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Abstract: A key abiotic stress that negatively affects seed germination, plant development, and
crop yield is moisture deficit stress. Achieving higher vigour and uniform germination under stress
conditions is essential for crop establishment and productivity and to enhance the yield. Hence,
revealing wheat’s capacity to withstand moisture deficit stress during seed germination and early
growth stages is fundamental in improving its overall performance. However, the genetic regulation
of moisture deficit stress tolerance during the seed germination phase remains largely unexplored.
In this study, a total of 193 wheat genotypes were subjected to simulated moisture deficit stress
using PEG-6000 (−0.4 MPa) during the seed germination stage. The induced moisture deficit stress
significantly reduced various seedling-vigour-related traits. The genetic regions linked to these traits
were found using a genome-wide association study (GWAS). The analysis identified 235 MTAs with
a significance −log10(p) value of >4. After applying the Bonferroni correction, the study identified
47 unique single nucleotide polymorphisms (SNPs) that are linked to candidate genes important
for the trait of interest. The current study emphasises the effectiveness of genome-wide association
studies (GWAS) in identifying promising candidate genes, improving wheat seedling vigour and root
traits, and offering essential information for the development of wheat cultivars tolerant to moisture
deficit stress.

Keywords: candidate genes; genome-wide association study (GWAS); moisture deficit stress; seedling
vigour traits; SNPs; wheat

1. Introduction

Wheat (Triticum aestivum L.) is a cereal crop of great significance that is cultivated
in almost every part of the world. It is the staple food for around 2.5 billion people in
nearly 90 countries worldwide [1]. To fulfil the growing demand for wheat consumption
driven by the rising world population, wheat production has to be increased [2]. The
abiotic stress condition is a common issue around the world, with moisture deficit stress
being the most significant factor that hinders crop growth. This type of stress is becoming
increasingly prevalent, especially in arid and semi-arid regions [3]. Plant performance and
yield are clearly impacted by moisture deficit stress, with the germination and seedling
growth stages of the majority of crops being the most prone to such conditions [4,5]. Early
embryonic exposure to moisture deficit stress can cause seed germination to be delayed
and germination rates to decline [4,6].

High productivity is ensured by superior quality seed, which is considered an essential
aspect in boosting agricultural production [7]. One of the most significant variables that
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influences seed quality is seedling vigour, which has a direct impact on crop productivity
by determining the genetic as well as yield potential of the seed while ensuring uniformity
in seed germination, seedling growth, seedling establishment in the field, and withstand-
ing sub-optimal environmental conditions [8]. Seedling vigour, determined by various
physiological growth parameters, is a complex trait influenced by multiple quantitative
trait loci (QTLs). In recent decades, QTL analysis has become a potent tool for studying the
inheritance of such intricate traits. Through QTL analysis, researchers have successfully
identified genetic regions associated with seedling vigour, revealing their correlation with
a wide range of physiological traits such as germination rate, shoot length, seedling dry
weight, mesocotyl length, coleoptile length, germination potential, germination index, root
length, and root system architecture [9–12]. Root traits also play a crucial role in absorbing
water during moisture deficit stress, taking up soil nutrients, and tolerating environmen-
tal stress [13]. The spatial organisation of the root system architecture is determined by
basic traits including root length, root length density, root diameter, surface area, and
volume. These traits have a strong relationship with how much water and nutrients are
absorbed [14–16]. Since thicker roots with larger xylem vessels are more efficient at drawing
water and nutrients from deep soil layers under rain-fed conditions, drought tolerance is
directly correlated with root diameter [15]. The efficiency of water and nutrient absorption
could be improved by increasing the surface area and volume of the roots, fine roots, and
number of root tips, which are essential components of root systems [13,17]. Deep rooting, a
crucial root characteristic that allows plants to access water present in the deeper soil layers,
can improve the crop yield [18]. To enhance tolerance to moisture deficit stress, alleles for
deeper root systems can be identified and introduced into drought-vulnerable shallow-
rooted cultivars [19–21]. Therefore, by investigating root system architecture (RSA), we can
find proxy characteristics that increase tolerance to diverse soil types and address moisture
and nutrient stress situations [22]. Root system architecture (RSA) traits are influenced by
environmental conditions and are determined by polygenes with cumulative effects [15].
However, the optimisation of RSA traits has been neglected due to the challenges in accu-
rately assessing them in field conditions [15,16,23]. Nevertheless, researchers are studying
the root architecture of seedlings as it is associated with the root structure of adult plants,
aiming to apply this knowledge to later stages of growth [24,25]. The main aim of breeding
is consistently to enhance yield. Several studies have explored quantitative traits linked to
moisture deficit stress tolerance in wheat during its productive phase. For instance, QTL
investigations in wheat have delved into the genetic factors governing yield and related
traits like kernel weight, grain count per spike, grain yield, grain size, spike length, and
spike shape [26–28]. The genetic basis underlying complex traits was deciphered using an
effective method, GWAS.

GWAS is a highly effective approach for detecting genes/QTLs through linkage
disequilibrium (LD). Wheat, a self-pollinated crop, has a higher level of LD across its
genome, resulting in high resolution and power of association [29]. Utilising genome-wide-
dense markers, GWAS has been extensively used in several crops to identify candidate
genes for several complex traits [30–36]. The benefits of GWAS include being capable of
more effectively, and at less cost than biparental QTL mapping, uncovering MTAs/QTLs
with high resolution, utilising diverse genotypes [37]. One of the most effective ways
to find robust QTLs that have an impact in both normal and stressful conditions is via
GWAS [38–40]. GWAS has, thus, developed into a potent and extensively used technique
for investigating complex traits [41]. It involves genotyping a large collection of genotypes
with many SNPs spread throughout the genome and examining the relationships between
these markers and agronomic characteristics [42]. However, only a few studies have utilised
the GWAS methodology to examine variables associated with seedling-vigour-related traits
in wheat genotypes under moisture deficit stress. In order to uncover the underlying
genetic factors governing variations in these traits, the current work aims to investigate
the genetic variation of and traits associated with seedling vigour and root traits under
artificially induced moisture deficit stress conditions. This investigation contributes to
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the understanding of the genetic regulation of naturally occurring variations in traits
related to moisture deficit stress tolerance, providing a foundation for subsequent genetic
investigations. Here, we discovered new SNP markers linked to the natural variation in
variables related to seedling vigour and root traits.

2. Results
2.1. Phenotypic Evaluation

Due to the substantial diversity, significant differences were observed among various
seedling vigour and root traits in the wheat association panel (Table 1). As shown in
Table 1, an analysis of variance (represented as an MSS, or “mean sum of squares”) revealed
a significant difference between the investigated traits at α values of 0.05 and 0.01. The
differences were significant between genotypes as well as treatments and also the interaction
effects showed significant variation across the seasons; only RE, RSA, and RD did not show
any seasonal variation. Mean values (mean ± SE) of all the traits for the genotypes were
as follows: RE (1.04 ± 0.01), GP (1.25 ± 0.01), MGT (2.33 ± 0.02), AUC (128.45 ± 0.85),
CL (2.72 ± 0.04), SL (17.18 ± 0.20), SDW (10.93 ± 0.19), SVI.I (1525.99 ± 17.12), SVI.II
(954.73 ± 17.51), RL (25.79 ± 0.27), RSA (4.34 ± 0.04), RD (0.58 ± 0.01), RV (0.08 ± 0.00),
RT (33.66 ± 0.82), and RF (31.70 ± 0.82). We observed that the coefficient of variation
(%CV) ranged from 7.36% to 75.41% for all the phenotypic traits (Table 1). The study found
that the lowest CV was observed for seedling vigour traits, viz., GP (7.36%), followed
by AUC (9.22%) and MGT (9.94%). On the other hand, the highest CV was observed
for root traits, viz., RV (75.41%), followed by RF (35.83%) and RT (33.86%) (Table 1).
Under control and moisture deficit conditions, significant differences were recorded for
all the investigated traits and the genotype × season interaction effect was also observed.
However, seasonal variation and the genotype × season interaction effect were absent
in the control condition for the traits MGT and SVI.I (Supplementary Tables S2 and S3).
The frequency distribution histogram with density curve for all the traits under the two
conditions is given in Figure 1. In the control condition, the traits MGT, CL, AUC, RL,
and RV displayed a skewed distribution, indicating an uneven distribution of data points
around the central value. However, under the moisture deficit stress condition, the traits
GP, SDW, SVI.II, RD, RV, RT, and RF also showed a skewed distribution, indicating a similar
uneven pattern of data distribution in response to the stress (Figure 1).

Table 1. Descriptive statistics, analysis of variance (ANOVA) for seedling-vigour-related traits, and
root traits across the two seasons under control and moisture deficit stress condition treatments.

SV Genotype Replication Season Treatment Genotype
×Treatment

Genotype ×
Season Mean ± SE CV LSD@5%

DF 192 1 1 1 192 192

RE 0.16 *** 0.31 *** 0.05 160.45 *** 0.13 *** 0.12 *** 1.04 ± 0.01 13.48 0.16

GP 0.07 *** 0 0.88 *** 56.01 *** 0.06 *** 0.06 *** 1.25 ± 0.01 7.36 0.12

MGT 0.43 *** 0 4.11 *** 106.38 *** 0.50 *** 0.39 *** 2.33 ± 0.02 9.94 0.45

AUC 1121.25 *** 769.27 20,640.52 *** 725,833.40 *** 762.79 *** 1137.99 *** 128.45 ± 0.85 9.22 15.56

CL 2.03 *** 0 1.87 *** 952.09 *** 0.57 *** 0.71 *** 2.72 ± 0.04 18.53 0.32

SL 60.37 *** 0.18 2891.82 *** 55,116.34 *** 17.78 *** 54.25 *** 17.18 ± 0.20 15.99 1.9

SDW 53.17 *** 2.89 1687.35 *** 6769.01 *** 26.55 *** 46.72 *** 10.93 ± 0.19 23.59 2.33

SVI.I 452,276.98 *** 2686.34 11,069,977.94 *** 746,530,121.25 *** 253,856.34 *** 354,442.38 *** 1525.99 ± 17.12 15.58 231.62

SVI.II 473,529.52 *** 29,882.92 21,176,293.17 *** 138,496,911.33 *** 304,158.34 *** 433,009.55 *** 954.73 ± 17.51 25.48 247.34

RL 116.72 *** 0.06 408.05 *** 355,674.09 *** 126.08 *** 116.82 *** 25.79 ± 0.27 14.81 5.01

RSA 3.02 *** 0.04 0.05 10,467.83 *** 3.12 *** 2.93 *** 4.34 ± 0.04 14.16 0.77

RD 0.24 *** 0 0.09 5.14 *** 0.19 *** 0.25 *** 0.58 ± 0.01 29.62 0.2

RV 0.03 *** 0 0.19 *** 1.25 *** 0.01 *** 0.04 *** 0.08 ± 0.00 75.41 0.04
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Table 1. Cont.

