arise via genetic mechanisms or phenotypic plasticity [6]. Previous studies show
these variations occur frequently [7–9]. With global warming, thermal tolerance is an
important factor influencing intraspecific variation. However, the molecular regulatory
mechanism has not yet been determined.

Epigenetics is the level of gene expression changes without changes to gene sequence,
and it has gained interest in research. The scope for epigenetic research is extensive, includ-
ing DNA methylation, histone modification, variable RNA splicing, miRNA regulation,
transcription regulation, chromatin accessibility, etc. Recently, epigenetics was proposed
to have a significant effect on temperature tolerance [10–12]. Chromatin accessibility, also
known as chromatin openness, reflects transcriptional activity of chromatin, and it is a cru-
cial aspect for studying epigenetic regulation. Recently, many studies on the role epigenetics
plays in temperature stress have emerged, and its impact on the temperature adaptation
process in organisms is being gradually unveiled [10–12]. For instance, a short-term epige-
netic mechanism is an important driving factor in Aedes albopictus to increase cold tolerance
and spread to high altitudes and latitudes [13]. Knockdown of DNA methyltransferase and
chromatin remodeling factor ISWI expression significantly affects temperature tolerance
and decreased high- and low-temperature tolerance of B. tabaci [14,15]. However, current re-
search mainly focuses on single key factors in epigenetic regulation. A systematic study on
the epigenetic regulation network is necessary to comprehensively dissect the mechanisms
in organisms that allow them to rapidly adapt to environmental temperature changes.

This study explores how chromatin accessibility influences temperature tolerance
to yield various phenotypes under environmental temperature stress in ectothermic or-
ganisms, such as the whitefly, using RNA-seq to reveal differences in gene expression
levels among three different temperatures. This study also establishes different global
chromatin accessibility profiles using an assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq) [16]. A combined analysis using RNA-seq and
ATAC-seq data was performed to investigate how chromatin accessibility affects transcrip-
tome changes. Thus, key genes in temperature adaptation and regulatory pathways could
be identified. These results provide insights into the molecular mechanisms underlying
temperature stress responses.

2. Materials and Methods
2.1. Insect Rearing

B. tabaci cryptic species Middle East-Asia Minor 1 (MEAM1) was reared on cotton
plants in greenhouse conditions. The insects were maintained within cages in an insectary
at 24–27 ◦C with 50–60% relative humidity and a 14:10 h light–dark cycle.

2.2. Material Preparation

We provided cotton plants in the cage for B. tabaci adults to lay eggs on for three days,
and we moved these cotton plants from each day into an incubator set at 21 ◦C, 26 ◦C, and
31 ◦C, respectively. These temperatures were the lowest, optimal, and highest for which the
whitefly can complete its life cycle and maintain long-term development of the population.
We cultivated the eggs until adult emergence within 72 h, and the adult was then collected
(both male and female). Three replicates were set for each treatment, named B21-1, B21-2,
B21-3; B26-1, B26-2, B26-3; B31-1, B31-2, and B31-3.

2.3. RNA-Seq Library Preparation, Sequencing, and Analysis

Seq health Technology Co., Ltd. (Wuhan, China) conducted the UID RNA-seq ex-
periment, i.e., high-throughput sequencing. Total RNA was extracted from the above
treatments using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA, Cat. No. 15596026) ac-
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cording to the protocol in [17]. RNA quality and integrity were detected using a Nanodrop
TM One Spectrophotometer (Thermo Fisher Scientific Inc., IMPLEN, Munich, Germany)
and 1.5% agarose gel electrophoresis. Qualified RNA samples were then quantified by
using Qubit3.0 with the Qubit TM RNA Broad Range Assay Kit (Life Technologies, Carls-
bad, CA, USA). Thereafter, 2 µg of total RNA was used for the stranded RNA sequencing
library preparation using a KC-Digital TM Stranded mRNA Library Prep Kit for Illumina®

(Catalog No. DR08502, Wuhan Seq health Co., Ltd., Wuhan, China). This eliminates the
duplication bias in PCR and sequencing steps by using a unique molecular identifier (UMI,
Tokyo, Japan) of eight random bases to label pre-amplified cDNA molecules, according
to the manufacturer’s instructions. The library products (200–500 bps) were enriched,
quantified, and sequenced on the Novaseq 6000 sequencer (Illumina, San Diego, CA, USA)
PE150 model.

