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Abstract: The escalating prevalence of bladder cancer, particularly urothelial carcinoma, necessitates
innovative approaches for prognosis and therapy. This study delves into the significance of genes
related to epithelial–mesenchymal transition (EMT), a process inherently linked to carcinogenesis
and comparatively better studied in other cancers. We examined 1184 EMT-related gene expression
levels in bladder urothelial cancer cases through the TCGA dataset. Genes shown to be differentially
expressed in relation to survival underwent further network and enrichment analysis to uncover
how they might shape disease outcomes. Our in silico analysis revealed a subset of 32 genes, includ-
ing those significantly represented in biological pathways such as VEGF signaling and bacterium
response. In addition, these genes interact with genes involved in the JAK-STAT signaling pathway.
Additionally, some of those 32 genes have been linked to immunomodulators such as chemokines
CCL15 and CCL18, as well as to various immune cell infiltrates. Our findings highlight the prognostic
utility of various EMT-related genes and identify possible modulators of their effect on survival,
allowing for further targeted wet lab research and possible therapeutic intervention.
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1. Introduction

Bladder cancer is the 10th most common malignancy worldwide with 573,278 new
cases and 212,536 deaths in 2020 [1]. Urothelial carcinoma accounts for over 90% of bladder
cancers, which costs the U.S. alone $4 billion annually [2]. The prevalence is predicted to
continue to rise due to the increasing industrialization and urbanization in developing
countries, and the aging population [3,4]. Well-studied risk factors include cigarette smok-
ing and occupational exposures especially in metal workers, painters, and chemical process
workers [5,6]. Various altered genes have been implicated in amplifying the effect of these
environmental exposures including carcinogen detoxification genes like UDP Glucuronosyl-
transferase Family 1 Member A Complex Locus (UGT1A) and N-acetyltransferase 2 (NAT2) [7–9],
fibroblast growth factor receptor 3 (FGFR 3) [10], p16, p53, retinoblastoma (RB), matrix
metalloproteinases, genes involved in folate metabolism, and high activity metabolic acti-
vators like high activity P450 cytochrome enzymes [11–17]. Within the TNM staging used,
T1 represents tumor invasion up to the muscular layer of the bladder, with further stages
T2,3,4 representing further progression into the muscle, perivesicular layer, and adjacent
structures and organs, respectively. Currently, treatment options include transurethral
resection of bladder tumor (TURBT) and intravesical therapy for non-muscle invasive,
while options for metastatic disease include radial cystectomy, neoadjuvant chemotherapy,
and newer immunotherapies [2,18–22].

Several genes have been implicated in the development of urothelial cancer and
metastases and used as targets for therapy. Some of these include LRP1B [23], ERRC2,
FANCC, ATM, RB1 [24], p53 [25], and SLC14A1 [26]. There are currently no widely accepted
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bladder cancer screening programs, though biannual cystoscopies have been found to be
efficacious in vulnerable subpopulations [27–29]. Currently follow-up is time-consuming
and expensive, consisting of cystoscopy, imaging, and surgery; urine biomarkers are being
studied to supplement those options [18,19].

Cells involved in the invasion of bladder cancer alter their surroundings and can also
become transiently and reversibly plastic, turning into mesenchymal stem cells. This is
the epithelial–mesenchymal transition (EMT), which is among the most relevant paradigm
shifts in how we view cancer progression and can combat its growth. During EMT, epithelial
cells lose their polarized, adhesive characteristics and gain a mesenchymal phenotype,
enabling them to migrate and invade surrounding tissues [30,31]. Transcription factors
including Snail, Zeb, and Twist aid in this process by repressing E-cadherin, an epithelial
transmembrane protein [32]. In contrast to epithelial cells, mesenchymal carcinoma cells
exhibit specific metabolic needs. As they undergo EMT, cancer cells finely regulate multiple
metabolic pathways to support the demands of rapid cell proliferation [33]. The molecular
pathways shown to be associated with EMT include Snail/Slug, Twist, Six1, Cripto, TGF-β,
and Wnt/β-catenin [34]. The literature shows how genes such as CDH1, ZEB1, TGFB,
CDH2, VIM, and TIMP1 have been linked to inducing the EMT phenotype, driving cell
migration, and adapting to changing demands on the primary tumor [33,35,36].

In bladder cancer, various microRNAs (miRNAs) have been found to regulate proteins
such as Smad7 or Twist1, either promoting or disrupting EMT and metastasis [37]. Under-
standing the mechanisms underlying EMT is crucial for developing targeted therapies to
control cancer metastasis and may prove useful in treatment options going forward. Com-
paratively, there has been less work in this field in bladder cancer than in other cancers. This
paper examines a multitude of EMT-related genes in relation to not only outcomes, but also
the biologic networks and pathways which allow these genes to influence carcinogenesis
and affect these outcomes.

2. Materials and Methods
2.1. Selection of Genes

To have a comprehensive overview of genes involved in the epithelial–mesenchymal
transition, dbEMT 2.0 (http://dbemt.bioinfo-minzhao.org/ (accessed on 1 September
2022)), a database curated for focus on EMT-related genes, was utilized. A spreadsheet was
generated with 1184 genes listed on the database, obtained from an initial PubMed abstract
query for “Epithelial Mesenchymal Transition Genes” with the results mined for unique
genes linked to EMT (see Supplemental Materials).

