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Abstract: Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the
musculoskeletal system. MSDs affect every population worldwide and are associated with substantial
global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There
is growing interest in exploring potential connections between chronic MSDs and variations in the
composition of gut microbiota. The human microbiota is a complex community consisting of viruses,
archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms
play crucial roles in influencing human physiology, impacting metabolic and immunological systems
in health and disease. Different body areas host specific types of microorganisms, with facultative
anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while
strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for
development). Together with the immune system, these bacteria have coevolved throughout time,
forming complex biological relationships. Changes in the microbial ecology of the gut may have
a big impact on health and can help illnesses develop. These changes are frequently impacted by
lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of
microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore,
a desirable candidate for treating MSDs that are chronic and that may have variable progression
patterns. As such, the following is a narrative review to address the role of the human microbiome as
it relates to MSDs.

Keywords: microbiome; musculoskeletal; gastrointestinal; therapeutics; immune system; disc
degeneration; pain

1. Introduction

A collection of microorganisms, such as bacteria and fungi, that live on the surface of
the host body or within is known as the human microbiota [1]. Microbial cells that inhabit
the human body, including the mucosal and skin environments, outnumber our somatic
cells and carry significantly more genes than our human genome [2]. The human body
contains 500–1000 bacterial species at any given moment, although the number of unique
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genotypes (subspecies) may be larger in magnitude [3]. Millions of genes make up each
bacterial strain’s genome, giving them much greater genetic variety and flexibility than
the human genome. There is a large inter-individual variability in the composition of the
microbiota. People can have vastly different collections of microorganisms, yet very little
is known as to what governs such variability. Importantly, although it remains uncertain
how intra- or inter-individual microbial diversity affects an individual’s well-being, health
preservation, or disease inception and progression, changes in the microbiome and how
it interacts with the gastrointestinal, nervous, immune, and endocrine systems are well
recognized and are associated with a number of illnesses, including major depressive
disorder, cancer, and inflammatory bowel disease [4,5].

The study of the human microbiome has now reached a key juncture. In the United
States, the prevalence of many noncommunicable or chronic diseases has risen in recent
decades, owing to longer lifespans and altered lifestyle (e.g., diet, activity levels, etc.).
Changes in diet (e.g., fiber content, processed foods, etc.), sanitation (e.g., chlorinated water
and filtered), and antibiotic use have significantly altered the gut’s microbial population in
the United States during the last 100 years [6]. These findings have led to the premise that
changes in the gut microbiota, secondary to lifestyle changes, are a significant factor associ-
ated with variations in the prevalence of different diseases over time [7–9]. Recent advances
in sequencing technology have facilitated the conduction of systematic and comprehensive
research on the human microbiome [10]. DNA-based taxonomy allows for identification of
microbial communities at species level, whereas microbial metatranscriptomics and metage-
nomics can investigate the actively transcribed microbial genes and microbial genomes,
respectively [11–14]. Direct and indirect crosstalk between the gut microbiota and the host
immune system is now better understood as an adaptive evolutionary process between
both microbial communities and mammalian species [15,16].

The efficacy of lifestyle treatments aimed at reducing the effects of aging on the
musculoskeletal system or the onset of illness can be significantly influenced by the
gut microbiota and their metabolites. Studies have noted that gut microbiota are as-
sociated and have implications with various musculoskeletal disorders (MSDs), such
as osteoporosis [17–20], sarcopenia [21], osteoarthritis [22], and rheumatoid arthritis [15]
(Tables 1 and 2). MSDs are recognized as one of the most common workplace health con-
cerns, significantly impacting working professionals’ quality of life [23].

Table 1. Microbiome and musculoskeletal disorders in human studies.

Author Population
Size Population Characteristics Males:Females Microbe Musculoskeletal

Disorder Findings

Cardoneanu et al.
(2021) [24] 60 32 healthy controls,

28 ankylosing spondylitis 29:31 Several
microbes

Ankylosing
Spondylitis

Decreased intestinal
bacterial diversity

ankylosing spondylitis
patients compared to

control

Das et al.
(2019) [17] 181 Older adults 13:17 Several

microbes Osteoporosis

Different gut microbiota
profiles were found to be

associated with
osteopenic, osteoporotic,
and normal bone mass

density

Fritzell et al.
(2019) [25] 60

40 adults with lumbar disc
herniation/lower back pain,

20 control patients
with scoliosis

30:30 Cutibacterium
acnes Degenerative disc

C. acnes found in discs
and vertebrae during

surgery for disc
herniation

Nilsson et al.
(2018) [18] 90

Elderly women between the
ages of 75 and 80 who have

diminished bone
mineral density

0:90 Lactobacillus
reuteri Osteoporosis

L. reuteri reduces total
bone mass density

compared to the placebo

Rajasekaran et al.
(2017) [26] 22 15-disc herniations, 5-

degenerate, 2-normal in MRI 15:7 Propionibacterium
acnes

Proteome in
intervertebral discs

Specific bacterial and
host defense proteins

were present in
intervertebral discs
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Table 1. Cont.