SV Genotype Replication Season Treatment Genotype
×Treatment

Genotype ×
Season Mean ± SE CV LSD@5%

RT 1039.16 *** 0.3 1256.46 ** 250,152.40 *** 832.06 *** 968.04 *** 33.66 ± 0.82 33.86 11.21

RF 1031.77 *** 15.55 465.91 *** 271,075.1 801.44 *** 946.31 *** 31.70 ± 0.82 35.83 11.98

*** 0.1% level of significance; ** 1% level of significance; SV: source of variation; DF: degrees of freedom; Treatment:
PEG-6000 treatment, RE: radicle emergence (%); GP: germination percentage (%); MGT: mean germination time
(d); AUC: area under the curve; CL: coleoptile length (cm); SL: seedling length (cm); SDW: seedling dry weight
(mg); SVI.I: seedling vigour index-I; SVI.II: seedling vigour index-II, RL; total root length (cm); RSA: root surface
area (cm2); RD: average root diameter mm; RV: root volume (cm3); RT: number of root tips; RF: number of root
forks; RE and GP are arc sine transformed.
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2.2. Correlation Principal Component Analysis

A correlation analysis revealed the presence of relatedness among the studied traits
(Figure 2). A highly significant positive correlation is observed among RE, GP, AUC, and
RV, whereas traits like SL, SVI.I, RL, RSA, RT, and RF showed a positive correlation among
them under the control condition. CL has a negative correlation with most of the studied
traits except SL and SVI.I. The SVI.II is positively correlated with most of the root traits
except RD under the control condition. Total root length (RL) is positively correlated with
most of the seedling vigour traits, viz., MGT, AUC, SL, SDW, SVI.I, and SVI.II, but not
with RE, GP, or CL (Figure 2A). Whereas in the case of the drought condition, positive
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correlation is observed among RE, GP, AUC, CL, SL, SDW, and SVI.I, but RE is negatively
correlated with MGT, RD and RV. The root traits such as RL, RSA, and RT have a positive
correlation with the seedling vigour traits except MGT (Figure 2B).
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In the PCA analysis using phenotypic data under control conditions, the first principal
component accounted for 18.9% of the total variation. The primary factors driving this
component were the root traits: RSA, RT, RF, and RL (Figure 3). On the other hand, the
second dimension explained 15.3% of the variation and was influenced by traits such as
SVI.II, GP, SDW, RE, and AUC (Figure 3). The traits RE, GP, AUC, and RV were observed to
cluster closely together with an acute angle, indicating a strong positive correlation among
them. Similarly, RL, RSA, RT, and SVI.I showed a similar clustering pattern, suggesting a
positive correlation among these traits as well. On the other hand, CL, which is separate
from the positively correlated clusters, displays a negative correlation with most of the
studied traits, except SL and SVI.I. Similarly, PCA analysis under the moisture deficit stress
condition indicated that dimension 1 explained 24.3 and dimension 2 explained 20.2% of
the variation. The first dimension of variability was influenced by root traits such as RL,
RSA, RT, RF, SVI.I, RE, and AUC. On the other hand, the second dimension of variability
was associated with traits like AUC, RSA, SVI.I, RL, GP, RE, RF, and RT (Figure 4). The
traits RE, GP, AUC, CL, SL, SDW, and SVI.I are closely clustered together at an acute angle,
suggesting a strong positive correlation among them. These traits show similar patterns of
variation, indicating that when one of these traits increases, the others in this group are
likely to increase as well.
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Regarding the root traits RL, RSA, RT, and RF, they were also grouped, except for
RD. This grouping indicates a consistent relationship among these root traits, while RD
appears to behave differently and may have a distinct relationship with the other root traits
(Figure 4).

2.3. Marker Trait Associations (MTAs)

For all the studied traits across the two seasons (seeds harvested from two Rabi seasons:
2020–21 and 2021–22) with different treatment conditions, viz., control and PEG treatment,
235 MTAs were identified with a significance −log10(p) value of >4. The highest number of
SNPs was obtained for the trait SDW (31 MTAs) and the lowest for the RE (2 MTAs). MTAs
were filtered with a Bonferroni correction value (−log10(p) > 5.45) to increase the stringency
of selection, and 47 SNPs were obtained that were located on 18 different chromosomes
(Table 2). Out of the 47 SNPs, 10 were identified across the seasons, which were linked
with CL, SDW, and RD. Under control conditions, 10 SNPs linked with MGT, AUC, CL,
and RD were obtained. Twenty-seven significant associations were obtained under the
moisture deficit stress condition (PEG treatment) for traits, viz., AUC, SDW, SVI.I, RD,
and RV (Table 2). The SNP AX-94471577, which is associated with MGT located on the 4A
chromosome at 1.89 Mb, explained the highest phenotypic variation in PVE (99.87%). The
AX-95194336 marker linked to AUC, located on chromosome 2B, at 9.62 Mb, was found
to account for a significant 92.39% of the phenotypic variation explained (PVE). On the
other hand, the MTA (AX-94446435) linked to RD on chromosome 3D had a PVE value of
0.0%, indicating the marker may not be used for the trait improvement. When subjected to
moisture deficit stress conditions, the SNP marker AX-94742835 associated with SDW on
chromosome 2D, at 90.24 Mb, demonstrated the highest phenotypic variation, with 47.13%.
Conversely, under moisture deficit stress condition, the MTA (AX-95227434) linked to root
diameter showed the lowest PVE, at 0.22% (Table 2).

Table 2. Significant marker-trait associations (MTAs) with a Bonferroni-corrected p-value (–log10(p) > 5.45)
for traits under study across seasons.

S.No Trait MTA Chromosome Physical Position (Mb) –log10(p) PVE (%)

1 ALL_CL AX-94583923 2D 476.70 10.4828 10.83

2 ALL_CL AX-95017965 2B 19.07 10.1716 24.16

3 ALL_CL AX-94773224 6B 650.60 7.8627 8.62

4 ALL_SDW AX-94699286 4A 660.99 7.5173 28.40

5 ALL_SDW AX-95103885 6D 13.98 5.5648 29.28

6 ALL_RD AX-94446435 3D 43.02 9.7491 0.00

7 ALL_RD AX-94470331 4D 5.69 8.4061 89.43

8 ALL_RD AX-95234949 3A 56.39 8.0834 0.13

9 ALL_RD AX-94492491 7A 581.85 7.6457 0.27

10 ALL_RD AX-94811606 4D 53.24 6.4626 0.24

11 C_MGT AX-94471577 4A 1.89 5.6717 99.87

12 C_CL AX-94918971 6D 430.40 10.3226 13.51

13 C_CL AX-94418067 2B 788.24 6.3630 8.64

14 D_SDW AX-94742835 2D 90.24 9.6563 47.13

15 D_SDW AX-94394580 5A 700.44 8.9080 20.51

16 D_SDW AX-94906386 4D 323.58 8.2085 12.76

17 D_SDW AX-94455747 4B 562.36 7.4682 0.97

18 D_SDW AX-94510892 6A 112.59 7.1003 0.93
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Table 2. Cont.

S.No Trait MTA Chromosome Physical Position (Mb) –log10(p) PVE (%)

19 D_SDW AX-94651675 3B 816.60 5.9655 0.40

20 D_SVI-II AX-94926133 5A 584.71 7.0389 7.72

21 D_SVI-II AX-94721930 1D 423.92 5.9759 6.53

22 D_RD AX-95227434 7D 312.98 7.0386 0.22

23 S1C_AUC AX-95194336 2B 9.62 11.7447 92.40

24 S1C_AUC AX-95194973 7B 105.01 6.1170 0.90

25 S1C_AUC AX-94990696 5D 90.00 5.9162 0.39

26 S1D_AUC AX-94953183 6D 16.30 6.4548 7.94

27 S1D_AUC AX-94639463 3D 40.01 5.7741 7.25

28 S1D_SDW AX-94620141 2D 14.77 11.8387 0.28

29 S1D_SDW AX-94691215 5D 545.93 10.4072 0.07

30 S1D_SDW AX-95094238 5A 510.89 9.9641 0.01

31 S1D_SDW AX-94574509 1A 9.58 9.2637 0.17

32 S1D_SDW AX-94475237 7A 353.21 9.1639 1.16

33 S1D_SDW AX-94814248 2D 51.26 8.6749 0.28

34 S1D_SDW AX-94635936 5D 26.79 8.4742 0.48

35 S1D_SDW AX-95132381 6A 105.01 7.2472 1.20

36 S1D_SDW AX-95232641 5B 449.13 7.2043 0.11

37 S1D_SDW AX-94661897 6B 688.30 6.3670 24.15

38 S1D_SDW AX-94873710 3A 20.00 5.9096 0.08

39 S1D_SVI-II AX-94485323 2D 577.60 6.2636 0.09

40 S1D_SVI-II AX-95204453 3D 49.44 5.5436 0.23

41 S2C_AUC AX-94491917 3D 429.63 7.3757 78.78

42 S2C_CL AX-94526026 1B 509.13 5.9038 4.98

43 S2C_SL AX-94515822 1B 638.93 5.7601 79.58

44 S2C_RD AX-94575638 6A 531.10 6.9227 16.82

45 S2D_RV AX-95252696 7B 706.85 6.9025 47.14

46 S2D_RV AX-95133300 4A 68.69 6.8765 8.96

47 S2D_RD AX-94449793 5B 547.58 7.1299 40.01

All: control and moisture deficit stress conditions combined across the seasons; C: control; D: moisture deficit
stress condition; S1: season 1; S2: season 2.