2.2. Survival Analysis

Publicly available cases from the NIH-funded “The Cancer Genome Atlas” (TCGA)
project were utilized to examine gene expression pertaining to survival in bladder urothelial
cancer (data portal: https://portal.gdc.cancer.gov/projects/TCGA-BLCA (accessed on
1 September 2022)). Kaplan–Meier plots were generated through the R2 platform (https:
//hgserver1.amc.nl/cgi-bin/r2/main.cgi (accessed on 1 September 2022)) using the TCGA
dataset for “Bladder Urothelial Carcinoma”, n = 407. The built-in “KaplanScan” algorithm
was used to divide mRNA gene expression into “high” versus “low” categories (n values
for each based on KaplanScan groupings of expression). Overall survival was compared to
follow-up time in months being analyzed. For multiple hypothesis testing, p-values were
adjusted to a false discovery rate (FDR) of 0.05.

2.3. Expression Analysis

To compare normal versus tumor levels of those EMT genes which showed differential
expression regarding survival, mRNA levels for the “Bladder Urothelial Carcinoma” TCGA
dataset were analyzed with a Welch’s t-test through the UCSC Xena platform. This platform
is a genome browser and visualization tool of genomic and phenotypic data for both
public and private datasets (https://xena.ucsc.edu/ (accessed on 1 September 2022)). An

http://dbemt.bioinfo-minzhao.org/
https://portal.gdc.cancer.gov/projects/TCGA-BLCA
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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FDR cutoff of 0.05 was used for significance. Violin plots were generated to visualize
expression values.

Through the aforementioned R2 platform, the expression levels of the previously
mentioned genes which showed differential expression in regard to survival were analyzed.
mRNA gene levels were compared in respect to pathologic staging and, given the small
n associated with cases of stage 1 bladder urothelial cancer in the TCGA dataset (n = 2),
Kruskal–Wallis analysis with corresponding pairwise Welch’s t-tests were used. Again,
p-values were adjusted and an FDR cutoff of 0.05 was used.

2.4. Network & Enrichment Analysis

GeneMANIA (http://www.genemania.org (accessed on 1 September 2022)) serves as
a platform for visualizing diverse biological interactions encompassing co-expression, co-
localization, and domain similarity. In this study, GeneMANIA, R (https://www.r-project.
org/ (accessed on 1 September 2022)), and the Cytoscape platform (https://cytoscape.org/
(accessed on 1 September 2022)) were utilized to construct a gene–gene interaction network
focusing on EMT-related genes exhibiting significant differential expression based on
survival data.

Subsequently, the network analysis highlighted certain genes alongside the aforemen-
tioned EMT genes. These genes underwent enrichment analysis to shed light on their
potential involvement in specific biological processes, using annotations from the Gene On-
tology (GO), Kyoto Encyclopedia of Genes, and Genomes (KEGG) databases. It was carried
out through the Metascape platform (http://metascape.org (accessed on 1 October 2022)).
The criteria for this analysis included a minimum overlap of 3 genes and an enrichment
threshold of 1.5. Statistical significance was set at p < 0.05.

2.5. Tumor Immune Microenvironment Analysis

The relationship between the EMT-related genes differentially expressed in connection
with survival and the immune system in cases of bladder urothelial cancer was examined
through the TISIDB and TIMER platform. Spearman’s correlations between mRNA gene
expression of the EMT genes and clinically relevant immunoinhibitor and cytokine gene
expressions were calculated and visualized. Those with a rho of >|0.40| were considered
meaningful with a p-value of >0.01. Devolution methods were used to estimate the immune
infiltration of a wide variety of immune cells based on gene expression on the TIMER
platform. The Spearman’s correlation was adjusted based on tumor purity, with a rho of
>|0.30| visualized.

3. Results
3.1. Survival Analysis

A myriad of EMT-related genes showed differential expression in normal versus cancer
tissues. Kaplan–Meier plots (Figure 1) were generated using TCGA data on “Bladder
Urothelial Carcinoma” for each of the 1184 genes mined from the EMTdb, with only
32 meeting significant cutoff following FDR correction (Table 1).

3.2. Expression Analysis

Out of the 32 genes highlighted in the survival analysis, some of them also showed
statistically significant expression levels when comparing normal versus tumor samples.
This can be seen in the density plot (Figure 2) or in more detail in the sample violin plots
(Figure 3); the rest of the genes and p-values from the violin plots in Supplemental Materials
can be seen in Table 4. Some genes also showed significant differential expression based on
tumor stage (Figure 4).

http://www.genemania.org
https://www.r-project.org/
https://www.r-project.org/
https://cytoscape.org/
http://metascape.org
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Figure 1. Subset of Kaplan–Meier plots based on mRNA expression of EMT-related genes which 
showed to be differentially expressed in relation to overall survival. Each plot lists the numbers of 
pts in “high” versus “low” mRNA expression cohorts based on the KaplanScan grouping algorithm. 
(A,B) show subset of Kaplan-Meier plots, based on gene expression levels of ADAM17 and ADER 
respectively. See Supplemental Figure S1 for Kaplan–Meier plots of all genes shown to be differen-
tially expressed. 