Author Population
Size Population Characteristics Males:Females Microbe Musculoskeletal

Disorder Findings

Rajasekaran et al.
(2019) [27]

6 control discs,
5 degenerated

discs

Group A (young 2nd–4th
decades), Group B (aging.
5th–7th decade), Group C

(degenerative discs)

4:7 --- Degenerative Disc

Unique proteome
signatures of bacteria in

discs of young, aging,
and degenerative discs

Rajasekaran et al.
(2020) [28] 24

8- brain-dead but living
organ donors had healthy
MRI discs, 8 had herniated
discs, 8-disc degeneration

15:9 Several
microbes Degenerative disc

Distinct microbiome
profiles in patients with

healthy disc, disc
herniations, and

degenerative disc

Rao et al.
(2020) [29] 812 NA NA Cutibacterium

acnes Degenerative disc

The research did not
reveal any distinction in

actual infection rates
between the groups with

non-degenerative and
degenerative discs

Rettedal et al.
(2020) [30] 86

All postmenopausal women:
18 osteoporosis, 42

osteopenia, 26 healthy
controls

0:86 Bacteroides Osteoporosis

Bacteroides taxa were
more abundant in both

osteopenia and
osteoporosis

Scher et al.
(2013) [31] 114 Rheumatoid Arthritis 11:33 Prevotella copri Rheumatoid

Arthritis

P. copri in stool is
correlated with new

onset untreated.
rheumatoid arthritis

Scher et al.
(2016) [15] 58 Rheumatoid Arthritis,

Sarcoidosis, Control 43:25 Pseudonocardia
Rheumatoid

Arthritis,
Sarcoidosis

The composition of gut
microbiota in

individuals with
rheumatoid arthritis and

sarcoidosis was
significantly decreased

and is less varied in
comparison to

individuals without
health issues

Wang et al.
(2017) [19] 18

6 adults with primary
osteoporosis, 6 with primary

osteopenia, and 6 normal
controls

3:15 Firmicutes and
Bacteroidetes Osteoporosis

Osteoporosis individuals
contained an increased

proportion of Firmicutes
phyla but decreased

proportion of
Bacteroidetes compared

to the control

Xu et al.
(2020) [20] 96 48 primary osteoporosis

patients and 48 healthy 37:59 Faecalibacterium
and dialister Osteoporosis

Increase in abundance of
Faecalibacterium and

dialister in patients with
primary Osteoporosis

Table 2. Microbiome and musculoskeletal disorders in animal studies.

Author Sample Size Intervention MSK Disorder Result

Guss et al. (2019) [32] 6–7 mice per group, 2 groups Oral antibiotics vs. untreated Osteoporosis

The decrease in microbiota
synthesized vitamin K from

the antibiotics led to a
decrease in bone matrix

quality

Guss et al. (2019) [32] 10–11 mice group 2 groups Toll-le mceptor-5 deficient
mice Osteoarthritis Gut microbiome may

influence cartilage pathology

Hemandez et al. (2019) [33] 82 (40 modified microbiome,
42 untreated)

A tibial implant made of
titanium, along with the

introduction of
Staphylococcus aureus in the

synovial space.

Periprosthetic joint infection

Gut microbiota may influence
susceptibility to

periprosthetic joint infection
The composition of gut
microbiota could impact

one’s vulnerability to
periprosthetic joint infection

Li et al. (2016) [34] 10 mice per group 2 groups Control vs. Probiotics Osteoporosis

The microbiota within the gut
lumen and heightened gut

permeability contribute to the
initiation of inflammatory

pathways that are essential in
causing bone loss in mice

lacking sex steroids

Sjogren et al. (2012) [35] 485 mice Germ free mice vs
conventionally raised mice Osteoporosis

In mice, the gut microbiota
manages bone density by

decreasing the production of
inflammatory cytokines in

both bone and bone marrow.
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Table 2. Cont.

Author Sample Size Intervention MSK Disorder Result

Wang et al. (2021) [36] 12 mice per group, 4 groups

Control, Control + L. paracasei
S16 probiotic, Lumbar Doc
Herniation (LDH), LDH+ L.

paracasei S16 probiotics

Lumbar Disc Herniation
(Low Back Pain)

L. paracasei S16 has the
potential to alleviate LDH

symptoms through the
reduction of inflammation,

modifications in gut
microbiota, and alterations in

serum metabolite

Yan et al. (2016) [37] 6 mice Control vs. Antibiotics Osteoporosis

The gut microbiota negatively
impacts bone health, likely
through IGF-1 mediation,

causing a net anabolic deficit

Currently, little is known about the interplay between the human microbiome and
MSDs. The current narrative review evaluates emerging data on the role of the human
microbiome in relation to MSDs. To our knowledge, a singular and comprehensive review
on the role of the microbiome upon MSDs has not, to date, been addressed. Risk factors
between many musculoskeletal conditions tend to overlap, suggesting crosstalk of these
mechanisms. This crosstalk provides cause and reason to believe that a review of the
microbiome in relationship to MSDs in this depth and coverage is needed and would
provide a starting point for discussion and future research. This review is targeted to
clinicians (e.g., orthopaedists, rheumatologists, physiatrists, physical therapists, etc.) and
basic science researchers interested in the topic of microbiome and MSDs.

2. Human Microbiome

Microbiota is a term used to describe the microorganisms that live in a certain environ-
ment [38], while the “microbiome” is a collection of genomes from those microorganisms.
The human microbiota is composed of approximately 10 to 100 trillion symbiotic micro-
bial cells residing within each person, predominantly bacteria in the gut. The human
microbiome is made up of the genes that comprise the genetic material of such microbial
cells [39]. Multiple microbiome projects have been developed globally to better understand
the roles of these symbiotic microorganisms and their effects on human health [40,41]. The
study of the human microbiome has now reached a key juncture. The field is moving
away from descriptive analyses and towards mechanistic and interventional studies [42].
These developments have also sparked a boom in translational research and significant
expenditures in both academic and corporate research, including that of so-called “big
pharma”. A revolution in customized medicine has sparked this organized endeavour in
clinical microbiome research. Cancer genome sequencing is one instance of customized
medicine since it enables quick identification of a patient’s unique treatment plan that
will provide beneficial results. Our ability to define the microbiome quickly and consis-
tently may provide a platform for the development of new diagnostic biomarkers and
non-invasive treatments as well as refined predictive outcome modeling of patient care [43].