Trimmomatic (version 0.36) was used to filter the raw data [18]. Clean reads were
further treated using FastUniq (version 1.1) to remove duplication bias [19]. The dedu-
plicated sequences were used for standard RNA-seq analysis, and were mapped to the
B. tabaci MEAM1 reference genome [20] using STAR software (version 2.5.3a) [21]. Reads
mapped to the exon regions were counted by using the feature Counts (Subread-1.5.1;
Bioconductor), and the reads per kilobase million (RPKM) were then calculated [22]. The
RPKM method can eliminate the influence of differences in gene length and sequencing
quantity when calculating gene expression, and the calculated gene expression quantity can
be directly used to compare gene expression differences between different products. If there
are multiple transcripts of a gene, the longest transcript of the gene is used to calculate its se-
quencing coverage and expression level. The significant differences in the gene expression
level between groups were identified using the R package Edge (version 3.12.1) [23]. The
parameters for establishing significance were p-value < 0.05 and fold change >2. KOBAS
software (version: 2.1.1) was used for Gene ontology (GO) and Kyoto Encyclopaedia of
Genes and Genomes (KEGG) enrichment analysis of DEGs [24].

2.4. ATAC-Seq Library Preparation, Sequencing, and Analysis

The ATAC assay, high-throughput sequencing was conducted by Seq Health Technol-
ogy (following Section 2.3). Three hundred B. tabaci MEAM1 adults in each replicate were
frozen in liquid nitrogen and ground using a Tissuelyser (Tissuelyser-24, Shanghai Jingxin,
Shanghai, China). The ground powder was treated with a cell lysis buffer, and nuclei
were collected via centrifugation for 5 min at 2000× g. Transposition and high-throughput
DNA sequencing library preparation were conducted using the True Prep DNA Library
Prep Kit V2 for Illumina (Catalog No. TD501, Vazyme, Nanjing, China). Library products
were enriched, quantified, and sequenced using the Novaseq 6000 sequencer (Illumina,
San Diego, CA, USA) PE150 model.

Raw sequencing data were filtered using Trimmomatic (version 0.36), low-quality
reads were discarded, and adaptor sequences were trimmed. Fast Uniq (version 1.1)
was used to eliminate duplication of clean reads. The reads were then mapped to the
B. tabaci MEAM1 reference genome using bowtie2 software (version 2.2.6) with default
parameters [25]. Reads mapped to the mitochondrial genome were filtered with in-house
scripts (https://github.com/samtools/samtools, accessed on 12 December 2019). Read
distribution analysis was completed on RseQC (version 2.6) [26]. The Collect Insert Size
Metrics tool from Picard software (version 2.8.2) was used to count the insert length.
Peak calling was performed on MACS2 software (Version 2.1.1), while peak annotation
and distribution analyses were performed on bedtools (Version 2.25.0) [27,28]. Three
replicates were used to identify credible peaks. The peaks were identified with bedtools
(Version 2.25.0) using the Fisher test [29]. The method and parameters for enrichment
analysis for annotated genes were the same as in Section 2.3.

https://github.com/samtools/samtools
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2.5. Real-Time Quantitative PCR (RT-qPCR) Analysis

RT-qPCR was used to validate the sequencing data. The qPCR reactions were per-
formed on an ABI 7500 real-time PCR system (Applied Biosystems, Waltham, MA, USA).
The analysis preparation and program parameters can be found in our previous publica-
tions [15]. All batches included controls without the cDNA template. The mRNA relative
expression level was calculated using a mathematical model (2–∆∆CT) [30]. The RT-qPCR
primers used are listed in Supplementary Table S1.