Table 1. Tabulated data from Kaplan–Meier plots based on mRNA expression of EMT-related genes 
which showed to be differentially expressed in regard to overall survival. 

Gene p-Value Expression in Worse Prognosis 
ADAM17 8.65 × 10−6 low 

AGER 4.13 × 10−7 high 
ANXA1 1.80 × 10−6 low 
ARMC8 3.99 × 10−8 low 
ART1 1.36 × 10−3 high 
BBC3 5.28 × 10−6 high 

CEMIP 1.83 × 10−5 low 
ELSPBP1 1.65 × 10−3 high 

FBP1 3.43 × 10−5 high 
FN1 1.11 × 10−5 low 

FOXA1 8.51 × 10−5 high 
HOOK1 4.71 × 10−12 high 
HTN1 1.02 × 10−3 high 
IL22 4.18 × 10−4 high 

INPP4B 2.37 × 10−5 high 
LAMC2 1.98 × 10−9 low 
LYPD3 3.33 × 10−5 low 

MAP2K1 3.73 × 10−7 low 
NES 2.91 × 10−9 low 

NR2F2 1.34 × 10−6 low 
NRP2 5.85 × 10−5 low 

PDCD6IP 1.31 × 10−5 low 
PEBP4 2.16 × 10−4 high 
PRKCI 2.65 × 10−4 low 
PTPN6 2.03 × 10−7 high 
RUNX2 7.19 × 10−8 low 

Figure 1. Subset of Kaplan–Meier plots based on mRNA expression of EMT-related genes which
showed to be differentially expressed in relation to overall survival. Each plot lists the numbers
of pts in “high” versus “low” mRNA expression cohorts based on the KaplanScan grouping algo-
rithm. (A,B) show subset of Kaplan-Meier plots, based on gene expression levels of ADAM17 and
ADER respectively. See Supplemental Figure S1 for Kaplan–Meier plots of all genes shown to be
differentially expressed.

Table 1. Tabulated data from Kaplan–Meier plots based on mRNA expression of EMT-related genes
which showed to be differentially expressed in regard to overall survival.

Gene p-Value Expression in Worse Prognosis

ADAM17 8.65 × 10−6 low
AGER 4.13 × 10−7 high

ANXA1 1.80 × 10−6 low
ARMC8 3.99 × 10−8 low

ART1 1.36 × 10−3 high
BBC3 5.28 × 10−6 high

CEMIP 1.83 × 10−5 low
ELSPBP1 1.65 × 10−3 high

FBP1 3.43 × 10−5 high
FN1 1.11 × 10−5 low

FOXA1 8.51 × 10−5 high
HOOK1 4.71 × 10−12 high
HTN1 1.02 × 10−3 high
IL22 4.18 × 10−4 high

INPP4B 2.37 × 10−5 high
LAMC2 1.98 × 10−9 low
LYPD3 3.33 × 10−5 low

MAP2K1 3.73 × 10−7 low
NES 2.91 × 10−9 low

NR2F2 1.34 × 10−6 low
NRP2 5.85 × 10−5 low

PDCD6IP 1.31 × 10−5 low
PEBP4 2.16 × 10−4 high
PRKCI 2.65 × 10−4 low
PTPN6 2.03 × 10−7 high
RUNX2 7.19 × 10−8 low

SCEL 2.27 × 10−7 low
SLC9A3R1 3.78 × 10−4 low

SOX3 3.92 × 10−4 high
SPRR2A 1.17 × 10−5 low
STIM2 2.11 × 10−11 high
TBX3 2.50 × 10−4 high
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Genes with “high” mRNA expression leading to worse prognosis include those in
Table 2.

Table 2. List of genes and p-values for which high mRNA expression is correlated with worse prognosis.

Gene p-Value

ADAM17 0.0182
ANXA1 0.0433
ARMC8 0.0009
CEMIP 0.0300

FN1 0.0443
LAMC2 0.0050
LYPD3 0.0461

MAP2K1 0.0419
NES 0.0413

NR2F2 0.0495
NRP2 0.0481

PDCD6IP 0.0311
PRKCI 0.0457
RUNX2 0.0007

SCEL 0.0018
SLC9A3R1 0.0467
SPRR2A 0.0342

On the other hand, genes which showed “low” mRNA expression leading to worse
prognosis include those in Table 3.

Table 3. List of genes and p-values for which low mRNA expression is correlated with worse prognosis.

Gene p-Value

AGER 0.0441
ART1 0.0446
BBC3 0.0317

ELSPBP1 0.0486
FBP1 0.0359

FOXA1 0.0356
HOOK1 0.0011
HTN1 0.0478
IL22 0.0389

INPP4B 0.0314
PEBP4 0.0322
PTPN6 0.0137
SOX3 0.0324
STIM2 0.0500
TBX3 0.0482

Table 4. Violin plot genes and p-values.

Gene p-Value Higher Expression

ADAM17 8.31 × 10−4 Primary tumor
AGER 2.77 × 10−2 Primary tumor

ANXA1 1.41 × 10−2 Normal tissue
ARMC8 2.35 × 10−4 Normal tissue

ART1 1.73 × 10−1 Normal tissue
BBC3 5.39 × 10−5 Primary tumor
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Table 4. Cont.