3. Microbiome in Health and Disease

Since the inception of the study of the human microbiome back in the 17th century, its
potential significance in health and disease has gained attention in the scientific community,
yet there is still so much to explore. The current cutting-edge sequencing methods allow for
the investigation of microbiota composition and its potential impact on the human body.
Over 100 trillion prokaryotic cells have been found to support human biological activities.
Each individual is carrying 3 to 6 pounds of bacteria and other microbes at all times, with
approximately 3 million protein-coding genes [44]. There are various microbial niches that
are in harmony with the normal physiologic processes of the human body [45]. The host’s
homeostasis is significantly influenced by the gut microbiota. [46]. Human physiology,
fat storage, immune system development, behavior, digestion, angiogenesis regulation,
detoxification, and development processes all depend on the gut microbiome [47,48].
Enzymes essential for the breakdown of otherwise indigestible food components and
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the production of vitamins are encoded by some microbes in the gut microbiome [49,50].
Actinobacteria, Firmicutes and Bacteroidetes are the most prevalent microbiota phyla in
a healthy gut, while Verrucomicrobia, Proteobacteria, Fusobacteria, and Cyanobacteria
are frequently absent [41,51]. There have also been reports of Eucarya (mostly yeasts),
methanogenic archaea (particularly Methanobrevibacter smithii) and numerous phages in a
healthful gut microbiome [52].

Multiple factors can affect the microbiota. While the microbiota content varies greatly
from one individual to the next [41], the microbiota is a highly dynamic ecosystem that can
be altered by a variety of circumstances, such as pharmaceutical treatments, illness [53],
age, travel [54], hormonal cycles [55] and diet [56]. Furthermore, according to He et al. [57]
microbial patterns vary across geographical regions. Within the same geographical region,
ethnicity plays the largest role in explaining inter-individual differences in microbiome
composition [58]. The gut microbiota can have a major impact on health and become
disrupted during certain pathological conditions. Environmental factors can also disrupt
gut microbial communities in genetically vulnerable individuals, resulting in dysregu-
lation of the host’s innate and adaptive immune systems, resulting in the emergence of
different illnesses [45]. The interplay between the immune system and the altered gut
microbiota has been shown to affect the etiology of various diseases in recent years, includ-
ing cancer, inflammatory bowel syndrome, metabolic syndrome and nonalcoholic fatty
liver disease [59–63] and many autoimmune diseases (e.g., rheumatoid arthritis, multiple
sclerosis, autoimmune hepatitis, spondyloarthritis and type 1 diabetes) [64–69]. The gut
microbiota is highly organized, and it has a wide range of protective, structural, metabolic,
and immunological effects both within the gut and across the body [70]. Metabolites
contributed by gut microbiota and their respective functions are illustrated in Table 3.

Many gut microbiota metabolite end-products have critical roles in immunological
processes, host metabolic balance and neurology, highlighting the extended genome’s basic
involvement in human disease [71]. The most compelling representations of the role of
gut bacterial metabolites in cardiometabolic illnesses come from comprehensive studies of
choline and methylamine metabolism in humans and animal models [72]. Bile acids are
steroid molecules that are generated in the liver from cholesterol and then processed by the
gut microbiota into secondary bile acids [71].

Table 3. Metabolites by the gut microbiota and their respective functions. Adapted from Kho and
Lal [73].

Metabolites Functions

Polyamines,
e.g., putrescine, spermidine, and

spermine [74–78]

• Maintain a high rate of intestinal epithelial cell pro-
liferation.

• Dysregulated polyamine metabolism may promote
the growth of cancer.

• Promote the production of intercellular junction
proteins (occludin, zonula occludens-1 (ZO-1), and
E-cadherin) to improve intestinal barrier integrity
and function.

• Spermine suppresses pro-inflammatory M1
macrophage activation and promotes intestinal and
systemic adaptive immune system development.

Vitamins,
e.g., thiamine (B1), riboflavin (B2),
pantothenic acid (B5), niacin (B3),

pyridoxine (B6), folate (B11–B9) biotin
(B7), cobalamin (B12), and
menaquinone (K2) [79,80]

• The creation of red blood cells, the generation
of energy, and the role of cofactors in many
metabolic processes.

• DNA methylation, repair, and replication, which
controls cell division.

• The creation of vitamins, amino acids, and nu-
cleotides. Enhance immune functioning.
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Table 3. Cont.

Metabolites Functions

Phenolic derivatives,
e.g., 4-OH phenyl acetic acid, equol,
urolithins, enterolactone, enterodiol,

8-prenylnaringenin,
2-(3,4-dihydroxyphenyl) acetic acid,
3-(4-hydroxyphenyl) propionic acid,
and 5-(3,4-dihydroxyphenyl) valeric

acid [81–83]

• Antimicrobial effects: suppressing harmful bacteria,
affecting the makeup of the gut microbiota, and
maintaining intestinal health.

• Protective effect against oxidative stress.
• Estrogen-modulating effect. λ platelet aggregation

inhibition effect.
• The anti-inflammatory and cancer-prevention prop-

erties of urolithin are present.

Choline metabolites,
e.g., betaine and choline, and

trimethylamine N-oxide
(TMAO) [84,85]

• Alter glucose homeostasis and lipid metabolism.
• Cause cardiovascular disease and non-alcoholic

fatty liver disease.

Bile acid metabolites, e.g., lithocholic
acid (LCA) and deoxycholic acid

(DCA) [86]

• Exhibit antimicrobial activities.
• Activate host nuclear receptors and cell signaling

pathways; regulate bile acid, cholesterol, glucose,
lipid, and energy metabolism.

Indole derivatives, e.g., indole,
indoxyl sulfate, and

indole-3-propionic acid (IPA) [87–89]

• IPA functions as a potent antioxidant, a blocker of
amyloid-beta fibril production, and a cytoprotective
agent against a range of oxidants.