3. Results
3.1. Genome-Wide Gene Expression Changes under Different Temperature Stresses

The mRNA pools from each of the stress temperatures were subjected to RNA-seq
to detect the gene expression landscape under different temperature stresses. More than
37.1 million clean reads were generated by each library (Supplementary Table S2); B21,
B26, and B31 deduplication unique ratios varied from 72.15% to 75.13%, 73.59% to 76.42%,
and 72.82% to 76.24%, respectively, indicating good reproducibility. Over 90% of the
clean reads were uniquely mapped to the B. tabaci reference genome. Additionally, nine
RNA-seq libraries could be grouped into three distinct clusters by using hierarchical
clustering analysis (Supplementary Table S3 and Supplementary Figure S1). B21 and B26
showed similar expression patterns, likely because 21 ◦C falls within the range of suitable
temperatures for the whitefly. Despite this, the above findings indicated good repeatability
of our RNA-seq data. The gene expression landscape under different temperature stress
conditions was revealed via quantitative RPKM-based analysis (Figure 1A,B). Candidate
genes (significantly over- and underexpressed) were screened based on the same threshold
for each pairwise comparison. In detail, 66 and 354 overexpressed genes and 72 and 455
underexpressed genes were identified between B21 and B26 and between B31 and B26,
respectively (Figure 1C). The target gene responses to different temperature stresses were
found based on these transcriptome data.
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Figure 1. RNA−seq revealing transcriptome dynamics under different stress temperatures. (A,B) Vol-
cano plots showing significantly up− and downregulated gene expressions from B21 vs. B26 and B31
vs. B26. The gray dots represent genes that have not undergone differential expression, the blue dots
represent genes that have undergone differential downregulation, and the red dots represent genes
that have undergone differential upregulation. (C) Number of differentially expressed genes (DEGs)
for each pairwise comparison.

3.2. Enrichment Analysis of DEGs under Different Temperature Stresses

The top GO categories for biological processes (BPs) enriched by DEGs under different
temperature stresses are displayed in Figure 2. The majority of the DEGs identified from
the comparison between B21 and B26 were enriched in relation to structural molecule,
hydrolase, and catalytic activities. Several significantly enriched terms between B26 and
B31 were related to regulation of catalytic activity, hydrolase activity, extracellular region,
endopeptidase activity, and carbohydrate metabolic processes. Most DEGs between B21
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and B26 were enriched in the lysosome and the steroid hormone biosynthesis KEGG path-
ways. Those between B26 and B31 were enriched in steroid hormone biosynthesis, retinol
metabolism, protein digestion, absorption, lysosome, the longevity-regulating pathway
(multiple species), chemical carcinogenesis, phagosome, fatty acid elongation, fat digestion
and absorption, and the citrate cycle (TCA cycle).

3.3. Establishing the Open Chromatin Landscape

The pooled suspensions from each of the three representative stress temperatures were
subjected to ATAC-seq to define the chromatin accessibility landscape. Over 30.3 million
clean reads were obtained in each library, and the GC content ranged from 42% to 46%.
Approximately 70% of the clean reads from each library were uniquely mapped to the
B. tabaci reference genome. These results are detailed in Supplementary Table S3. The
ATAC-seq signal was stronger at the transcription start site (TSS) (Figure 3A–C), indicating
that most ATAC-seq reads were distributed around the TSS. Peak annotation suggested that
over 40% and 30% of the peaks from each sample were located in introns and intergenic
regions, respectively; the percentages of peaks from each sample located in TSS_1kb–10kb,
5′UTR, CDS, 3′UTR, and TES_1kb–10kb are shown in Figure 3D. As shown in Figure 4A,
6357, 13408, and 13743 peaks were identified in B21, B26, and B31, respectively. Most peaks
spanned 350–400 bps. It is worth noting that peaks observed by three biological replicates
are defined as differential peaks (DPs) for each temperature treatment, while peaks detected
in only one biological replicate are interfering peaks. Therefore, the above results implied
high quality and reproducibility of the sequence data in this study.
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Figure 4. Changes in accessible chromatin and enrichment of genes by differential peaks under
different stress temperatures. (A) Number of peaks in B21, B26, and B31. (B,C) Venn diagrams
showing the number of differential peaks in B21 vs. B26 and B31 vs. B26. (D) ATAC peaks over
chromosomes in B21, B26, and B31. The abscissa represents the length of the chromosome, the right
side represents the chromosome number, and the left ordinate represents the depth of coverage.
(E) Top Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways enriched by genes near
differential peaks from B21 vs. B26 and B31 vs. B26. (F) Top Gene Ontology (GO) categories of
biological processes enriched by genes near differential peaks from B21 vs. B26 and B31 vs. B26.