Gene p-Value Higher Expression

CEMIP/KIAA1199 1.93 × 10−3 Primary tumor
ELSPBP1 2.52 × 10−1 Normal tissue

FBP1 7.76 × 10−1 Normal tissue
FN1 3.88 × 10−1 Primary tumor

FOXA1 1.64 × 10−1 Primary tumor
HOOK1 5.13 × 10−3 Primary tumor

IL22 9.30 × 10−2 Normal tissue
INPP4B 2.06 × 10−2 Primary tumor
LAMC2 1.05 × 10−4 Primary tumor
LYPD3 3.03 × 10−1 Primary tumor

MAP2K1 2.88 × 10−3 Primary tumor
NES 8.36 × 10−8 Normal tissue

NR2F2 3.04 × 10−1 Normal tissue
NRP2 1.24 × 10−4 Normal tissue

PDCD6IP 3.67 × 10−1 Primary tumor
PEBP4 2.17 × 10−4 Normal tissue
PRKCI 4.31 × 10−3 Primary tumor
PTPN6 3.14 × 10−3 Primary tumor
RUNX2 1.90 × 10−2 Primary tumor

SCEL 2.05 × 10−1 Primary tumor
SLC9A3R1 8.95 × 10−3 Primary tumor

SOX3 3.35 × 10−2 Normal tissue
SPRR2A 2.77 × 10−1 Primary tumor
STIM2 8.06 × 10−1 Normal tissue
TBX3 7.13 × 10−1 Primary tumor
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Figure 3. Subset of violin plot showing mRNA expression between primary tumors (Blue, n = 407)
and surrounding normal tissue (Red, n = 19). For full listing, see Supplemental Figure S2. (A,B) show
subset of violin plots, showing primary versus normal solid tissue violin plots for NR2F2 and
TBX3 respectively.

From the XENA browser, 19 normal tissues were compared with 407 TCGA cases. Fol-
lowing FDR correction (cut-off p-value is 0.003143), 10 genes were shown to be differentially
expressed when considering overall survival (Table 5).

Several genes approach significance post-correction (Table 6).
Out of the same set of EMT-genes regarding survival, 10 out of the 32 showed differ-

ential expression when considering pathologic staging (Table 7).
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From the XENA browser, 19 normal tissues were compared with 407 TCGA cases. 
Following FDR correction (cut-off p-value is 0.003143), 10 genes were shown to be differ-
entially expressed when considering overall survival (Table 5). 

Table 5. List of genes differentially expressed regarding overall survival when comparing normal 
versus tumor samples with p-values. 

Gene p-Value 
ADAM17 0.0008 
ARMC8 0.0002 

BBC3 0.0001 
CEMIP 0.0019 
LAMC2 0.0001 

MAP2K1 0.0029 
NES <0.0001 

Figure 4. Bar plots showing log2 median mRNA expression levels of the EMT-survival related genes
which also showed significant differences between any of the stages (Stage 1 n = 2, Stage 2 n = 130,
Stage 3 n = 140, Stage 4 n = 134). (A–J) show genes for which expression levels were significantly
different (stage plots of FN1, NRP2, FOXA1, NES, AGER, RUNX2, PTPN6, FBP1, TBX3, and STIM
2 respectively).

Table 5. List of genes differentially expressed regarding overall survival when comparing normal
versus tumor samples with p-values.

Gene p-Value

ADAM17 0.0008
ARMC8 0.0002

BBC3 0.0001
CEMIP 0.0019
LAMC2 0.0001

MAP2K1 0.0029
NES <0.0001

NRP2 0.0001
PEBP4 0.0002
PTPN6 0.0031
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Table 6. List of genes that approach significance after FDR correction with p-values (cutoff p value
is 0.003143).

Gene p-Value

HOOK1 0.0051
HTN1 0.0069

SLC9A3R1 0.0090

Table 7. List of stages that showed significantly different expression of the relevant gene based off
TCGA datasets.

Gene Different Stages

FN1 2 vs. 3 (p = 1.22 × 10−8), 2 vs. 4 (4.20 × 10−12)
NRP2 2 vs. 4 (p = 2.10 × 10−8)

FOXA1 1 vs. 3 (p = 5.08 × 10−3)
NES 2 vs. 3 (p = 1.71 × 10−5)

AGER 2 vs. 3 (p = 2.00 × 10−3), 2 vs. 4 (p = 2.39 × 10−5)
RUNX2 2 vs. 4 (p = 2.99 × 10−4)
PTPN6 2 vs. 4 (p = 7.24 × 10−3)
FBP1 2 vs. 3 (p = 5.65 × 10−3)
TBX3 2 vs. 3 (p = 3.56 × 10−3)

STIM2 2 vs. 4 (p = 3.97 × 10−5)