Visual depictions of significant SNPs identified across various seasons and treatments
for the examined traits using Manhattan plots and Q–Q plots are presented in Figure 5. Ad-
ditionally, the distribution and location of the identified significant MTAs (-log10(p) > 5.45)
are displayed on their respective chromosomes (Figure 6). The details of the MTAs above
Bonferroni correction with their position in the genome are noted down (Table 2). All the
obtained SNPs were unique and linked to seven distinct traits: MGT, AUC, CL, SDW, SVI.I,
RD, and RV. Chromosome 2D has the highest number of significant SNPs linked to traits.
These SNPs are AX-94620141, AX-94814248, AX-94742835, AX-94583923, and AX-94485323.
The least number of SNPs have been identified on chromosomes 1A (AX-94574509), 1D
(AX-94721930), 4B (AX-94455747), and 7D (AX-95227434) (Table 2; Figure 6).
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2.4. In Silico Analysis

The location of SNPs in the gene-rich region of the genome was identified by compar-
ative analysis of important markers using BLAST against the Triticum aestivum reference
genome from the IWGSC. Nearly all SNPs were found close to a transcript that encoded
either a protein or transcription factor. SNPs were located near the genes coding for proteins
like Peptidase S10, serine carboxypeptidase, UDP-glucuronosyl/UDP-glucosyltransferase,
Alpha/Beta hydrolase fold, RmlC-like cupin domain superfamily, P-type ATPase, subfam-
ily IIB, EF-hand domain, MFS transporter superfamily, etc. (Supplementary Table S4).

The SNP markers like AX-94583923, AX-95103885, AX-94811606, and AX-94394580
were linked to the genes governing traits like coleoptile growth, germination, seedling
development, and seedling vigour, and are helpful in the early seedling vigour of the wheat.
Similarly, SNPs such as AX-95017965, AX-94510892, and AX-95204453 are associated with
CL, SDW, and SVI.I, while AX-95227434 and AX-94449793 are associated with RD. However,
it is not known which genes and proteins they code for. Only one SNP marker associated
with MGT, AX-94471577, was identified to be present near the candidate regions coding for
WD40-repeat-containing domain superfamily, Protein DCL-like UDP-glucuronosyl/UDP-
glucosyltransferase, and Aspartic peptidase domain superfamily. The coding regions
were identified through in silico analysis. UDP-glucuronosyl/UDP-glucosyltransferase
confers drought tolerance in spring wheat and plays an important role in root and stem
development of abiotic and biotic stresses [43,44]. For AUC, AX-95194336, AX-95194973,
and AX-94990696, SNPs were reported under the control, whereas AX-94953183 and AX-
94639463 were reported in the moisture deficit stress condition in the first year (2020–21).
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2.5. Multivariate Analysis of Wheat Genotypes Using MGIDI for Seedling Vigour and Root Traits
under Both Control and Moisture Deficit Conditions

The multi-trait genotype–ideotype distance index (MGIDI) was devised to assist in the
selection of superior genotypes. This index considers both seedling vigour and root traits,
allowing for the selection of the best genotypes under both control and moisture deficit
stress conditions. The genotypes are displayed in ascending order using the MGIDI index.
The genotypes chosen using this index are marked in red. The central circle, in red, denotes
the threshold point determined by the selection pressure (SI = 15%). A total of 58 superior
genotypes were selected under both the control and moisture deficit conditions, with
29 genotypes in each condition (Figure 7; Table 3).
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Table 3. Genotype selected using MGIDI for seedling vigour and root traits under control and
moisture deficit conditions.

S.No. Control Moisture Deficit Condition S.No. Control Moisture Deficit Condition

1 CS86 HB208 16 HD3362 NW1014

2 Raj4083 RAJ4238 17 PBW681 HD3226

3 HD3354 CS129 18 MP1203 VL907

4 NW1014 CS28 19 CS23 CS90

5 CS71 HDR77 20 Frontana PBW723

6 DBW39 LOKBOLD 21 CS69 HI1544

7 HI1634 HD2987 22 CS92 HD2932

8 HS490 CS128 23 HD2189 Frontana

9 NI5439 ISTSAMNYT406 24 HD2985 HS490

10 PBW65 CS93 25 CS14 PBW752

11 WH1105 CS145 26 ISTSAMNYT406 DBW17

12 HW2004 HI1634 27 CS28 RAJ4229

13 SAFEDLERMA CS94 28 DBW187 CS78

14 HD3249 HI1612 29 RAJ4229 CS42

15 HD2932 PBW771

Note: Varieties identified under both control and stress condition are highlighted with bold letters.

3. Discussion

In the current study, the genotypes used exhibited a wide range of phenotypic varia-
tion at the early developmental stage in response to moisture-deficit-induced stress. The
population used is known for its high diversity and has been used in GWAS to detect
QTL for quality and developmental traits such as grain micronutrients. Moisture deficit
stress, induced by PEG, had a significant impact on most traits, likely due to decreased
water uptake and delayed or reduced germination [45,46]. High germination rates and
seedling vigour in wheat are crucial for stand development in the early stages under
induced moisture deficit stress conditions.

According to the results of the current study, drought reduces seedling- and root-
related development, which has an adverse effect on seedling performance. It has been
observed that the traits investigated under the stress conditions of induced moisture
deficit have a wide range of genetic variability [47]. In cereals, strong early seedling
vigour and well-developed root systems have been positively correlated with plant growth
performance, both of which could improve stress tolerance [48,49]. When it comes to water
access and uptake in the context of drought tolerance, root traits are very important. Thus,
root traits support farm output maintenance in conditions with limited water availability.

The presence of genetic diversity is an essential characteristic for the successful es-
tablishment and early vigour of seedlings, particularly in challenging environments with
limited water and resources. The enhancement of root traits during the critical stages of
seed germination and seedling development has a significant influence on the emergence
of crops and the establishment of seedlings. This, in turn, leads to the development of
a healthy plant population, which is a crucial factor for achieving high yields in both
favourable and stressful conditions. Thus, emphasising these traits could prove to be
an effective approach to quickly assess a large number of genotypes in a drought-like
scenario. It could potentially be possible to uncover genotypes that perform better under
moisture deficit stress conditions. In order to develop drought-tolerant cultivars through
marker-assisted backcrossing, it is necessary to discover markers associated with the target
traits. In this study, a diverse mapping panel was used to uncover MTAs associated with
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seedling vigour and root traits in wheat germinated under moisture deficit stress and
control conditions.

Genome-Wide Association and Candidate Gene Identification

Discovering new genes and genomic regions related to seedling vigour and root traits
during the seedling stage can help develop moisture deficit stress-tolerant, high-yielding
crop varieties. In this regard, historical wheat germplasm collections stored in gene banks
can be a valuable resource for identifying these genes and regions using an association
mapping approach. In this study, a diverse panel of 193 wheat genotypes, including
advanced breeding lines, commercial cultivars, elite varieties, germplasm core set, and
synthetic derivatives was used to map seedling vigour and root traits. Analysis of variance
for all the studied traits in both seasons showed significant variation. The trait variations
are a prerequisite for genetic studies and a breeding program of the seedling vigour traits.

The discovery of MTAs by GWAS is influenced by the usage of structured popula-
tions [50]. Population structure is employed as a covariate in the study to eliminate this
impact. Marker-based PCA revealed that there were three subpopulations in the present
material. Principal component analysis (PCA) is a widely used method for determining the
population structure within a GWAS panel by utilising high-density SNP data [35,51]. With
three major clusters and several sub-clusters branching further, the diversity tree based on
genetic distance demonstrates that there was substantial diversity. The grouping pattern
and the place of origin appear to be related.

All the core set lines are clustered together as one group and the varieties of Indian
origin were grouped in another cluster in the GWAS panel [28]. Linkage disequilibrium (LD)
decay across genetic distance in a population determines the density of marker coverage
required to conduct GWAS. A greater marker density is needed to capture the markers
sufficiently close to the causative loci, as shown by a quicker LD decay.

The significant LD block size for the complete genome in the current investigation is
3.49 Mb. The LDs for the subgenomes for the A, B, and D genomes were determined to be
2.48 Mb, 4.29 Mb, and 3.82 Mb, respectively [28]. In agreement with this, Pang et al. [52]
reported a huge LD block size of 4.4 Mb. The B genome had the lowest rate of LD decay in
the current study. In contrast, the D and A genomes experienced faster LD decay [53], and
slower decay in the D genome was reported in earlier studies [27,35,38,52,54]. Population
size, selection, mutation, genetic drift, admixtures, non-random mating, recombination
frequency, and pollination behaviour are a few variables that might impact LD in various
populations, according to Gupta et al. [55] and Vos et al. [56]. The BLINK model under
GAPIT, which is superior at finding QTNs and minimising false positives for identifying
true associations, was used in a GWAS [57]. At a p-value of <0.0001, a total of 235 MTAs
were found to be associated with the investigated traits. However, a Bonferroni adjustment
was used for stringent selection in order to prevent false positives. A total of 47 stringent
markers were identified, including 10 SNPs linked to MGT, AUC, CL, and RD. Under PEG
treatment, 27 significant SNPs were found for the variables AUC, SDW, SVI.I, RD, and
RV. The multiple comparisons problem is combated by the Bonferroni correction, which
minimises type 1 error, or false positives [58].