• Pregnane X receptor (PXR), a xenobiotic sensor, is
how IPA controls the intestinal barrier function.
Through the PXR, IPA lowers intestinal inflamma-
tion (by downregulating the pro-inflammatory cy-
tokines TNF-) and regulates intestinal permeability
and mucosal integrity (by upregulating junctional
protein-coding mRNAs).

• The uremic toxin indoxyl sulfate, which builds up
in the blood of people with compromised excre-
tion systems.

Short-chain fatty acids (SCFAs), e.g.,
acetate, butyrate, propionate,

hexanoate, and valerate [89–91]

• Control host metabolic pathways by signaling from
G-protein-coupled receptors GPR41 or GPR43: en-
ergy homeostasis; glucagon-like peptide 1 (GLP-
1) synthesis; upregulation of leptin production.
Improve insulin sensitivity and glucose tolerance.
Strong histone deacetylase (HDAC) inhibitor con-
trols the proliferation of intestinal cells. Intesti-
nal gluconeogenesis, lipogenesis, and inhibition of
fasting-induced adipose tissue in the intestinal ep-
ithelium (factor FIAF). Immunomodulatory impact,
dendritic cell activation, and gut immunity.

4. Microbiome and Musculoskeletal Development

An aberrant or malfunctioning microbiota has been linked to a variety of illnesses and
problems not related to the gut. There is growing evidence that altered gut microbiome
is highly related to certain MSDs. Changes in the microbiota provide plausible potential
mechanisms for generating inflammation, modifying the immune response, and affecting
host metabolism, all of which may modulate the development of MSDs and frailty. Studies
in this field are challenging to carry out and require thorough planning to eliminate
confounding variables such host genetics, nutrition, age, and the sickness itself, all of which
alter the composition of the gut microbiome [92]. When compared to adults, children have
dramatically different gut flora [93]. Despite the fact that fewer bacterial species dominate
the infant’s gut microbiota, a variety of variables have a role in its growth throughout the
first year of life [94].
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5. Gut Microbiota and Bone Health

Over the last two decades, inflammatory bowel diseases have been associated with a
loss of bone mass, implying that the intestinal and skeletal systems are linked. Recently,
it was shown that the microbiomes of people with osteoporosis were much more varied
than those of healthy controls, particularly in terms of Firmicutes abundance [17]. In a
study postmenopausal woman with osteoporosis and osteopenia were shown to have
altered microbiome [30]. Furthermore, a clinical trial demonstrated that replenishing the
microbiota with probiotic medication reduced bone loss in older people with low bone
mineral density [95]. Conversely, a recent study showed that probiotics reduced femoral
neck bone mineral density, but hip bone mineral density was unaffected [18].

Mice’s osteocalcin and bone strength have decreased owing to antibiotic-induced
microbiota depletion, which has been related to decreased vitamin K2 levels [32]. Given
the connection between the stomach and the bones, the medical world has recently become
interested in probiotics, which reintroduce beneficial bacteria strains. Probiotics like the
bacterial strain Lactobacillus rhamnosus GG and VSL#3, have been shown to improve
bone health by repairing intestinal permeability and restoring the gut microbiota in animal
research [34]. In estrogen-deficient mice, Lactobacillus reuteri was demonstrated to protect
against bone loss when given as a supplement [96,97].

Disruption of gut homeostasis can induce an inflammatory immunological phenotype
that affects bone metabolism. Increases in TH17 cells that release the interleukin IL-17 in
the bone marrow (BM) can promote bone breakdown by facilitating the differentiation
of osteoclasts (OCs) in the BM [98,99]. Yu et al. [100] examined how intestinal immune
cells affected bone remodeling in hyperparathyroid mouse models. They discovered that
parathyroid hormones enhanced the number of gut TH17 cells in mice with segmented fila-
mentous bacteria in their microbiomes. These TH17 cells moved into the BM after egressing
from the stomach and into circulation, causing bone degradation [100]. To demonstrate
intestinal TH17 cell egress, they used an FTY720 antagonist to block the sphingosine 1
phosphate (S1P) receptor-1, which limits lymphocyte egress from the mesenteric lymph
nodes, resulting in a BM TH17 cells decrease and bone loss [100]. They also found that
the chemoattractant CCL20, which guides TH17 cells into the BM, was elevated in the
BM, demonstrating the relevance of TH17 cell migration into the BM [100]. Although
the quantity of intestinal TH17 cells was unaffected by the administration of neutralizing
anti-CCL20 antibody, it prevented the decreases in bone loss and the increase in TH17 cells
in the BM.

6. Osteoporosis

An increase in the risk of bone fracture is associated with osteoporosis, which is
defined by a decline in bone strength, a measure of bone density and quality [101]. Increased
inflammatory markers in plasma, such as high-sensitivity C-reactive protein (CRP), increase
bone resorption, bone loss and may increased risk of fracture [102–105]. Osteoclasts,
which are produced from hematopoietic stem cells, are highly specialized motile migratory
bone resorptive cells. Because osteoclasts are the most important bone resorbing cells,
local activation of their activity is required to prevent alveolar bone loss [106]. Mineral
bioavailability from the diet is influenced by probiotics. Human studies have found
that adolescents and postmenopausal women benefit from probiotics because they boost
calcium absorption [107,108]. Compared to those who took placebo pills, adolescents
who were given a mix of inulin-type fructans with short and long chains demonstrated
considerable increase in bone density and mineral content throughout the body in the
bone [109]. The flora of the distal colon ferments fructans in the intestinal tract rather than
having them degraded by enzymes in the small intestine. A substance that favorably affects
mineral absorption is fructans. Fructans have been found to improve the absorption of a
number of minerals, including calcium and iron. [110]. Alterations in calcium absorption,
according to the authors, were most likely to blame; however, changes in gut microbiota
composition and immune response could also have played a role [111,112]. In adolescent
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girls, the administration of galacto-oligosaccharides (GOS) on calcium absorption and
the intestinal microbiota was studied [112]. In a dose-dependent manner, beneficial fecal
bifidobacteria numbers increased considerably. Calcium absorption increased as well,
although no direct relationship with dose was observed. A different study found enhanced
calcium absorption and an increase in microbiota in teenagers who consumed a soluble
maize fiber diet compared to similar controls who ate normal diet; however, no changes in
indicators of bone turnover were observed. These results suggest that among adolescents
who eat less calcium than is advised, a moderate daily dosage of SCF, a well-tolerated
prebiotic fiber, enhances short-term Ca absorption [113].