3.3. Identification of Further Gene Interactions and Enriched Biological Processes
3.3.1. Network Analysis

Network analysis was employed to identify genes with interconnected relationships, uti-
lizing factors such as physical interactions, co-localization, and co-expression data (Figure 5).
The genes chosen for constructing each network analysis were the previously mentioned
EMT-associated genes that displayed distinct expression patterns in survival outcomes.Genes 2023, 14, x FOR PEER REVIEW 11 of 24 
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(“outer rim”) of the network analysis, apart from the initial EMT genes (Figure 6). Enrich-
ment analysis of the initial 32 highlighted EMT genes showed numerous pathways signif-
icantly overrepresented in the cohort of genes, such as endothelial cell migration and reg-
ulation of cell shape, in line with the known physiologic processes involved with the epi-
thelial–mesenchymal transition. However, other less canonically associated ones such as 
defense response to bacterium and carbohydrate response were also uncovered through 
the analysis. Regarding the genes listed in the network analysis, similar biologic processes 
such as the VEGFA signaling pathway was highlighted alongside other related ones such 
as HIF-1 survival signaling. 

Figure 5. Network analysis showing 20 of the most highlighted genes. The analysis was conducted
utilizing factors such as physical and anticipated interactions, protein co-localization, and shared
DNA domains, alongside various other attributes. Connections between genes based on physical
interactions are highlighted in red, shared pathways in blue, shared protein domains in yellow,
predicted in orange, co-expression in purple, genetic interactions in green, and co-localization in navy.
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3.3.2. Enrichment Analysis

Enrichment analysis was executed on two distinct gene sets: first, on the genes pin-
pointed in the network analysis, and additionally, on the genes situated at the periphery
(“outer rim”) of the network analysis, apart from the initial EMT genes (Figure 6). En-
richment analysis of the initial 32 highlighted EMT genes showed numerous pathways
significantly overrepresented in the cohort of genes, such as endothelial cell migration and
regulation of cell shape, in line with the known physiologic processes involved with the
epithelial–mesenchymal transition. However, other less canonically associated ones such
as defense response to bacterium and carbohydrate response were also uncovered through
the analysis. Regarding the genes listed in the network analysis, similar biologic processes
such as the VEGFA signaling pathway was highlighted alongside other related ones such
as HIF-1 survival signaling.Genes 2023, 14, x FOR PEER REVIEW 12 of 24 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Enrichment analysis of the EMT genes involved in survival (a) as well as enrichment
analysis highlighted in the aforementioned network analysis (b). Labeled are statistically enriched
terms which are biologic pathways selected from KEGG and other hallmark gene sets. Additionally,
for both the EMT genes and network highlighted gene ((c) and (d), respectively), the representative
terms were converted into a network layout with each circle representing a single biologic process,
grouped into larger “themes” as labeled in the color key. The size of the circle represents the amount
of analyzed genes within that term.
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3.4. Correlation to Inflammation Mediators
3.4.1. Immunomodulator, Cytokine

Through examining for correlation between various immunomodulators and chemokines
(see Appendix A, Table A1 for list), the following plots were generated (Figure 7), with
the statistically and clinically significant ones (p < 0.05 post correction, |rho| > 0.4) be-
ing shown. Out of the 32 genes, 12 were shown to have at least significant correlation
with an immunomodulator or chemokines (TBX3, NRP2, FN1, FOXA1, FBP1, ANXA1,
LAMC2, HOOK1, NES, PTPN6, RUNX2), with the first four having at least 25 different
immunomodulators or cytokines to be significantly correlated with (Table 8).
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Figure 7. Sample Spearman’s correlation graphs for TBX3 (full table of all EMT-related genes in
Appendix A, Table A2), grouped by EMT-gene of interest. Only correlations shown to be statistically
significant (p < 0.05 post multiple hypothesis correction) and deemed clinically significant |rho| > 0.4
are depicted both in the figure and included in the summary below. Subset shown, with (A) showing
TBX3 expression correlation with CXCL16 expression and (B) showing correlation between TBX3
and CXCL13 expression; for other genes NRP2, FN1, FOXA1, FBP1, ANXA1, LAMC2, HOOK1, NES,
RUNX2, and PTPN6 see Supplemental Figure S3.

Table 8. Summary of Spearman’s correlation data between EMT-related gene and various im-
munomodulators, grouped by EMT-gene of interest.

Gene Immunomodulator
(Positive Correlation)

Immunomodulator
(Negative Correlation)

TBX3

CXCL16, CXCL13, CXCL11, CXCL10, CXCL9, CXCL5,
CXCL3, CXCL2, CXCL1, CCL26, CCL23, CCL18, CCL13,

CCL8, CCL7, CCL5, CCL4, CCL3, TIGIT, TGFBR1,
PDCD1LG2, PDCD1, LAG3, IL10, IDO1, HAVCR2,

CTLA4, CSF1R, CD274

NRP2

CXCL13, CXCL12, CXCL11, CXCL10, CXCL9, CXCL2,
CCL26, CCL23, CCL21, CCL19, CCL18, CCL13, CCL11,
CCL8, CCL7, CCL5, CCL4, CCL3, CCL2, LAG3, TIGIT,

TGFBR1, PDCD1LG2, PDCD1, IL10, HAVCR2, CTLA4,
CSF1R, BTLA, ADORA2A

FN1

TGFBR1, TGFB1, PDCD1LG2, LAG3, IL10, HAVCR2,
CSF1R, CD274, CXCL13, CXCL12, CXCL11, CXCL10,

CXCL9, CXCL5, CXCL2, CCL26, CCL23, CCL21, CCL18,
CCL13, CCL11, CCL7, CCL5, CCL4, CCL3, CCL2
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Table 8. Cont.