Only one SNP marker associated with MGT, AX-94471577, was identified to be present
near the candidate regions, identified through in silico analysis coding for WD40-repeat-
containing domain superfamily, Aspartic peptidase domain superfamily, Protein DCL-like,
and UDP-glucuronosyl/UDP-glucosyltransferase. The aspartic peptidase domainsuper-
family plays an important role in the root and stem development of abiotic and biotic
stresses [43]. UDP-glucuronosyl/UDP-glucosyltransferase confers drought tolerance in
spring wheat [44]. For AUC, AX-95194336, AX-95194973, and AX-94990696 SNPs were
reported under the control, whereas AX-94953183 and AX-94639463 were reported in the
moisture deficit stress condition in the first year (2020–21). Only one SNP marker, AX-
94491917, was associated with AUC in the second year (2021–22) under control conditions.
The AX-94953183 marker was located near the TraesCS6D02G039600 gene which codes for
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Papain-like cysteine peptidase superfamily. This gene is involved in seed germination,
plant growth and development, organ senescence, immunity, and stress response [59].
Among the seedling vigour traits, CL was found to be associated with drought tolerance in
wheat due to determining the maximum depth that seeds can be sown, and it is critical for
the establishment of the crop [60]. The SNP markers AX-94583923, AX-95017965, and AX-
94773224 were associated with CL across the year. Under control conditions, AX-94918971
and AX-94418067 were reported for the CL. AX-94583923 SNP linked to coleoptile situated
near the gene (TraesCS2D02G372500) on the 2D chromosome is responsible for encoding
the Serine carboxypeptidase enzyme and DNA-binding pseudobarrel domain superfamily.
These putative genes play a crucial role in enhancing the ability of coleoptiles and roots
as well as in the development of different parts of the plant in wheat to tolerate drought
conditions [61,62]. The AX-94699286 marker is associated with the gene that codes for
the O-methyltransferase domain. This domain increases the content of melatonin, which
enhances drought tolerance [63]. The AX-95103885 marker is linked to a gene that encodes
a protein belonging to the α/β hydrolase fold and RmlC-like cupin domain superfamily.
These candidate genes are responsible for facilitating the mobilisation of lipids during the
germination and initial development of seedlings [64,65]. The candidate regions coding
for the EF-hand domain, which plays a crucial role in calcium signalling events in plants,
particularly in cell division and the normal development of plant root and shoot tips [66],
was identified in the vicinity of the marker AX-94394580. Additionally, the MFS transporter
superfamily was found to have a role in nitrate signalling and seedling vigour [36] and its
coding regions were also identified near the marker AX-94394580.

Some of the markers associated with SVI.II have revealed a compelling array of
crucial genes, emerging as promising candidates for further exploration. Among them,
TraesCS5A02G387800 stands out, encoding the RNA-binding domain superfamily. A wealth
of research has highlighted its pivotal role in governing essential processes such as shoot
stem cell fates, root growth, gravitropic responses, and embryo development [67]. Given
its significance in these vital biological pathways, TraesCS5A02G387800 emerges as a com-
pelling target for further investigation concerning seedling vigour. The second candidate
gene, TraesCS5A02G387700, encodes the Helicase superfamily 1/2, ATP-binding domain,
and plays a crucial role in regulating plant growth, development, and abiotic stress re-
sponses. It achieves this by modulating the degree of membrane lipid peroxidation [68]. Its
involvement in such fundamental biological processes underscores its potential relevance
to SVI.II, warranting further exploration. The third candidate gene, TraesCS2D02G474800,
encodes the F-box-like domain superfamily and participates in diverse biological processes,
including seed germination and seedling development. Moreover, it plays a specific role in
protein degradation through post-translational modification [69]. The significance of this
gene in fundamental cellular processes adds to its appeal as a candidate for seedling vigour
studies. Another noteworthy gene, TraesCS2D02G474900, encodes the APO domain and
exhibits higher expression levels in early vigorous wheat cultivars [70]. Given its associa-
tion with plant vigour and growth, this gene is a compelling candidate for exploring its
potential implications in seedling vigour. The candidate genes identified in association with
SVI.II hold tremendous promise in illuminating the underlying mechanisms of seedling
vigour in wheat. Their potential to provide valuable insights into the regulation of crucial
biological processes in wheat makes them compelling targets for further investigation. As
standout contenders from the extensive pool of potential candidates, these genes present ex-
citing opportunities to gain a deeper understanding of the intricate mechanisms governing
seedling vigour.

SNP marker AX-94446435 was linked with the candidate genes coding for the Pyri-
doxal phosphate-dependent transferase domain and domain of unknown function DUF1664.
The first gene encodes Pyridoxal phosphate-dependent transferase, which is an enzyme
that is involved in the biosynthesis of vitamin B6. Vitamin B6 plays a crucial role in plant
growth and development. It is involved in various metabolic processes such as amino acid
metabolism, hormone biosynthesis, and stress responses [71]. The second gene is involved
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in the ROS signalling pathway and plays an important role in plant stress response [72,73].
The SNP marker AX-95234949 is located in proximity to the TraesCS3A02G087200 gene,
which codes for the AP2/ERF domain. This domain includes dehydration-responsive
element-binding factors (DBFs) that play essential regulatory functions in the plant’s re-
sponse to abiotic stresses [74] and enhanced drought tolerance and abscisic acid sensitivity
during seedling development [75]. Additionally, this marker is associated with several
putative candidate genes, namely, NAD(P)-binding domain superfamily, Ribonucleoside
hydrolase-like, RAP domain, and F-box-like domain superfamily. The SNP marker AX-
94811606 is situated on the 4D chromosome and is associated with candidate genes that
encode for P-type ATPase, subfamily IIB. This protein plays a significant role during
root epidermis development and early seedling development by participating in sucrose
signalling [76].

Olivoto and Nardino [77] proposed a novel method (multi-trait genotype–ideotype
distance index: MGIDI) for genotype selection based on information on multiple traits. A
total of 193 genotypes were evaluated under the control and moisture deficit condition
for seedling vigour and root traits to facilitate the selection of genotypes with high vigour.
Accordingly, the MGIDI index identified 29 wheat genotypes from the control condition
and 29 genotypes from the moisture deficit condition as the most promising genotypes
(Figure 7; Table 3). Additionally, there were genotypes remarkably near the cut-off point,
implying their potential for intriguing characteristics. Hence, genotypes in close proximity
to this point ought to be given careful consideration [77].

These remarkable findings offer a deeper understanding of the genetic mechanisms
governing seedling vigour, root development, plant growth, and stress responses. As
researchers continue to explore these candidate genes, their insights hold great potential for
future advancements in agriculture and crop breeding strategies, paving the way for more
resilient and productive crops in the face of challenging environmental conditions. This
work has brought to light the various strategies that wheat employs to cope with drought
stress during seed germination and the early stages of growth. The uncovered gene sets
have the potential to improve the ability of wheat to withstand drought, which could have
positive effects on seedling vigour and root architecture. A significant proportion of the
genes discovered in the targeted region are crucial for plant growth and development.
Numerous studies of comparable genes in other species have offered insights into the
functions linked to these genes. The genes encoding the potential candidate regions have
been characterised through extensive annotation, shedding light on their functions within
the cell organelles.

A greater comprehension of the genomic landscape and its significance to breeding
efforts aimed at developing drought-tolerant varieties of wheat could come through a
further investigation that emphasises each of the regions that have been uncovered. Overall,
this study opens novel possibilities to strengthen wheat’s resilience to drought stress, which
is of the utmost importance for guaranteeing food security and sustainable agriculture on
the backdrop of changing climatic circumstances. It also makes significant contributions to
the field of plant genetics.

4. Materials and Methods

A collection of 193 bread wheat genotypes was used in the current study (Supple-
mentary Table S1). The collection includes elite varieties, commercial cultivars, advanced
breeding lines, the core set of germplasm, and synthetic derivatives. Seeds harvested
from field experiments conducted during the 2020–2021 and 2021–2022 Rabi seasons at the
Indian Council of Agricultural Research (ICAR) Institute in New Delhi (28.6550◦ N latitude,
77.1888◦ E longitude, elevation 228.61 m) were utilised in our laboratory studies, represent-
ing the two distinct seasons. More information about the origins (Supplementary Table S1)
and population structure has been published by Devate et al. [28].
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4.1. Seedling-Vigour-Related Traits and Root Traits Measured for Phenotyping

The germination test was conducted by following the ISTA rules [78]. In a laboratory
germination test, a moisture deficit stress condition was created using a polyethylene glycol
(PEG 6000) solution. PEG-6000 is a widely recognised and commonly used osmotic agent
for inducing drought stress in laboratory experiments. PEG-6000 can create a controlled
water deficit in the growth medium, mimicking drought conditions, and helps to investigate
the plant’s response to water stress in a controlled environment [79]. Its use provides a
consistent and replicable way to study plant drought tolerance mechanisms. Germination
tests were conducted with −0.4 MPa concentrations of polyethylene glycol (PEG-6000) with
wheat genotypes, as standardised by Vinodkumar [80] following Michel and Kaufmann’s
methodology [81]. After being surface sterilised with sodium hypochlorite (NaOCl) at 3%
for 10 min, seeds were washed three times with double-distilled water. The germination
tests were conducted in Petri dishes (15 cm in diameter) with 2 replications for each
genotype under study. A total of 50 seeds of each genotype were put out in each replication
on two layers of Whatman no. 1 filter paper. To each Petri dish, ten millilitres of PEG
solution were added. However, in the control set, double-distilled water was added in
the place of the PEG solution. Both sets of Petri dishes were allowed to germinate for
8 days in a germination chamber at 20 ± 2 ◦C and 70–80% RH. Initially, 10 mL of PEG
solution was added to the double-layered filter paper in a 15 cm Petri plate for the water
deficit stress treatment [82]. Subsequently, additional PEG solution was added as needed
to maintain the desired water potential, while in the control set, double-distilled water was
added to maintain the optimum moisture level. The final count was taken on the 8th day
and the number of normal seedlings, i.e., seedlings that had all their essential structures
(root system and shots) with potential for continuing their development and giving rise
to normal plants, was used to calculate the standard germination percentage. The radicle
emergence test was performed following the ISTA rules [78] by using dehusked seeds. The
seeds were placed to germinate as in the standard germination test. Radicle emergence was
ascertained by measuring the growth of a 2 mm radicle after 48 h at 20 ± 2 ◦C and 70–80%
RH. The mean germination time was calculated by using the formula:

MGT = Σ(n × d)/N

where n is the number of seeds germinated on each day, d is the number of days from
the beginning of the test, and N is the total number of seeds germinated at the end of the
test [83].