7. Rheumatoid Arthritis

The autoimmune disease rheumatoid arthritis (RA) affects the synovium and cartilage
and is commonly accompanied with bone erosions. The prevalence of RA is rising, as
is the age at which it first appears, partly due to population ageing [97,98]. Despite
shorter symptomatology at presentation, older patients frequently have greater disease
severity [114]. However, the reasons for this phenomenon have not been elucidated.
Intestinal microbiota components [115] affect the host immunity, especially the effector
T-cell development, which may influence autoimmune disease susceptibility, such as
RA [116]. The gut microbiota is also known to alter with age [117]. Seropositive RA is
characterized by antibodies against citrullinated proteins (ACPAs), which have been found
to be harmful. According to the CIA model, Porphyromonas can hasten the course of RA in
animals [118,119]. Genetic changes in the microbiota may help mitigate genetic risk [31,120].
Prevotella spp were shown to relate to the RA genotype in absence of RA, including people
with high risk factor of having RA [120]. Autoantigenic citrullinated peptides secreted
by oral microbiome were demonstrated to be elevated in RA patients [121]. However, in
adjuvant-induced arthritis in rats, L. casei (ATCC334) bacteria was shown to restore bone
loss indicating this to be a potential candidate for probiotics for treating RA [122].

8. Sarcopenia

A broad, progressive skeletal muscle condition known as sarcopenia causes loss of
muscular mass and function [123]. It occurs with advancing age, and causes decreased
strength, eventually leading to physical decline, incapability to carry out daily tasks, loss
of independence, higher risk of falls, and an increased chance of death [124]. Sarcopenia
makes recovering from bone and joint diseases more difficult, including orthopaedic
surgery. Various medical conditions (e.g., cancer, malnutrition, chronic infection, and
chronic heart failure) can cause muscle wasting. Inflammation and a poor nutritional state
are also believed to be shared mechanisms [125]. Higher blood interleukin-6 (IL-6) and
CRP levels were observed to enhance the likelihood of muscular strength loss over a 3-year
period in a prospective investigation involving over 1000 participants [126].

In sarcopenic obesity, the microbiome may also play a role [127]. Increased adiposity,
fat redistribution, persistent muscle fat infiltration and low-grade inflammation are all
symptoms of this sarcopenia type, which has no universal diagnostic criteria [128]. The
function of the gut microbiota in obesity has been studied extensively [127]. When com-
pared to normal-weight and age-matched controls, overweight individuals have a less
diverse microbiome, which could contribute to weight gain and increased inflammation in
muscle [128]. Based on a study by Kang et al. [127] whereby 60 healthy and 27 sarcopenic
individuals were compared, 16S rRNA sequencing data of fecal microbiota revealed reduc-
tion in microbial diversity for those with sarcopenia. More specifically, the study noted
an increased abundance of Lactobacillus but a decreased abundance of Fusicantenibacter,
Lachnospira, Eubacterium, Roseburia, and Lachnoclostridium in sarcopenic subjects.

9. Osteoarthritis

The classic view of osteoarthritis was that it was a non-inflammatory arthropathy
characterized by cartilage and bone remodeling. On the other hand, several studies have
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consistently demonstrated inflammation throughout the whole illness phase [129,130].
Streptococcus species within the gastrointestinal microbiome has shown to trigger en-
dotoxin release leading to local inflammation in the knee joint with resulting pain [131].
Indeed, the synovium and chondrocytes create chemokines, cytokines and other inflamma-
tory mediators have been detected in the synovial fluid of OA joints [129,130]. Furthermore,
bacterial DNA has been found in the synovial fluid and synovial tissue of OA joints
from polymerase chain reaction (PCR) tests, suggesting the potential that living bacteria
are present in the joint as the illness progresses [127,132,133]. Investigations employing
sequence-based microbiota assays are essential since a significant portion of gut bacteria is
currently unculturable. For 12 weeks, participants in these earlier research received either
3000 mg/day of an oral glucosamine sulphate (GS) supplement or 3000 mg/day of a whole
green-lipped mussel (GLM) extract. However, since these tests are digested in the colon by
gut bacteria, considerable disagreement existed concerning their efficacy. The discrepancy
could be due to differences in baseline microbiota between studies and individuals [22].