Gene Immunomodulator
(Positive Correlation)

Immunomodulator
(Negative Correlation)

FOXA1 CCL15

CXCL12, CXCL11, CXCL10, CXCL9, CXCL5, CXCL3,
CXCL2, CCL26, CCL23, CCL21, CCL18, CCL13, CCL8,

CCL7, CCL5, CCL4, CCL3, CCL2, TGFBR1, TGFB1,
PDCD1LG2, LAG3, IL10, HAVCR2, CTLA4,

CSF1R, CD274

FBP1 CCL15 CCL4, TGFBR1, PDCD1LG2, CD274

ANXA1 PDCD1LG2, CD274, CCL7

SPRR2A CXCL8, TGFB1

LAMC2 CXCL8, CXCL1, TGFB1

HOOK1 TGFB1, CSF1R, CCL23

NES CXCL12, KDR

PTPN6 LGAGLS9

RUNX2 PDCD1LG2

3.4.2. Immune Cell Infiltrate

Through the TIMER platform, deconvolution methods were used to estimate the amount
of various immune cells (T cells CD4+, Tregs, B cells, Neutrophils, Monocytes, Macrophages,
DCs, NK and Mast Cells; see Figure 8). Out of the 32 initial genes, 14 (ADAM17, AGER,
ANXA1, ARMC8, FBP1, FN1, FOXA1, LAMC2, MAP2K1, NRP2, PTPN6, RUNX2, STIM2,
TBX3) showed to have at least significant correlation (Spearman’s correlation > 0.05 follow-
ing adjustment based on tumor purity, with a rho of >|0.30|; see Table 9).
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Figure 8. Correlations of various gene expression levels to tumor purity and immune infiltration.
Only correlations to immune infiltration shown to be statistically significant (p < 0.05 post multiple
hypothesis correction) and deemed clinically significant |rho| > 0.3 are depicted both in the figure and
included in the summary below. Subset shown, for other genes ANXA1, ARMC8, FBP1, FN1, FOXA1,
LAMC2, MAP2K1, NRP2, PTPN6, RUNX2, STIM2, TBX3 see Supplemental Figure S2. (A) shows
correlation between ADAM17 gene expression and tumor purity (amount of non-cancerous cells
in tumor sample) and (B) shows correlation between ADAM17 expression level and calculated
macrophage infiltration.
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Table 9. Summary of Spearman’s correlation data between EMT-related gene and various immune
cell types, grouped by EMT-gene of interest.

Gene Immune Infiltrates
(Positive Correlation)

Immune Infiltrates
(Negative Correlation)

ADAM17 Macrophage, Neutrophil

AGER T cell CD8+

ANX1 T cell CD8+, Neutrophil, Myeloid dendritic cell

ARMC8 Macrophage

FBP1 T cell CD8+, Neutrophil, Myeloid dendritic cell

FN1 T cell CD4+, T cell CD8+, Macrophage, Myeloid
dendritic cell

FOXA1 T cell CD4+ T cell CD8+, Myeloid dendritic cell

LAMC2 T cell CD8+, Neutrophil, Myeloid dendritic cell

MAP2K1 T cell CD8+, Neutrophil

NRP2 T cell CD8+, Macrophage, Myeloid dendritic cell

PTPN6 B cell

RUNX2 T cell CD8+, Myeloid dendritic cell

STIM2 T cell CD4+

TBX3 T cell CD8+, T cell CD4+, Neutrophil, Myeloid
dendritic cell

4. Discussion

Overall, we see a robust cohort of EMT-related genes that are differentially expressed
as pertaining to survival in bladder urothelial carcinoma. RUNX2, a gene most associated
with cartilage production, has been linked to pancreatic cancer and to breast cancer progres-
sion through modulation of MicroRNAs and the metastasis-associated 1 (MTA1)/NuRD
complex [38,39]. By activating the Wnt signaling pathway, ARMC8 has been linked to
increased invasion in cutaneous squamous cell carcinoma and lung cancer [40–42]. Also
implicated in the Wnt pathway, as well as the VEGF pathway, CEMIP (formerly known
as KIA1199) has emerged via immunohistochemical studies as a possible biomarker for a
variety of cancers [43–45]. The phosphatase INPP4B is an inhibitor of the Wnt pathway;
its knockout has been linked to increased proliferation [46]. Knockout or downregulation
of the transcription factor gene FOXA1 has also been linked to worse prognosis, altering
the carcinogenic activity of the Snail/Twist1 axis in breast cancer as well as prostate can-
cer [47,48]. TBX3 has been linked to breast and cervical cancer proliferation, but it also
inhibits the activity of the YAP/TAZ signaling pathway involved with cellular regeneration
and growth [49–51].