The germination curve was produced by fitting the daily radicle/coleoptile emergence
(≥2 mm) data using the four-parameter Hill function, as described by El-Kassaby et al. [84],
using Germinator_curve-fitting1.0.xls. by Joosen et al. [85], and the area under the fitted
curve up to 192 h (8 days) after imbibition was considered as the AUC value. Ten normal
seedlings were collected after the germination test’s final count from each replication to
measure the coleoptile length (cm) and seedling length (cm). The seedling dry weight
(mg−1) was estimated after taking the final count of the germination test. Ten normal
seedlings from each replication were taken out, washed, and dried overnight at 80 + 1 ◦C.
Seedling vigour indices were determined following Abdul-Baki and Anderson [86], by
using the following formulas:

Seedling vigour index − I = Germination % × Seed length (cm)

and
Seedling vigour index − II = Germination % × Seed dry weight (mg)

Seedling vigour index-I calculates seedling vigour by multiplying the germination
percentage with seedling length, while seedling vigour index-II incorporates the seedling
dry weight, offering a more comprehensive measure that accounts for the seedling’s actual
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biomass, encompassing both structural and physiological aspects of early seedling growth,
thus enhancing the accuracy of the seedling health and vigour assessment.

The roots were gently removed on day 8 by cutting them at the collar area with a
sharp blade. The extracted roots were then placed in a tray filled with distilled water for
the phenotyping of root traits. The roots of each genotype were then individually scanned
in an Epson Perfection V 700 Photo® flatbed scanner at a resolution of 400 dpi modified
for this purpose (Regent Instruments Inc., Quebec, QC, Canada) as per the manufacturer’s
guidelines. The root images from the scanner were analysed with customised software
WinRHIZO™ (Regent Instruments Inc., Quebec, QC, Canada) [87]. Various root trait data
were recorded by the software, such as total root length, root surface area, root diameter,
root volume, and number of tips and forks.

The multi-trait genotype–ideotype distance index (MGIDI) was used to select the
superior genotypes under both the control and moisture deficit conditions based on seedling
vigour and root traits by following Olivoto and Nardino [77].

4.2. Genotyping

Genomic DNA from leaf samples of all 193 genotypes was isolated using the cetyltrime-
thylammonium bromide (CTAB) extraction method [88] followed by a DNA quality check
through 0.8% agarose gel electrophoresis. Genotyping was carried out using the Axiom
Wheat Breeder’s Genotyping Array (Affymetrix, Santa Clara, CA, USA), with 35,143 SNPs,
following standard protocols. Allele calling was carried out using the Affymetrix propri-
etary software package Axiom Analysis Suite, following the Axiom® Best Practices geno-
typing workflow (https://media.affymetrix.com/support/downloads/manuals/axiom_
analysis_suite_user_guide.pdf (Accessed on 24 February 2022)). The SNPs were filtered,
and monomorphic markers and markers with a minor allele frequency (MAF) of 5%,
missing data of more than 10%, and heterozygote frequency greater than 50% were elim-
inated from the study. The remaining 13,947 SNPs were analysed further, as used by
Devate et al. [28].

4.3. Statistical Analyses of Phenotypic Data

The descriptive statistics and frequency distribution were analysed to check the range
of variability among the traits. The mean, standard deviation, and range for each trait
were calculated and are given in Table 1. Analysis of variance of trait (Y) was calculated
across the replication over the season using the ‘agricolae’ package [89] in R with the
following models

Y = Variety + Replication + Season + Treatment + Variety × Treatment + Variety ×Season + e

Pearson correlation coefficients and a PCA biplot were also calculated to determine
the relationships among the traits between treatments. The Pearson’s correlation coef-
ficient among the studied traits was calculated and graphically represented using an
R package ‘corrplot’ [90]. Phenotypic-based PCA was performed using the R package
“FactoMineR version 2.4” (multivariate exploratory data analysis and data mining) by
Husson et al. [91]. Graphical representation of the PCA results was achieved with the R
package “factoextra version 1.0.7” [92]. Graphical representations of the phenotypic data,
including the frequency distribution, were created using the “rcompanion” package [93] in
the R 4.1.2 software.

4.4. Diversity, Linkage Disequilibrium, and Association Analysis

The diversity in the GWAS panel was assessed using marker-based principal com-
ponent analysis (PCA) and neighbour-joining (NJ) dendrogram analysis, and intrachro-
mosomal linkage disequilibrium (LD) was previously published in Devate et al. [28]. The
study used molecular-marker-based PCA to demonstrate that PC1 and PC2 corresponded
to 54.56% and 25.03% of the variation, respectively. The population was grouped into three
subgroups, and a neighbour-joining dendrogram was drawn based on the distance matrix

https://media.affymetrix.com/support/downloads/manuals/axiom_analysis_suite_user_guide.pdf
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among the genotypes from the GWAS panel. The dendrogram inferred three main clusters
branching into many clusters in the population. To avoid false associations occurring as a
result of the population structure, PCA-based population grouping was used as a covariate
in the association analysis. The marker pairs’ linkage disequilibrium (LD) was computed
as r2. Using the r2-value versus genetic distance in base pairs (bps), the LD decay plot
was produced. The whole genome’s 3.49 Mb big LD block size signifies that SNPs in this
region function as inheritance blocks. For subgenomes A, B, and D, the LD block sizes were
2.48 Mb, 4.29 Mb, and 3.82 Mb, respectively.

A total of 13,947 filtered SNPs and the mean value for each treatment was calculated
from the two seasons’ data for control (well watered) and moisture deficit conditions (PEG-
6000 treatment). An overall mean across the treatment was also calculated. Phenotypic
data from all the traits were used to identify associated markers with traits using the
‘BLINK’ (Bayesian-information and linkage-disequilibrium iteratively nested keyway)
model [57] under GAPIT v3 in R. The BLINK model has been proven to be more precise
in locating QTNs and avoiding false positives in uncovering the true associations. In the
model, PCA-based population structure was included as a fixed effect to control for the
effect of population structure in the analysis. A Q–Q plot was created to assess the fit of
the association model by plotting expected vs. observed −log10(p) values. Marker trait
associations (MTAs) across seasons and combined for RE, GP, MGT, AUC, CL, SL, SDW,
SVI.I, SVI.II, RL, RSA, RD, RV, RT, and RF were found to have significant p-values using
Bonferroni correction (p = 0.05/total number of markers, −log(p) = 5.45) to ensure stringent
selection of MTAs.

4.5. In Silico and Gene Annotation

Associated markers identified using GWAS were subjected to a basic local align-
ment search tool (BLAST) search using the sequence information of the markers. The
BLAST search was carried out using the data web service Ensembl Plants [94] (https:
//plants.ensembl.org/Triticum_aestivum/Tools/Blast (Accessed on 25 may 2023)) against
the bread wheat reference genome IWGSC (RefSeq v1.0). To identify the candidate genes
associated with significant SNPs, gene coding regions located within the 100 kb flanking
region of the MTAs were considered. Further gene annotation of identified genes was
carried out to know their biological process, cellular components, and molecular functions
(Supplementary Table S4).

5. Conclusions

The current study examines how early-growth seedling vigour traits and root at-
tributes respond to moisture deficit stress. The relatively significant variations in the
observed parameters highlight their potential as criteria for selection for effectively evaluat-
ing a large number of genotypes. The complex genetic nature of these traits is shown by
the genetic analysis of these traits under moisture deficit stress. We detected genes that are
sensitive to moisture deficit stress and that encode a variety of proteins that influence germi-
nation, post-germination processes, and plant responses. These genes, either constitutively
or adaptively, perform various roles in seed germination under both normal conditions
and drought-induced situations. Understanding early drought stress responses in wheat
and identifying the genes that are associated with adaptation can help with genetic modi-
fication in boosting plant tolerance to stress. These results suggest that throughout their
early growth, wheat seedlings deploy sophisticated processes for adaptability. However,
additional functional validation is required to understand the genetic control of moisture
deficit stress during early developmental stages (germination and seedling) in wheat and
to validate the associations and genes identified in this study. Furthermore, testing in the
field may prove necessary to assess the agronomic significance of our findings.

https://plants.ensembl.org/Triticum_aestivum/Tools/Blast
https://plants.ensembl.org/Triticum_aestivum/Tools/Blast


Genes 2023, 14, 1902 19 of 22

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14101902/s1, Phenotypic data used for study; Supplementary
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analysis of variance (ANOVA) for seedling vigour-related traits and root traits across the two seasons
under moisture deficit stress condition; Supplementary Table S4. Putative candidate genes and
molecular functions in the 100 kb Region of linked SNPs.

Author Contributions: Conceptualization, M.A.J., H.K., V.D., N.J. and S.R.; methodology, M.A.J. and
H.K.; validation, M.A.J., V.D., N.J. and S.R.; formal analysis, N.B.D. and S.R.; investigation, S.R.;
resources, M.A.J. and H.K.; data curation, S.R. and N.B.D.; writing—original draft preparation, S.R.
and R.S.; writing—review and editing, S.R. and N.B.D.; supervision, M.A.J.; funding acquisition, H.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by funding provided by the Indian Council of Agricultural
Research (ICAR) and the Bill & Melinda Gates Foundation (BMGF) under the project ICARBMGF
(Grant number: OPP1194767).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Phenotypic data used in this study is available in supplementary file as
“Phenotypic data” Genotypic data is available at https://doi.org/10.5061/dryad.0cfxpnw6c (accessed
on 1 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CGIAR Research Program on Wheat. Available online: http://wheat.org (accessed on 5 June 2023).
2. Garcia, S.N.; Osburn, B.I.; Cullor, J.S. A one health perspective on dairy production and dairy food safety. One Health 2019,

7, 100086. [CrossRef]
3. El-Hendawy, S.E.; Ruan, Y.; Hu, Y.; Schmidhalter, U. A comparison of screening criteria for salt tolerance in wheat under field and

controlled environmental conditions. J. Agron. Crop Sci. 2009, 195, 356–367. [CrossRef]
4. Samarah, N.; Alqudah, A. Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.).