3.4. Differences in Open Chromatin under Different Temperature Stresses

Identified peaks under different temperature stress conditions were compared using a
Python script to explore chromatin accessibility changes. The number of peaks detected
at 21 ◦C was approximately half that of the other two treatment groups (B26 and B31)
(Figure 4A), suggesting that more chromatin sites are turned off during low-temperature
stress. About 18% unique peaks were detected in the 21 ◦C treatment groups and 36%
unique peaks in the 31 ◦C treatment groups, as shown in Figure 4B,C. This suggests
that although chromatin accessibility is altered, it is not identical under high- and low-
temperature stress. Additionally, chromatin openness was significantly reduced under low-
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temperature stress but significantly increased under high-temperature stress (Figure 4D).
These results further confirm that different chromatin regulation patterns occur at high
and low temperatures. This demonstrates significant differences in chromatin accessibility
under different temperature stresses, similar to changes in the transcriptome, sustaining the
hypothesis that differential chromatin accessibility may alter the gene expression profiles
in response to temperature.

3.5. Enrichment Analysis of Genes with Differential Peaks (DPs) under Different
Temperature Stresses

KEGG enrichment analysis was performed on genes with DPs around their CDS,
3′ UTR, and 5′ UTR regions. Genes with B21-specific peaks were mainly enriched in perox-
isome, Fc gamma R-mediated phagocytosis, ether lipid metabolism, glycosaminoglycan
degradation, and phospholipase D signaling pathway (Figure 4E). Genes with B31-specific
peaks were mainly enriched in peroxisome, bile secretion, basal transcription factors, cAMP
signaling pathway, alcoholism, and fatty acid metabolism (Figure 4E).

The GO categories for biological processes enriched by genes with B21- and B31-
specific peaks are displayed in Figure 4E. Genes with B21-specific peaks were mainly
enriched in the single-organism, organic acid, carboxylic acid, small-molecule, and lipid
biosynthetic processes. In comparison, genes associated with B31-specific peaks were
mainly enriched in the biological processes of negative regulation, the cell surface receptor
signaling pathway, negative regulation of cellular processes, negative regulation of macro-
molecule metabolic processes, and negative regulation of metabolic processes. These results
imply that the whitefly mainly relies on synthesizing acids, small molecules, and lipids to
withstand the low-temperature adversity. The signal transduction and material metabolism
regulation is the main measure by which the whitefly responds to high-temperature stress.

3.6. Association between Chromatin Accessibility and Transcriptome under Different
Temperature Stresses

ATAC-seq and RNA-seq data were integrated and analyzed to determine whether
the open chromatin regions’ response to temperature stress was related to changes in gene
expression patterns. Genes with DPs of ATAC-seq and DEGs of mRNA-seq were used
as intersections to obtain genes affected by chromatin accessibility. Figure 5A,B show
that approximately 40% of all upregulated genes and 30% of all downregulated genes in
B21 were regulated by chromatin accessibility, while this was approximately 25% of all
upregulated genes and 19% of all downregulated genes in B31. These results indicate
that no more than 40% of the genes have altered transcriptional expression levels due to
chromatin accessibility. Firstly, the results show that differentially accessible sites do not
substantially affect RNA levels. Secondly, mechanisms other than chromatin remodeling
might regulate gene expression.