Of note, PTPN6, a tyrosine phosphatase, affects cell growth and carcinogenesis in
both bladder and colon cancer. Interestingly, overexpression of PTPN6 has been associated
with worse prognosis and increased metastasis, while the opposite was seen in other
studies [52,53]. Additionally, there were cases where our findings were incongruent with
other cancers. PEBP4 expression was correlated with metastasis in colorectal and breast
cancer but is significantly associated with better outcomes in our analysis. AGER (advanced
glycosylation end-product-specific receptor) was shown to be associated with increased cell
migration in cervical cancer, but the opposite as per our analysis [54]. The pro-carcinogenic
effect that ART1 has in colorectal cancer was not seen in our Bladder TCGA analysis [55].

Interestingly enough, some of the genes shown to be differentially expressed in regard
to survival were not differentially expressed when comparing normal tissue to tumor; nor
did their expression correlate to pathologic staging. For the pathologic staging, only FN1,
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NRP2, FOXA1, NES, AGER, RUNX2, PTPN6, FBP1, TBX3, and STIM2 were shown to be
significantly different.

While there may be differences in Stage I expression versus the other stages, our
sample size (n = 2) was too small to reliably detect any except for in the expression levels
of FOXA1. Instead, many of the differences were seen between Stage 2 versus 3 and 4.
Histopathologically, this correlates with the expansion of the cancer through the muscle
with possible lymph node and systemic metastasis. During this process, the pro-mobility
changes which accompany the EMT would be fully evident. Our findings were mostly
consistent with the survival analysis results, such as with RUNX2 which showed worse
prognosis with higher levels, increasing expression from Stages 1 to 4.

Through the network analysis, we were able to see more genes through which the EMT-
related genes can modulate and affect carcinogenesis. For example, VEGFA was indicated, a
well-known member of a family of growth factors which has proliferative and anti-apoptotic
effects [56]. It has been found to be highly expressed in hepatocellular carcinoma (HCC)
and triple-negative breast cancer (TNBC). It is associated with worse prognosis in HCC [57]
and significantly lower progression-free survival in TNBC treated with chemotherapy [58].
Additionally, SFRP2 was implicated, and recent immunohistochemistry work has linked
this gene as a possible early biomarker of pancreatic and colon cancer [59,60]. Another
gene highlighted in our analysis, CAV1, codes for a scaffolding protein and often predicts
poor prognosis [61].

Enrichment analysis of the EMT-related genes further highlights the multiple modal-
ities through which the EMT process itself encourages cancer growth and metastasis.
Included among the highlighted cellular processes in our analysis are those regarding the
establishment or maintenance of epithelial cell apical/basal polarity and positive regulation
of cell migration. The VEGFA-VEGFR2 signaling pathway and associated angiogenesis,
among the seminal hallmarks of cancer, were highlighted as the most overly enriched
biologic process (p < 5.0 × 10−7). Other biological processes less typically associated with
EMT such as “defense response to bacterium” and “signaling by interleukins” were picked
up by the analysis. However, the same cytokine and inflammatory-mediated response to
bacteria can help explain another way EMT-related genes play a role in cancer progression.
The increased angiogenic and metabolic changes associated with certain proinflammatory
states, which would help fend off a bacterial infection, can serve as fertile ground for
initiation of cancer metastasis.

Among the most salient advances in our understanding of cancer progression is the
complex role the immune system plays. Notable mediators of the immune system repeat-
edly occurred in our analysis. TGFBR1, a receptor for the TBFB growth factor, and CSF1R,
a cytokine receptor, have been linked to pro-survival activity [62–65]. In other cancers,
the chemokine CCL15 has been linked to tumor-associated macrophage recruitment and
CCL18 has been linked to an immunosuppressive tumor microenvironment, allowing
for evasion of the host’s immune system [66–69]. The most common immune cell type
with a significant correlation was CD4+ T cells. While classically thought of as having an
anti-tumor role, the varied subtypes not completely covered in our current deconvolution
methods may play a paradoxical pro-tumor role. It is possible they do so by decreasing
activation of other immune cells such as macrophages, warranting further study into the
specific gene to immune cell interaction [70].

While this research represents a step forward in investigating the expression patterns
of EMT-related genes, there exist certain limitations to these discoveries. These assessments
rely on the levels of mRNA in a stable state as a proxy for protein levels. To partially address
this, proteomic analysis of the highlighted genes in our study were examined in bladder
cancer models through the depmap.org portal (https://depmap.org/portal/ (accessed on
12 September 2023)) and Cancer Cell Line Encyclopedia (CCLE), verifying expression of
highlighted genes. Moreover, the functional behavior of these mRNA molecules could be
subject to additional regulation by post-translational elements. Additionally, the techniques
used to decipher immune cell infiltrations might be influenced by the tumor’s purity,

https://depmap.org/portal/
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contingent upon the specific formula employed. Ongoing efforts are dedicated to refining
methods for accurately estimating cellular infiltrations based on mRNA levels. Overall,
this study potentially serves as a starting point for future investigations aimed at directly
scrutinizing the highlighted relationship between gene expression and prognosis, extending
to the protein or enzymatic realm.
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www.mdpi.com/article/10.3390/genes14101899/s1.
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Appendix A

Below is the complete list of genes listed as “immunomodulators” in the aforemen-
tioned analysis.

Table A1. Complete list of genes included as “immunomodulators”.