Arch. Agron. Soil Sci. 2011, 57, 27–32. [CrossRef]
5. Yigit, N.; Sevik, H.; Cetin, M.; Kaya, N. Determination of the effect of drought stress on the seed germination in some plant

species. Water Stress Plants 2016, 43, 62.
6. Omid, A.; Farzad, S.Z. Osmo and hydro priming improvement germination characteristics and enzyme activity of Mountain Rye

(Secale montanum) seeds under drought stress. J. Stress Physiol. Biochem. 2012, 8, 253–261.
7. Chauhan, J.S. Quality seed: A mega factor in enhancing crop productivity in (ED: Singh, LA) Recent advances in crop physiology.

In Daya Publishing House 2015; Astral International PVT Ltd.: New Delhi, India, 2015; Volume 2, pp. 357–366.
8. Ventura, L.; Donà, M.; Macovei, A.; Carbonera, D.; Buttafava, A.; Mondoni, A.; Balestrazzi, A. Understanding the molecular

pathways associated with seed vigor. Plant Physiol. Biochem. 2012, 60, 196–206. [CrossRef]
9. Landjeva, S.; Neumann, K.; Lohwasser, U.; Börner, A. Molecular mapping of genomic regions associated with wheat seedling

growth under osmotic stress. Biol. Plant. 2008, 52, 259–266. [CrossRef]
10. Landjeva, S.; Lohwasser, U.; Börner, A. Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour

and longevity, and early seedling growth. Euphytica 2010, 171, 129. [CrossRef]
11. Wang, Z.F.; Wang, J.F.; Bao, Y.M.; Wang, F.H.; Zhang, H.S. Quantitative trait loci analysis for rice seed vigor during the germination

stage. J. Zhejiang Univ. Sci. B 2010, 11, 958–964. [CrossRef]
12. Rebetzke, G.J.; Verbyla, A.P.; Verbyla, K.L.; Morell, M.K.; Cavanagh, C.R. Use of a large multiparent wheat mapping population

in genomic dissection of coleoptile and seedling growth. Plant Biotechnol. J. 2014, 12, 219–230. [CrossRef]
13. Smith, S.; De Smet, I. Root system architecture: Insights from Arabidopsis and cereal crops. Philos. Trans. R. Soc. Lond. B Biol. Sci.

2012, 367, 1441–1452. [CrossRef]
14. Kabir, M.R.; Liu, G.; Guan, P.; Wang, F.; Khan, A.A.; Ni, Z.; Sun, Q. Mapping QTLs associated with root traits using two different

populations in wheat (Triticum aestivum L.). Euphytica 2015, 206, 175–190. [CrossRef]
15. Maccaferri, M.; El-Feki, W.; Nazemi, G.; Salvi, S.; Canè, M.A.; Colalongo, M.C.; Tuberosa, R. Prioritizing quantitative trait loci for

root system architecture in tetraploid wheat. J. Exp. Bot. 2016, 67, 1161–1178. [CrossRef] [PubMed]
16. Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Rengel, Z. Root length and root lipid composition contribute to drought tolerance

of winter and spring wheat. Plant Soil 2019, 439, 57–73. [CrossRef]

https://www.mdpi.com/article/10.3390/genes14101902/s1
https://www.mdpi.com/article/10.3390/genes14101902/s1
https://doi.org/10.5061/dryad.0cfxpnw6c
http://wheat.org
https://doi.org/10.1016/j.onehlt.2019.100086
https://doi.org/10.1111/j.1439-037X.2009.00372.x
https://doi.org/10.1080/03650340903191663
https://doi.org/10.1016/j.plaphy.2012.07.031
https://doi.org/10.1007/s10535-008-0056-x
https://doi.org/10.1007/s10681-009-0016-3
https://doi.org/10.1631/jzus.B1000238
https://doi.org/10.1111/pbi.12130
https://doi.org/10.1098/rstb.2011.0234
https://doi.org/10.1007/s10681-015-1495-z
https://doi.org/10.1093/jxb/erw039
https://www.ncbi.nlm.nih.gov/pubmed/26880749
https://doi.org/10.1007/s11104-018-3794-3


Genes 2023, 14, 1902 20 of 22

17. Osmont, K.S.; Sibout, R.; Hardtke, C.S. Hidden branches: Developments in root system architecture. Annu. Rev. Plant Biol. 2007,
58, 93–113. [CrossRef]

18. Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Sehgal, S.K.; Friebe, B.; Djalovic, I.; Gill, B.S. Alien chromosome segment from
Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant
Biol. 2019, 19, 242. [CrossRef] [PubMed]

19. Steele, K.A.; Virk, D.S.; Kumar, R.; Prasad, S.C.; Witcombe, J.R. Field evaluation of upland rice lines selected for QTLs controlling
root traits. Field Crops Res. 2007, 101, 180–186. [CrossRef]

20. Ehdaie, B.; Merhaut, D.J.; Ahmadian, S.; Hoops, A.C.; Khuong, T.; Layne, A.P.; Waines, J.G. Root system size influences
water-nutrient uptake and nitrate leaching potential in wheat. J. Agron. Crop Sci. 2010, 196, 455–466. [CrossRef]

21. Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Yano, M. Control of root system architecture by DEEPER
ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [CrossRef]

22. Yu, G.R.; Zhuang, J.; Nakayama, K.; Jin, Y. Root water uptake and profile soil water as affected by vertical root distribution. Plant
Ecol. 2007, 189, 15–30. [CrossRef]

23. Mace, E.S.; Singh, V.; Van Oosterom, E.J.; Hammer, G.L.; Hunt, C.H.; Jordan, D.R. QTL for nodal root angle in sorghum
(Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor. Appl. Genet. 2012,
124, 97–109. [CrossRef]

24. Sertse, D.; You, F.M.; Ravichandran, S.; Cloutier, S. The complex genetic architecture of early root and shoot traits in flax revealed
by genome-wide association analyses. Front. Plant Sci. 2019, 10, 1483. [CrossRef]

25. Jia, Z.; Liu, Y.; Gruber, B.D.; Neumann, K.; Kilian, B.; Graner, A.; Von Wirén, N. Genetic dissection of root system architectural
traits in spring barley. Front. Plant Sci. 2019, 10, 400. [CrossRef] [PubMed]

26. Cui, F.; Ding, A.; Li, J.; Zhao, C.; Wang, L.; Wang, X.; Wang, H. QTL detection of seven spike-related traits and their genetic
correlations in wheat using two related RIL populations. Euphytica 2012, 186, 177–192. [CrossRef]

27. Li, F.; Wen, W.; Liu, J.; Zhang, Y.; Cao, S.; He, Z.; Xia, X. Genetic architecture of grain yield in bread wheat based on genome-wide
association studies. BMC Plant Biol. 2019, 19, 168. [CrossRef] [PubMed]

28. Devate, N.B.; Krishna, H.; Mishra, C.N.; Manjunath, K.K.; Sunilkumar, V.P.; Chauhan, D.; Singh, P.K. Genetic dissection of marker
trait associations for grain micro-nutrients and thousand grain weight under heat and drought stress conditions in wheat. Front.
Plant Sci. 2023, 13, 1082513. [CrossRef] [PubMed]

29. Roncallo, P.F.; Larsen, A.O.; Achilli, A.L.; Pierre, C.S.; Gallo, C.A.; Dreisigacker, S.; Echenique, V. Linkage disequilibrium patterns,
population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes. BMC
Genom. 2021, 22, 233. [CrossRef]

30. Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related
traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015, 128, 353–363.
[CrossRef]

31. Liu, J.; Feng, B.; Xu, Z.; Fan, X.; Jiang, F.; Jin, X.; Wang, T. A genome-wide association study of wheat yield and quality-related
traits in southwest China. Mol. Breed. 2018, 38, 1–11. [CrossRef]

32. Srivastava, R.K.; Singh, R.B.; Pujarula, V.L.; Bollam, S.; Pusuluri, M.; Chellapilla, T.S.; Gupta, R. Genome-wide association studies
and genomic selection in pearl millet: Advances and prospects. Front. Genet. 2020, 10, 1389. [CrossRef]

33. Alseekh, S.; Kostova, D.; Bulut, M.; Fernie, A.R. Genome-wide association studies: Assessing trait characteristics in model and
crop plants. Cell. Mol. Life Sci. 2021, 78, 5743–5754. [CrossRef] [PubMed]

34. Prasad, P.V. Genetic dissection of seedling root system architectural traits in a diverse panel of hexaploid wheat through
multi-locus genome-wide association mapping for improving drought tolerance. Int. J. Mol. Sci. 2021, 22, 7188.