10. Intervertebral Disc Degeneration

Disc degeneration (DD), which causes low back pain, is the most disabling ailment in
the world and well known potential risk factor [134–139]. Inflammation has been identified
as the final common pathway leading to DD, but the mechanisms that cause it remain
unknown [28,140]. Although environmental, genetic, and mechanical factors have all
been implicated, subclinical infection and bacteria-induced inflammation are of particular
interest [26,141–144]. Bacterial presence has been found in DD, but it has been suggested
that it could be contamination rather than infection [25,29]. The existence of a unique
disc biome in human intervertebral discs and disc dysbiosis in degenerative discs have
been shown utilizing advanced omics technologies [27,145]. A comparative analysis of gut
microbiota in 36 obese or overweight individuals with or without back pain have revealed
direct correlation with altered gut microbiota and back pain, which may be attributed to
increased inflammation [146]. More specifically, genera Adlercreutzia, Roseburia, Uncl.
Christensenellaceae were observed abundantly in obese or overweight individuals with
back pain. However, treating a mouse model for lumbar disc herniation with Lactobacillus
paracasei S16 has been shown to reduce the inflammatory response [36]. Such an approach
has also altered the gut microbiota and serum metabolites. Further research is required to
examine the interactions between bacterial inflammation and dysbiosis and their role in
DD in the setting of pain and non-painful states, potentially opening the possibility for new
avenues of understanding the pathomechanisms of symptomatic degenerated discs, the
development of more targeted novel treatments and more refined predictive outcomes.

11. Modic Changes

Modic changes (MC) are subchondral vertebral bone marrow non-neoplastic lesions
observed on magnetic resonance imaging (MRI) [136,147–150]. These lesions involve both
the vertebrae and the endplate of the adjacent disc and are related to DD. MC (especially MC
type 1 [MC-1]) is thought to be related to low back pain (LBP) [151–153]. The prevalence
of MC increases with age [136,154]; however, such lesions are more common among
individuals with lumbar disc herniation and chronic LBP (approximately 45%) as compared
to the general population (around 5% [155,156]). There are three types of MCs, which
are determined based on T1- and T2-weighted MRIs. The MC-1 indicates inflammatory
changes or edema in the vertebral bone marrow; MC-2 represents the replacement of normal
haemopoietic bone marrow by yellow lipid marrow; and MC-3 indicates subchondral bone
sclerosis and has low prevalence. Of the three types of MCs, MC-1 is associated with a
higher prevalence of chronic LBP [157,158]. Although multiple factors (e.g., biomechanical
changes or degeneration) have been proposed to be related to the development of MCs,
some animal and human studies indicated that MCs might be attributed to low-virulent
intra-discal infection [141,142,159–161]. For instance, Chen et al. [162] showed that the
inoculation of human-derived Propionibacterium acnes into the L5, L6, and L7 intervertebral
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discs of rabbits caused gradual disc degeneration, adjacent endplate disruption, and MC.
Although the mechanisms underlying P. acnes inducing MC are uncertain, it has been
hypothesized that P. acnes secreted propionic acid may dissolve fatty bone marrow and may
result in MC. It has also been hypothesized that the presence of P. acnes induces monocytes
to create pro-inflammatory cytokines (such TNF- and IL-1) [162]. that are responsible for
edema of subchondral bone marrow and potential damage of the endplates [163].

Human randomized controlled trials were conducted to evaluate the use of 90 or
100 days of Amoxicillin-clavulanate or Amoxicillin alone in improving the symptoms or
MC in patients with chronic LBP and concomitant MC [162,164–166]. They found that
antibiotics were significantly more effective than placebo in improving pain or disability
immediately after the treatment or at the one-year follow-up in patients with MC-1. How-
ever, there were inconsistent findings regarding the clinical significance of these findings.
Nonetheless, these studies underscore that perhaps bacterial infection may be related to
spine health and that more targeted, precision-based and imaging approaches with respect
to various structural spine phenotypes are needed.

12. Scoliosis

Scoliosis is the most common rotational malformation of the spine, affecting about 1
to 4 percent of adolescents worldwide [167]. Cardiovascular risk, respiratory failure and
death are associated with severe scoliosis [168]. The etiology of scoliosis remains uncertain
but is believed to be multifactorial [167]. For example, central nervous system difficulties,
genetic factors, skeletal spinal growth, bone metabolism abnormalities, metabolic pathways,
biomechanics, proprioceptive deficits, and other factors have all been postulated as possible
explanations for its pathophysiology [169,170]. Clinical symptoms and pathological ab-
normalities of scoliosis suggest that metabolic dysfunction and biochemical variables may
be involved in its development [171–173]. Recent research reveals that the gut microbiota
plays a significant role in regulating metabolic and biochemical processes that support
bone production and skeletal development [37,174]. Recent observations in the distinct gut
microbiota profiles in patients with scoliosis as compared to non-scoliotic controls have
led to the development of a novel hypothesis [175]. Specifically, the changes in plasma
proteins and the amount of fecal Prevotella were found to be positively associated with
the Cobb angles of patients with scoliosis [175]. However, there is insufficient evidence
to substantiate the direct involvement of gut microbiome on the onset or progression of
scoliosis. Future research should investigate the gut microbiota profiles of patients with
rapid progressive scoliosis to improve our understanding regarding the pathophysiology
or progression of scoliosis.

13. Microbiome and Inflammatory Conditions
13.1. Septic Arthritis

Most commonly, Neisseria gonorrhoeae and Staphylococcus aureus (S. aureus) cause septic
arthritis in individuals of all ages [176–178]. The most common cause of bloodstream
infections globally is S. aureus [179]. However, due to a continuous extension from a
nearby soft tissue infection, S. aureus can also result in septic arthritis. After minor trauma
or in medical settings when a central venous catheter or peripheral intravenous device
is used, bloodstream infections brought on by S. aureus are frequent [180]. Numerous
virulence traits of S. aureus enable it to penetrate the joint space and evade human defenses,
leading to symptomatic infection. These include protein A, collagen-binding protein,
clumping factors A and B, and bone sialoprotein-binding protein, which all have similar
mechanisms of action involving extracellular matrix adhesion and cause osteomyelitis and
septic arthritis [181]. S. aureus, however, is regarded as a human commensal since up to 30%
of asymptomatic individuals have it in their noses. Methicillin-resistant S. aureus (MRSA)
septic arthritis is a prominent subgroup of S. aureus septic arthritis [182]. According to
a systematic analysis, children under the age of two and African Americans are more
commonly affected by CA-MRSA bone and joint infections [183]. Although the causes are
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unknown, they could have something to do with access to care or unusual presentations
of bone and joint infections in very young infants [174]. A patient with septic arthritis
of the hip or knee who worked in a medical facility was more likely to get MRSA than
methicillin-sensitive S. aureus, according to studies [184].