A KEGG enrichment analysis was performed on these genes. The results are displayed
in Figure 5C,D. When comparing between B21 and B26, we found that the lysosome was the
only enriched pathway by downregulated genes around DPs. The five most significantly
enriched pathways by downregulated genes around DPs, when comparing B31 and B26,
were caprolactam degradation, amphetamine addiction, GnRH signaling pathway, estrogen
signaling pathway and inflammatory mediator regulation of TRP channels, whereas those
by overexpressed genes around DPs were the lysosome, longevity-regulating pathway
(multiple species), antigen processing and presentation, fatty acid degradation, and fatty
acid metabolism.

The GO categories for molecular functions enriched by the downregulated genes
around DPs between B21 and B26 were acid phosphatase, phosphatase, phosphoric es-
ter hydrolase, and hydrolase activity (Figure 5C,D). The GO categories for biological
processes by the overexpressed genes around DPs between B31 and B26 were the or-
ganic substance, carbohydrate derivative, organonitrogen compound, lipid metabolic
processes, and lipid biosynthetic process. The GO categories for biological processes
by the downregulated genes around DPs between B31 and B26 were the carbohydrate
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metabolic process, regulation of catalytic activity, and regulation of molecular function,
while those of molecular function were catalytic and endopeptidase activity. Therefore,
we concluded that GO categories were enriched by nearby DEGs of DPs under low-
temperature stress, with the activity of several enzymes, and by DEGs of DPs under
high-temperature stress, with two aspects including organic substance metabolic processes
and enzymatic activities. This shows that whiteflies mainly rely on regulating enzyme activ-
ity in response to low-temperature stress, and regulating metabolism of organic substances
(including lipids) to resist high-temperature stress. Combined with the enrichment results
of KEGG, it can be concluded that lipid metabolism and synthesis play a vital role under
high-temperature stress.
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Figure 5. Correlation analysis between differentially expressed genes (DEGs) and differential peaks.
(A,B) Venn diagrams showing the number of DEGs with differential peaks in B21 vs. B26 and B31 vs.
B26. The absolute value of log FC > 1 and p-value < 0.05 were used as the standard to identify DEGs.
(C,D) Top Gene Ontology (GO) categories of biological processes and Kyoto Encyclopaedia of Genes
and Genomes (KEGG) pathways enriched by DEGs with differential peaks from B21 vs. B26 and B31
vs. B26.
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3.7. Expression Patterns of Key Candidate Genes under Temperature Stress

Based on the data from Section 2.4, 11 and 26 genes from the comparisons between
B21 and B26 and between B31 and B26, respectively, were obtained for qPCR validation
after excluding genes for uncharacterized proteins. The full names and putative functions
of these genes are shown in Table 1. As shown in Figure 6A,B, the expression level of
almost 90% of the candidate genes detected by qPCR shows the same change that was
observed using RNA-seq in Figure 7A,B, demonstrating the reliability of the sequence
method selected in this study.
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expressed genes (DEGs) with differential peaks under different stress temperatures. The RT-qPCR
results are expressed as the mean ± SEM of the three groups. (A) RT-qPCR validation of expression
of the main DEGs with differential peaks between B21 and B26. (B) RT-qPCR validation of expression
of the main DEGs with differential peaks between B31 and B26.
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the main DEGs with differential peaks between B21and B26. (B) RPKM values of the main DEGs
with differential peaks between B31and B26.

Table 1. Information for target genes.

Abbreviated
Name Full Gene Name Putative Functions Change in

Expression Level

BtpAcp prostatic acid phosphatase histidine phosphatase activity
Downregulated at
21 ◦C

BtlAcp lysosomal acid phosphatase histidine acid phosphatase and phytase activity
BtCtsb cathepsin B proteolysis involved in cellular protein catabolic process
BtMal maltase maltose alpha-glucosidase activity
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Table 1. Cont.