Immunomodulators Chemokines Chemokines

ADORA2A CCL1 CX3CL1
BTLA CCL2 CXCL1
CD160 CCL3 CXCL2
CD244 CCL4 CXCL3
CD274 CCL5 CXCL5
CD96 CCL7 CXCL6

CSF1R CCL8 CXCL8
CTLA4 CCL11 CXCL9

HAVCR2 CCL13 CXCL10
IDO1 CCL14 CXCL11
IL10 CCL15 CXCL12

IL10RB CCL16 CXCL13
KDR CCL17 CXCL14

KIR2DL1 CCL18 CXCL16
KIR2DL3 CCL19 CXCL17

LAG3 CCL20 XCL1
LGALS9 CCL21 XCL2
PDCD1 CCL22

PDCD1LG2 CCL23
PVRL2 CCL24
TGFB1 CCL25

TGFBR1 CCL26
TIGIT CCL27

VTCN1 CCL28

https://www.mdpi.com/article/10.3390/genes14101899/s1
https://www.mdpi.com/article/10.3390/genes14101899/s1
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table A2. Spearman’s correlation data for all EMT-related genes, grouped by EMT-gene of interest.
Only correlations shown to be statistically significant (p < 0.05 post multiple hypothesis correction)
and deemed clinically significant |rho| > 0.4 are depicted.

Gene of Interest Immunomodulator Gene rho

TBX3
CXCL16 −0.434
CXCL13 −0.401
CXCL11 −0.482
CXCL10 −0.512
CXCL9 −0.458
CXCL5 −0.474
CXCL3 −0.470
CXCL2 −0.453
CXCL1 −0.424
CCL26 −0.489
CCL23 −0.415
CCL18 −0.469
CCL15 0.474
CCL13 −0.411
CCL8 −0.535
CCL7 −0.544
CCL5 −0.443
CCL4 −0.570
CCL3 −0.571
TIGIT −0.416

TGFBR1 −0.45
PDCD1LG2 −0.654

PDCD1 −0.4
LAG3 −0.528
IL10 −0.449

IDO1 −0.464
HAVCR2 −0.570
CTLA4 −0.423
CSF1R −0.562
CD274 −0.507

NRP2
CXCL13 0.454
CXCL12 0.647
CXCL11 0.426
CXCL10 0.453
CXCL9 0.490
CXCL2 0.408
CCL26 0.579
CCL23 0.461
CCL21 0.57
CCL19 0.426
CCL18 0.519
CCL13 0.488
CCL11 0.479
CCL8 0.525
CCL7 0.531
CCL5 0.432
CCL4 0.507
CCL3 0.501
CCL2 0.553
LAG3 0.434
TIGIT 0.435

TGFBR1 0.550
PDCD1LG2 0.676

PDCD1 0.438
IL10 0.633



Genes 2023, 14, 1899 17 of 21

Table A2. Cont.

Gene of Interest Immunomodulator Gene rho

HAVCR2 0.633
CTLA4 0.460
CSF1R 0.679
BTLA 0.433

ADORA2A 0.402
FOXA1

CXCL12 −0.419
CXCL11 −0.401
CXCL10 −0.446
CXCL9 −0.415
CXCL5 −0.450
CXCL3 −0.425
CXCL2 −0.471
CCL26 −0.555
CCL23 −0.426
CCL21 −0.408
CCL18 −0.474
CCL15 0.467
CCL13 −0.469
CCL8 −0.581
CCL7 −0.589
CCL5 −0.461
CCL4 −0.547
CCL3 −0.594
CCL2 −0.498

TGFBR1 −0.442
TGFB1 −0.414

PDCD1LG2 −0.687
LAG3 −0.518
IL10 −0.520

HAVCR2 −0.572
CTLA4 −0.425
CSF1R −0.599
CD274 −0.492

FN1
TGFBR1 0.570
TGFB1 0.410

PDCD1LG2 0.716
LAG3 0.431
IL10 0.648

HAVCR2 0.620
CSF1R 0.657
CD274 0.416

CXCL13 0.415
CXCL12 0.625
CXCL11 0.404
CXCL10 0.448
CXCL9 0.458
CXCL5 0.418
CXCL2 0.401
CCL26 0.554
CCL23 0.459
CCL21 0.539
CCL18 0.551
CCL13 0.522
CCL11 0.561
CCL7 0.540
CCL5 0.462
CCL4 0.505
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Table A2. Cont.

Gene of Interest Immunomodulator Gene rho

CCL3 0.511
CCL2 0.524

FBP1
CCL15 0.592
CCL4 −0.404

TGFBR1 −0.455
PDCD1LG2 −0.491

CD274 −0.474
ANXA1

PDCD1LG2 0.504
CD274 0.451
CCL15 −0.414
CCL7 0.407

LAMC2
CXCL8 0.440
CXCL1 0.422
TGFB1 0.433

HOOK1
TGFB1 −0.423
CSF1R −0.410
CCL23 −0.403

NES
CXCL12 0.423

KDR 0.405
SPRR2A

CXCL1 0.423
CXCL8 0.412

PTPN6
LGALS9 0.422

RUNX2
PDCD1LG2 0.451
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