13.2. Osteomyelitis

Osteomyelitis is a type of bone inflammation and infection. When a bacterial or
fungal infection enters bone through the circulation or surrounding tissue, it is known as
osteomyelitis. Osteomyelitis can appear suddenly or gradually [185]. In the United States,
it is estimated that 2 to 5 per 10,000 persons have osteomyelitis regardless of age [186].
Children are more likely to get long bone infections involving the arms or legs. However,
older persons are more likely to develop osteomyelitis [187,188]; however, anyone at any
age can get it because they have more health problems that raise the risk of infection, such
as diabetes, lower immunity or orthopaedic problems that necessitate surgery. Osteomyeli-
tis can be “hematogenous”, meaning it originated from the bloodstream to the bone, or
“non-hematogenous”, meaning it is not transmitted from the bloodstream [189]. If bacteria
enter the body through intravenous therapy, it is more likely to develop hematogenous os-
teomyelitis, especially in children. Trauma, such as a fracture or an open wound, can cause
non-hematogenous osteomyelitis, which is the most common cause of non-hematogenous
osteomyelitis in children. Surgical procedures (especially those involving prosthetic mate-
rials like metal pins, screws, or plates, which can harbor fungi or bacteria) may increase
the risk of osteomyelitis [190]. Although the study of the role of the microbiome in the
development of osteomyelitis is currently in its infancy, recent research has established
early foundations as it relates to bone health of the foot, jaw and other regions related to
MSDs [191,192].

13.3. Post-Operative Infection

Surgical site infection (SSI) and periprosthetic joint infection are major problems
following orthopedic surgery. SSI have been reported to occur in 1.4 to 5.5% of cases
following ankle surgery, and 0.7 to 12% of cases following spine surgery [193]. Because of
the high morbidity and mortality associated with SSI, prevention is a main area of focus.
Multiple risk factors, such as smoking, open fracture, obesity, alcohol abuse, and diabetes,
have been identified; however, evidence suggests the carriage of S. aureus, a bacterial
strain that is part of the normal microflora commonly found in the anterior section of the
nostrils, could play a role [194]. A clinical investigation comparing over 1000 patients
prophylactically treated with mupirocin to a historical control found that it might lower
the infection rate in orthopedic surgery [195]. In a cohort of 18 patients who got SSI
after orthopedic surgery, another clinical investigation discovered that high nasal carriage
of S. aureus was the only substantial independent risk factor for developing S. aureus-
related SSI [196,197]. However, their later randomized, double-blind, placebo-controlled
experiment discovered that using Mupirocin nasal ointment did not shorten hospital
stays or SSI caused by S. aureus. The gut microbiota may be involved in periprosthetic
joint infection, according to animal studies. For instance, in mice, a higher percentage of
those treated with oral antibiotics for disturbed gut flora developed periprosthetic joint
infection [33]. The scientists hypothesized that the mice with altered gut microbiota had a
suppressed immunological response to the illness. It is necessary to do further animal and
clinical research to determine how the gut microbiome’s health affects the emergence of
periprosthetic joint infection and SSI.

13.4. Discitis

Discitis is a bacterial infection of the intervertebral disc resulting from direct injec-
tion or hematogenous seeding. Identification of a causal pathogen, when possible, is
crucial for guiding the therapy protocols [198,199]. Although polymicrobial infection
can occur, most cases involve a single pathogen [200]. S. aureus is the most common
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isolated pyogenic pathogen [201–204]. The MRSA infection rate ranges from 10 to 40%,
notably in nosocomial acquired isolates [202,205,206]. Coagulase-negative staphylococci,
such as S. epidermidis (5 to 29%), and Streptococcus genus, have also been noted (5 to
20%) [202,205,207]. Escherichia coli (7 to 33%) is the most often grown gram-negative
bacillus, which is commonly seen in immunocompromised patients [208], followed by
Pseudomonas (4 to 12%) [205,207,209]. In IV drug abusers, the most common bacteria are
Pseudomonas species, S. aureus, and S. epidermidis. Patients with infected endocarditis are
likely to be caused by S. viridans and Group D streptococci.

13.5. Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a chronic inflammatory, autoimmune condition with
a complicated pathophysiology involving specific genetic markers and distinct environ-
mental triggers, such as gut dysbiosis [24]. Metagenomic profiling of these microbiota
clearly shows microbiota perturbation and AS-enriched species are shown to trigger au-
toimmunity due to molecular mimicry [210]. The interaction between the antigen HLA-B27
and bacterial cells, for example, can result in HLA-B27 misfolding within the endoplasmic
reticulum within the bacteria leading to inactive proteins [211,212]. The production of
pro-inflammatory mediators, as well as the phenomenon of autophagy, are both caused
by this unfolded response [213]. Furthermore, since there is a biochemical similarity be-
tween HLA-B27-presented bacterial peptides and different self-peptides, it could lead to
a cross-immune responses [211,214]. Furthermore, according to Chen et al. [215], the gut
microbiota is restored in AS patients after adalimumab treatment, and this gut microbiome
functions as possible biomarkers to assess the therapeutic medication.