Abbreviated
Name Full Gene Name Putative Functions Change in

Expression Level

BtApo aromatic peroxygenase peroxidase activity

Upregulated at
21 ◦C

BtLip3 lipase 3 triglyceride lipase activity; involved in lipid catabolic
process

BtHdtd hydroxyacid-oxoacid
transhydrogenase

involved in glutamate catabolic process via
2-oxoglutarate

BteSult estrogen sulfotransferase sulfotransferase activity
Bttrypsin-1 trypsin-1 trypsin-like serine protease activity
BtCp7 cuticle protein 7 insect cuticle protein

BtERD6-7 sugar transporter ERD6-like 7 glucose transporter-like family of the Major Facilitator
superfamily of membrane transport proteins

BtHsp68 heat shock protein 68 ATP hydrolysis activity
Upregulated at
31 ◦CBtHsp70 heat shock protein 70 Involved in heat-shock-mediated polytene chromosome

puffing and response to hypoxia
BtPLA2G15 group XV phospholipase A2 alpha/beta hydrolase activity

BtGLO4 hydroxyacylglutathione
hydrolase hydroxyacylglutathione hydrolase activity

Upregulated at
31 ◦C

BtP4504C1 Cytochrome P450 4C1
catalyze a variety of oxidative reactions of a large
number of structurally different endogenous and
exogenous compounds in organisms

BtCar3 carbonic anhydrase 3 regulate pH homeostasis

BtPAP prostatic acid
phosphatase-like histidine phosphatase activity

BtGld glucose dehydrogenase oxidoreductase activity
BtCp cysteine proteinase

BtMal-A1 maltase A1 predicted to be involved in carbohydrate metabolic
process

BtTret1 trehalose transporter 1
transport of trehalose synthesized in the fat body and
the incorporation of trehalose into other tissues that
require a carbon source

BtAcads short-chain specific acyl-CoA
dehydrogenase

involved in fatty acid beta-oxidation using acyl-CoA
dehydrogenase

BtLip gastric triacylglycerol lipase triglyceride lipase activity; involved in lipid catabolic
process Downregulated at

31 ◦CBtCHI3 chitinase 3 chitinases catalyze the hydrolysis of chitin

BteIF5B eukaryotic translation
initiation factor 5B predicted to be involved in translational initiation

Downregulated at
31 ◦C

BtFAAH2 fatty-acid amide hydrolase 2
Asp-tRNAAsn/Glu-tRNAGln amidotransferase A
subunit or related amidase (translation, ribosomal
structure, and biogenesis)

BtTo takeout protein behavioral response to starvation
BtYWH tyrosine 3-monooxygenase enables transcription factor binding

BtUgt1a8 UDP-glucuronosyltransferase
1-8

an enzyme of the glucuronidation pathway that
transforms small lipophilic molecules, such as steroids,
bilirubin, hormones, and drugs, into water-soluble,
excretable metabolites

BtCP21 cuticle protein 21 insect cuticle protein

BtIdh3g isocitrate dehydrogenase
[NAD] subunit gamma carboxydipeptidyl activity

BtY82E ATP synthase lipid-binding
protein

enables ATP binding, involved in carbohydrate
metabolic process

BtElovl7 elongation of very long chain
fatty acids protein 7

enables fatty acid elongase activity; involved in fatty
acid elongation and polyunsaturated fatty acid and
very-long-chain fatty acid biosynthetic process

BtSnt sodium-dependent
noradrenaline transporter involved in neurotransmitter transport
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4. Discussion

RNA-seq and ATAC-seq data were integrated and analyzed to unravel the regulatory
network response to temperature stress. Our results indicate that transcriptional alterations
of the target genes are closely related to chromatin accessibility of functional genomic
regions. Furthermore, chromatin openness was significantly reduced at low temperatures
and significantly increased at high temperatures. Additionally, our results demonstrate that
the chromatin transcription-activated gene expression regulation is dominant under high-
temperature stress in B. tabaci, mainly through repression of the gene expression to resist
low-temperature stress. Notably, DEGs correlated with chromatin accessibility from high-
temperature stress almost completely differed from DEGs correlated with low-temperature
stress. DEGs from low-temperature stress contained several enzymes (phosphatase, cathep-
sin, etc.). Thus, a string of key transcriptional regulation modes regulated by chromatin
accessibility were further demonstrated in this study in response to temperature stress.