35. Devate, N.B.; Krishna, H.; Parmeshwarappa, S.K.V.; Manjunath, K.K.; Chauhan, D.; Singh, S.; Singh, P.K. Genome-wide association
mapping for component traits of drought and heat tolerance in wheat. Front. Plant Sci. 2022, 13, 943033. [CrossRef] [PubMed]

36. Khan, H.; Krishnappa, G.; Kumar, S.; Mishra, C.N.; Krishna, H.; Devate, N.B.; Singh, G.P. Genome-wide association study for
grain yield and component traits in bread wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 982589. [CrossRef]

37. Jin, H.; Wen, W.; Liu, J.; Zhai, S.; Zhang, Y.; Yan, J.; He, Z. Genome-wide QTL mapping for wheat processing quality parameters
in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front. Plant Sci. 2016, 7, 1032. [CrossRef] [PubMed]

38. Jamil, M.; Ali, A.; Gul, A.; Ghafoor, A.; Napar, A.A.; Ibrahim, A.M.; Mujeeb-Kazi, A. Genome-wide association studies of seven
agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol. 2019, 19, 149. [CrossRef] [PubMed]

39. Ahmed, H.G.M.D.; Iqbal, M.N.; Iqbal, M.A.; Zeng, Y.; Ullah, A.; Iqbal, M.; Hussain, S. Genome-wide association mapping for
stomata and yield indices in bread wheat under water limited conditions. J. Agron. 2021, 11, 1646. [CrossRef]

40. Saini, D.K.; Chahal, A.; Pal, N.; Srivastava, P.; Gupta, P.K. Meta-analysis reveals consensus genomic regions associated with
multiple disease resistance in wheat (Triticum aestivum L.). Mol. Breed. 2022, 42, 11. [CrossRef]

41. Tibbs Cortes, L.; Zhang, Z.; Yu, J. Status and prospects of genome-wide association studies in plants. TPG 2021, 14, e20077.
[CrossRef]

42. Alemu, A.; Feyissa, T.; Tuberosa, R.; Maccaferri, M.; Sciara, G.; Letta, T.; Abeyo, B. Genome-wide association mapping for grain
shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). Crop J. 2020, 8, 757–768. [CrossRef]

43. Zahra, S.; Hussain, M.; Zulfiqar, S.; Ishfaq, S.; Shaheen, T.; Akhtar, M. EMS-based mutants are useful for enhancing drought
tolerance in spring wheat. Cereal Res. Commun. 2021, 50, 767–778. [CrossRef]

https://doi.org/10.1146/annurev.arplant.58.032806.104006
https://doi.org/10.1186/s12870-019-1833-8
https://www.ncbi.nlm.nih.gov/pubmed/31174465
https://doi.org/10.1016/j.fcr.2006.11.002
https://doi.org/10.1111/j.1439-037X.2010.00433.x
https://doi.org/10.1038/ng.2725
https://doi.org/10.1007/s11258-006-9163-y
https://doi.org/10.1007/s00122-011-1690-9
https://doi.org/10.3389/fpls.2019.01483
https://doi.org/10.3389/fpls.2019.00400
https://www.ncbi.nlm.nih.gov/pubmed/31001309
https://doi.org/10.1007/s10681-011-0550-7
https://doi.org/10.1186/s12870-019-1781-3
https://www.ncbi.nlm.nih.gov/pubmed/31035920
https://doi.org/10.3389/fpls.2022.1082513
https://www.ncbi.nlm.nih.gov/pubmed/36726675
https://doi.org/10.1186/s12864-021-07519-z
https://doi.org/10.1007/s00122-014-2435-3
https://doi.org/10.1007/s11032-017-0759-9
https://doi.org/10.3389/fgene.2019.01389
https://doi.org/10.1007/s00018-021-03868-w
https://www.ncbi.nlm.nih.gov/pubmed/34196733
https://doi.org/10.3389/fpls.2022.943033
https://www.ncbi.nlm.nih.gov/pubmed/36061792
https://doi.org/10.3389/fgene.2022.982589
https://doi.org/10.3389/fpls.2016.01032
https://www.ncbi.nlm.nih.gov/pubmed/27486464
https://doi.org/10.1186/s12870-019-1754-6
https://www.ncbi.nlm.nih.gov/pubmed/31003597
https://doi.org/10.3390/agronomy11081646
https://doi.org/10.1007/s11032-022-01282-z
https://doi.org/10.1002/tpg2.20077
https://doi.org/10.1016/j.cj.2020.01.001
https://doi.org/10.1007/s42976-021-00220-7


Genes 2023, 14, 1902 21 of 22

44. Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of
apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012, 5, 487–498. [CrossRef]

45. Lobato, A.K.S.; Oliveira Neto, C.F.; Costa, R.C.L.; Santos Filho, B.G.; Silva, F.K.S.; Cruz, F.J.R.; Laughinghouse, H., IV. Germination
of sorghum under the influences of water restriction and temperature. Agric. Res. J. 2008, 3, 35.

46. Partheeban, C.; Chandrasekhar, C.N.; Jeyakumar, P.; Ravikesavan, R.; Gnanam, R. Effect of PEG induced drought stress on seed
germination and seedling characters of maize (Zea mays L.) genotypes. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1095–1104.
[CrossRef]

47. Dhanda, S.S.; Sethi, G.S.; Behl, R.K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J. Agron. Crop
Sci. 2004, 190, 6–12. [CrossRef]

48. Sayed, M.A.E.A.A. QTL Analysis for Drought Tolerance Related to Root and Shoot Traits in Barley (Hordeum vulgare L.). Doctoral
Dissertation, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2011.

49. Chloupek, O.; Dostal, V.; Streda, T.; Psota, V.; Dvorackova, O. Drought tolerance of barley varieties in relation to their root system
size. Plant Breed. 2010, 129, 630–636. [CrossRef]

50. Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet.
2000, 67, 170–181. [CrossRef]

51. Abraham, G.; Inouye, M. Fast principal component analysis of large-scale genome-wide data. PLoS ONE 2014, 9, e93766.
[CrossRef] [PubMed]

52. Pang, Y.; Liu, C.; Wang, D.; Amand, P.S.; Bernardo, A.; Li, W.; Liu, S. High-resolution genome-wide association study identifies
genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 2020, 13, 1311–1327. [CrossRef]
[PubMed]

53. Ledesma-Ramirez, L.; Solis-Moya, E.; Iturriaga, G.; Sehgal, D.; Reyes-Valdes, M.H.; Montero-Tavera, V.; Carolina, P.; Sansaloni,
C.P.; Burgueno, J.; Ortiz, C.; et al. GWAS to identify genetic loci for resistance to yellow rust in wheat pre-breeding lines derived
from diverse exotic crosses. Front. Plant Sci. 2019, 10, 1390. [CrossRef]

54. Ogbonnaya, F.C.; Rasheed, A.; Okechukwu, E.C.; Jighly, A.; Makdis, F.; Wuletaw, T.; Agbo, C.U. Genome-wide association study
for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor. Appl. Genet. 2017,
130, 1819–1835. [CrossRef]

55. Gupta, P.K.; Rustgi, S.; Kulwal, P.L. Linkage disequilibrium and association studies in higher plants: Present status and future
prospects. Plant Mol. Biol. 2005, 57, 461–485. [CrossRef] [PubMed]

56. Vos, P.G.; Paulo, M.J.; Voorrips, R.E.; Visser, R.G.; van Eck, H.J.; van Eeuwijk, F.A. Evaluation of LD decay and various LD-decay
estimators in simulated and SNP-array data of tetraploid potato. Theor. Appl. Genet. 2017, 130, 123–135. [CrossRef] [PubMed]

57. Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies
with both individuals and markers in the millions. GigaScience 2019, 8, 154. [CrossRef] [PubMed]

58. Kaler, A.S.; Purcell, L.C. Estimation of a significance threshold for genome-wide association studies. BMC Genom. 2019, 20, 618.
[CrossRef]

59. Zou, Z.; Xie, G.; Yang, L. Papain-like cysteine protease encoding genes in rubber (Hevea brasiliensis): Comparative genomics,
phylogenetic, and transcriptional profiling analysis. Planta 2017, 246, 999–1018. [CrossRef] [PubMed]

60. Wei, N.; Zhang, S.; Liu, Y.; Wang, J.; Wu, B.; Zhao, J.; Zheng, J. Genome-wide association study of coleoptile length with Shanxi
wheat. Front. Plant Sci. 2022, 13, 1016551. [CrossRef]

61. Miazek, A.; Nykiel, M.; Rybka, K. Drought tolerance depends on the age of the spring wheat seedlings and differentiates patterns
of proteinases. Russ. J. Plant Physiol. 2017, 64, 333–340. [CrossRef]

62. Kandeel, M.; Morsy, M.A.; Abd El-Lateef, H.M.; Marzok, M.; El-Beltagi, H.S.; Al Khodair, K.M.; Venugopala, K.N. Genome-Wide
Identification of B3 DNA-Binding Superfamily Members (ABI, HIS, ARF, RVL, REM) and Their Involvement in Stress Responses
and Development in Camelina sativa. Agronomy 2023, 13, 648. [CrossRef]

63. Yang, W.J.; Du, Y.T.; Zhou, Y.B.; Chen, J.; Xu, Z.S.; Ma, Y.Z.; Min, D.H. Overexpression of TaCOMT improves melatonin production
and enhances drought tolerance in transgenic Arabidopsis. Int. J. Mol. Sci. 2019, 20, 652. [CrossRef]

64. Mindrebo, J.T.; Nartey, C.M.; Seto, Y.; Burkart, M.D.; Noel, J.P. Unveiling the functional diversity of the α/β hydrolase superfamily
in the plant kingdom. Curr. Opin. Struct. Biol. 2016, 41, 233–246. [CrossRef]

65. Lapik, Y.R.; Kaufman, L.S. The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein α-subunit GPA1 and
regulates seed germination and early seedling development. Plant Cell 2003, 15, 1578–1590. [CrossRef] [PubMed]

66. Mohanta, T.K.; Yadav, D.; Khan, A.L.; Hashem, A.; Abd_Allah, E.F.; Al-Harrasi, A. Molecular players of EF-hand containing
calcium signaling event in plants. Int. J. Mol. Sci. 2019, 20, 1476. [CrossRef]

67. Sun, J.; Bie, X.M.; Wang, N.; Zhang, X.S.; Gao, X.Q. Genome-wide identification and expression analysis of YTH domain-containing
RNA-binding protein family in common wheat. BMC Plant Biol. 2020, 20, 351. [CrossRef] [PubMed]

68. Ru, J.N.; Hou, Z.H.; Zheng, L.; Zhao, Q.; Wang, F.Z.; Chen, J.; Xu, Z.S. Genome-wide analysis of DEAD-box RNA helicase family
in wheat (Triticum aestivum) and functional identification of TaDEAD-box57 in abiotic stress responses. Front. Plant Sci. 2021,
12, 797276. [CrossRef]