13.6. Fibromyalgia and Chronic Pain

Fibromyalgia is a chronic widespread pain with both somatic and psychological
symptoms [216]. Although the causes of fibromyalgia are unclear, oxidative stress, neu-
roinflammation, proteomics, genetics, hormonal changes, and various types of bacterial
infections have been suggested to be related to fibromyalgia [217–219]. It is known that
fibromyalgia is closely related to irritable bowel syndrome through shared genetic fac-
tors [220]. Furthermore, Marc et al. [221], revealed that people with fibromyalgia had
less diversity of fecal microbes than age-matched healthy controls. A recent systematic
review by Wang et al. [222] found that the composition and metabolism of gastrointestinal
microbiota were associated with fibromyalgia. However, it should be noted that potential
confounders may exist, such as use of drugs (e.g., non-steroidal anti-inflammatory drugs
[NSAIDs]) that may affect intestinal permeability in the included studies, that may com-
plicate the interpretation of results. Collectively, given the potential association between
fibromyalgia and gut microbiota and the paucity of relevant research, future prospective
studies should adopt novel technology and standardized procedures, as well as address
the limitations of prior studies in order to determine the causal relation between gut health
and fibromyalgia.

Although multiple factors will affect the development or maintenance of chronic pain,
it is not uncommon for patients with musculoskeletal pain to take high-dose paracetamol
(>2 g per day) or NSAIDs [223]. These medications can adversely affect the gastrointestinal
environment and physiology, which may lead to gut dysbiosis (i.e. bacterial imbalance).
Gut dysbiosis heightens the permeability of enterocyte to bacterial endotoxins, resulting
in gastrointestinal dysfunction (leaky gut) [70]. Gastrointestinal microbiota can affect the
mucosal defense mechanisms (i.e., competing for mucosal colonization and metabolic
substrates for the synthesis of regulatory factors) and immune system of the host. The
gastrointestinal tract is constantly subjected to both internal and external challenges that
can interfere the intestinal homeostasis. Toxins from adverse bacterial activity or diet, gut
dysbiosis following medications or infections can disrupt the enterocyte’s barrier function,
causing translocation of toxins or bacteria-derived gene products (e.g., lipopolysaccha-
rides) across the inflamed, permeable epithelia and resulting in systemic inflammation
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and endotoxaemia [224]. Prolonged pro-inflammatory responses in the extra-intestinal
environment will increase the risk of chronic inflammation and body pain. If this problem
is not addressed timely, it may lead to chronic pain.

14. Potential Therapeutics Related to the Microbiome

The metabolism of several drugs often used to treat musculoskeletal disorders is mostly
regulated by the microbes in the gut, which has emerged as a hub for the development of
novel therapeutics. First, the gut microbiome has an impact on popular analgesic drugs,
which are still a mainstay of symptomatic treatment [225]. Furthermore, because p-Cresol is
a tyrosine metabolite, dietary tyrosine alteration may further increase paracetamol toxicity.
Second, the bacterially produced enzyme b-glucuronidase influences the stomach and
intestinal toxicity of NSAIDs. Inhibitors of this bacterial enzyme decreased the number of
NSAID-induced ulcers in mice [225].

Since this system’s alteration might have significant effects, especially in older people
who are more susceptible to gastrointestinal bleeding, human trials proving this adjustment
are urgently needed. For example, evidence from clinical trials investigating the use
of epimedium-derived phytoestrogen flavonoids (EPFs) to support bone health noted
a significant decrease in bone mineral density loss in late postmenopausal females in
comparison to placebo participants [226]. The trial’s authors made a concentrated effort
to standardize the diets of the volunteers, which may have lessened variation in the
patients’ microbiota. Rats’ gut microorganisms substantially metabolize epimedii, hence
the effectiveness may vary depending on the host microbiota [227]. A more recent Chinese
multicenter trial indicated a significant effect after just 6 months, however the diet was
not consistent throughout the study [228]. More study is required to determine if this
medication is effective when used with a Western host microbiome and diet. Though this
will only have an impact on therapy if absorption is postponed until the colon, in vitro
models have demonstrated that some drugs used to treat bone and joint problems are
digested by the gut flora. Some drugs, such the osteoporosis treatment strontium, are
affected by food, especially alginates [229], which are subsequently digested by specialized
bacteria, resulting in a complex interaction between the host-specific diet, medication, and
microbiota profile. The severe bisphosphonate side effect of osteonecrosis of the jaw has
been linked to changes in the oral microbiota in early epidemiological studies, but new
data suggests that the connection is not causative but rather reflects changes in systemic
immunity [230].

15. Future Directions

The next critical stages in comprehending the function of the microbiome are preclini-
cal investigations that more precisely pinpoint the mechanisms linking the microbiome to
the health of musculoskeletal tissues. Future clinical studies should examine the potential
efficacy of microbiome-based therapies for various MSDs, and measure gut microbiota in
these patient populations. Once a more complete understanding of the mechanisms relating
the gut microbiome to musculoskeletal tissues is attained, appropriate microbiome-based
interventions, such as fecal microbiota transplantation or and prebiotics, can be determined
for various patients. In addition, with the evolving understanding of deep analytics and
artificial intelligence solutions as well as integrative and multi-omics approaches, a deeper
understanding of an individual’s microbiome profile may be possible and lend to more
personalized patient care approaches. In fact, such platforms can further contribute to
novel preventative measures, unique diagnostics, and informative predictive modeling as
they pertain to MSD.

16. Conclusions

The gut microbiome is now widely acknowledged in the scientific community as a
contributor to the onset of illness and a prospective target for therapeutic treatments and
prognostic prediction. Despite being well acknowledged in other medical fields, the gut
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microbiome has only just begun to be recognized as a factor in musculoskeletal health. With
the explosion of deep phenotyping and analytics, and the understanding of the integration
of various omics approaches, the microbiome is an emerging research area that may lead
to a paradigm shift in the spectrum of personalized care for patients with different MSDs.
As such, this will ultimately improve patient care, decrease healthcare costs and lead to a
more productive society.
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