Alternate adaptation mechanisms for genetic alteration must exist in organisms, as
many environmental stressors can only persist for a limited time. Reversible epigenetic
modifications that regulate gene expression without altering DNA sequence have emerged
as an attractive mechanism for transcriptional regulation. Additionally, recent studies
suggest that it has been implicated in regulating stress-related gene expression [11]. Such
organisms, able to temporarily and rapidly alter gene expression, have an evolutionary
advantage, which is crucial for their survival. Temperature adaptation often involves
numerous transcriptional regulatory processes [31,32], which are partly affected by dynamic
chromatin alterations. Therefore, changes in chromatin accessibility are an important
molecular response to stress.

DEGs from high-temperature stress not only included heat shock protein 70 and
cytochrome P450 as expected [33–35] but also several enzymes involved in lipid synthesis
and metabolism, such as carbonic anhydrase 3, facilitated trehalose transporter, chitinase 3,
and noradrenaline transporter. These key genes are involved in processes such as sugar
conversion and transportation, as well as apoptosis. Carbonic anhydrases have been
cloned in several species, such as Drosophila melanogaster and Caenorhabditis elegans [36,37].
This enzyme is localized in mitochondria and likely involved in metabolic processes
that participate in gluconeogenesis, lipogenesis, and ureagenesis for insects [38]. Tret1
is a trehalose-specific facilitated transporter, and its expression is stress-induced, thus
indicating that Tret1 participates in trehalose transport in cells. Our findings suggest that B.
tabaci resists low-temperature stress by modulating activities of several enzymes, whereas
it withstands high-temperature stress by modulating metabolism and synthesis of organic
substances. Additionally, these findings suggest that sugar conversion and transportation
have an important effect on insects’ temperature adaptation as well as the two biological
processes in which heat shock proteins and cytochrome P450 are involved. Moreover, all
three biological processes are regulated by chromatin accessibility.

This study demonstrates that regulation of genes by chromatin accessibility, an epi-
genetic regulatory mechanism, has a vital effect on the temperature tolerance in B. tabaci.
This study demonstrates the accessible chromatin changes in B. tabaci under temperature
stress for the first time, to the best of our knowledge. Gene expression can be activated or
repressed by mobilizing chromatin openness of unique genomic regions that perform spe-
cific functions. The present study reveals the deep-level temperature tolerance mechanism
of B tabaci, thus providing a new understanding of its temperature adaptation and rapid
expansion mechanism, and providing a theoretical basis for exploring new technologies for
its innovative intervention and control.

5. Conclusions

This study used RNA-seq and ATAC-seq to reveal differences in global gene expres-
sion patterns and chromatin accessibility landscapes under temperature stress in B. tabaci,
and it indicated the relationship between dynamic transcriptomic changes and chromatin
accessibility, as well as identified key pathways and genes involved in temperature adap-
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tation. However, the precise functions of the elements need to be further studied using
CRISPR/Cas9 and RNAi methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14101978/s1, Figure S1: The Cluster heatmap formed by
differentially expressed genes; Table S1: Primer information for qRT-PCR validation of expression of
the main differentially expressed genes (DEGs) with differential peaks around their CDS, 3′ UTR, or 5′

UTR regions under different temperature stress; Table S2: UID deduplication basic data statistics for
RNA-seq; Table S3: Assay for Transposase-Accessible Chromatin with high-throughput sequencing
(ATAC-seq) data quality control statistics.
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