69. Hong, M.J.; Kim, J.B.; Seo, Y.W.; Kim, D.Y. F-box genes in the wheat genome and expression profiling in wheat at different
developmental stages. Genes 2020, 11, 1154. [CrossRef]

https://doi.org/10.1111/j.1365-2184.2012.00845.x
https://doi.org/10.20546/ijcmas.2017.605.119
https://doi.org/10.1111/j.1439-037X.2004.00592.x
https://doi.org/10.1111/j.1439-0523.2010.01801.x
https://doi.org/10.1086/302959
https://doi.org/10.1371/journal.pone.0093766
https://www.ncbi.nlm.nih.gov/pubmed/24718290
https://doi.org/10.1016/j.molp.2020.07.008
https://www.ncbi.nlm.nih.gov/pubmed/32702458
https://doi.org/10.3389/fpls.2019.01390
https://doi.org/10.1007/s00122-017-2927-z
https://doi.org/10.1007/s11103-005-0257-z
https://www.ncbi.nlm.nih.gov/pubmed/15821975
https://doi.org/10.1007/s00122-016-2798-8
https://www.ncbi.nlm.nih.gov/pubmed/27699464
https://doi.org/10.1093/gigascience/giy154
https://www.ncbi.nlm.nih.gov/pubmed/30535326
https://doi.org/10.1186/s12864-019-5992-7
https://doi.org/10.1007/s00425-017-2739-z
https://www.ncbi.nlm.nih.gov/pubmed/28752264
https://doi.org/10.3389/fpls.2022.1016551
https://doi.org/10.1134/S1021443717030098
https://doi.org/10.3390/agronomy13030648
https://doi.org/10.3390/ijms20030652
https://doi.org/10.1016/j.sbi.2016.08.005
https://doi.org/10.1105/tpc.011890
https://www.ncbi.nlm.nih.gov/pubmed/12837948
https://doi.org/10.3390/ijms20061476
https://doi.org/10.1186/s12870-020-02505-1
https://www.ncbi.nlm.nih.gov/pubmed/32713350
https://doi.org/10.3389/fpls.2021.797276
https://doi.org/10.3390/genes11101154


Genes 2023, 14, 1902 22 of 22

70. Hussain, M.I.; Araniti, F.; Schulz, M.; Baerson, S.; Vieites-Álvarez, Y.; Rempelos, L.; Sánchez-Moreiras, A.M. Benzoxazinoids
in wheat allelopathy–From discovery to application for sustainable weed management. Environ. Exp. Bot. 2022, 202, 104997.
[CrossRef]

71. Zheng, J.; Zhang, Z.; Liang, Y.; Gong, Z.; Zhang, N.; Ditta, A.; Li, X. Whole transcriptome sequencing reveals drought resistance-
related genes in upland cotton. Genes 2022, 13, 1159. [CrossRef] [PubMed]

72. Mewalal, R.; Mizrachi, E.; Coetzee, B.; Mansfield, S.D.; Myburg, A.A. The Arabidopsis domain of unknown function 1218
(DUF1218) containing proteins, MODIFYING WALL LIGNIN-1 and 2 (At1g31720/MWL-1 and At4g19370/MWL-2) function
redundantly to alter secondary cell wall lignin content. PLoS ONE 2016, 11, e0150254. [CrossRef]

73. Zang, D.; Li, H.; Xu, H.; Zhang, W.; Zhang, Y.; Shi, X.; Wang, Y. An Arabidopsis zinc finger protein increases abiotic stress tolerance
by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Front. Plant Sci.
2016, 7, 1272. [CrossRef] [PubMed]

74. Xu, Z.S.; Ni, Z.Y.; Liu, L.; Nie, L.N.; Li, L.C.; Chen, M.; Ma, Y.Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-
binding factor responsive to drought, high-salt, and cold stress in wheat. Mol. Genet. Genom. 2008, 280, 497–508. [CrossRef]
[PubMed]

75. Zhang, X.; Zhang, Z.; Chen, J.; Chen, Q.; Wang, X.C.; Huang, R. Expressing TERF1 in tobacco enhances drought tolerance and
abscisic acid sensitivity during seedling development. Planta 2005, 222, 494–501. [CrossRef] [PubMed]

76. Garcia Bossi, J.; Kumar, K.; Barberini, M.L.; Domínguez, G.D.; Rondon Guerrero, Y.D.C.; Marino-Buslje, C.; Obertello, M.;
Muschietti, J.P.; Estevez, J.M. The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. J. Exp. Bot.
2020, 71, 1239–1248. [CrossRef] [PubMed]

77. Olivoto, T.; Nardino, M. MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics 2021,
37, 1383–1389. [CrossRef] [PubMed]

78. International Seed Testing Association. “International Rules for Seed Testing. International Seed Testing Association”; International
Seed Testing Association: Bassersdorf, Switzerland, 2020.

79. Muscolo, A.; Sidari, M.; Anastasi, U.; Santonoceto, C.; Maggio, A. Effect of PEG-induced drought stress on seed germination of
four lentil genotypes. J. Plant Interact. 2014, 9, 354–363.97. [CrossRef]

80. Vinodkumar, S.B. Evaluation of Seed Vigour Traits in Wheat (Triticum aestivum L.) for Drought Tolerance. Ph.D. Thesis, Indian
Agricultural Research Institute, New Delhi, India, 2015.

81. Michel, B.E.; Kaufmann, M.R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973, 51, 914–916. [CrossRef]
82. Hellal, F.A.; El-Shabrawi, H.M.; Abd El-Hady, M.; Khatab, I.A.; El-Sayed, S.A.A.; Abdelly, C. Influence of PEG induced drought

stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 2018,
16, 203–212.100. [CrossRef]

83. Ellis, R.H.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409.
84. El-Kassaby, Y.A.; Moss, I.; Kolotelo, D.; Stoehr, M. Seed germination: Mathematical representation and parameters extraction. For.

Sci. 2008, 54, 220–227.
85. Joosen, R.V.; Kodde, J.; Willems, L.A.; Ligterink, W.; Van Der Plas, L.H.; Hilhorst, H.W. GERMINATOR: A software package for

high-throughput scoring and curve fitting of Arabidopsis seed germination. TPJ 2010, 62, 148–159. [CrossRef]
86. Abdul Baki, A.A.; Anderson, J.D. Vigour determination in soybean seed by multiple criteria 1. Crop Sci. 1973, 13, 630–633.

[CrossRef]
87. Arsenault, J.L.; Poulcur, S.; Messier, C.; Guay, R. WinRHlZO™, a root-measuring system with a unique overlap correction method.

Hort. Sci. 1995, 30, 906. [CrossRef]
88. Murray, M.G.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326.

[CrossRef] [PubMed]
89. De Mendiburu, F. AGRICOLAE: Statistical Procedures for Agricultural Research, Version 1; pp. 2–4. 2020. Available online:

https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 1 September 2022).
90. Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix. (Version 0.92). 2021. Available online: https:

//github.com/taiyun/corrplot (accessed on 1 September 2022).
91. Husson, F.; Josse, J.; Le, S.; Mazet, J.; Husson, M.F. Package ‘factominer’. R Package 2016, 96, 698.
92. Kassambara, A. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version, 1. 2016. Available

online: https://cir.nii.ac.jp/crid/1370004235968325765 (accessed on 1 September 2022).
93. Mangiafico, S. “rcompanion”: Functions to Support Extension Education Program Evaluation; R package version, 2. 2020. Available

online: https://cran.r-project.org/web/packages/rcompanion/index.html (accessed on 1 September 2022).
94. Yates, A.D.; Allen, J.; Amode, R.M.; Azov, A.G.; Barba, M.; Becerra, A.; Flicek, P. Ensembl Genomes 2022: An expanding genome

resource for non-vertebrates. Nucleic Acids Res. 2022, 50, 996–1003. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envexpbot.2022.104997
https://doi.org/10.3390/genes13071159
https://www.ncbi.nlm.nih.gov/pubmed/35885942
https://doi.org/10.1371/journal.pone.0150254
https://doi.org/10.3389/fpls.2016.01272
https://www.ncbi.nlm.nih.gov/pubmed/27605931
https://doi.org/10.1007/s00438-008-0382-x
https://www.ncbi.nlm.nih.gov/pubmed/18800227
https://doi.org/10.1007/s00425-005-1564-y
https://www.ncbi.nlm.nih.gov/pubmed/15871029
https://doi.org/10.1093/jxb/erz521
https://www.ncbi.nlm.nih.gov/pubmed/31740935
https://doi.org/10.1093/bioinformatics/btaa981
https://www.ncbi.nlm.nih.gov/pubmed/33226063
https://doi.org/10.1080/17429145.2013.835880
https://doi.org/10.1104/pp.51.5.914
https://doi.org/10.1016/j.jgeb.2017.10.009
https://doi.org/10.1111/j.1365-313X.2009.04116.x
https://doi.org/10.2135/cropsci1973.0011183X001300060013x
https://doi.org/10.21273/HORTSCI.30.4.906D
https://doi.org/10.1093/nar/8.19.4321
https://www.ncbi.nlm.nih.gov/pubmed/7433111
https://cran.r-project.org/web/packages/agricolae/index.html
https://github.com/taiyun/corrplot
https://github.com/taiyun/corrplot
https://cir.nii.ac.jp/crid/1370004235968325765
https://cran.r-project.org/web/packages/rcompanion/index.html
https://doi.org/10.1093/nar/gkab1007
https://www.ncbi.nlm.nih.gov/pubmed/34791415

	Introduction 
	Results 
	Phenotypic Evaluation 
	Correlation Principal Component Analysis 
	Marker Trait Associations (MTAs) 
	In Silico Analysis 
	Multivariate Analysis of Wheat Genotypes Using MGIDI for Seedling Vigour and Root Traits under Both Control and Moisture Deficit Conditions 

	Discussion 
	Materials and Methods 
	Seedling-Vigour-Related Traits and Root Traits Measured for Phenotyping 
	Genotyping 
	Statistical Analyses of Phenotypic Data 
	Diversity, Linkage Disequilibrium, and Association Analysis 
	In Silico and Gene Annotation 

	Conclusions 
	References

