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Abstract: Transposable elements, such as Long INterspersed Elements (LINEs), are DNA sequences
that can replicate within genomes. LINEs replicate using an RNA intermediate followed by reverse
transcription and are typically a few kilobases in length. LINE activity creates genomic structural
variants in human populations and leads to somatic alterations in cancer genomes. Long-read RNA
sequencing technologies, including Oxford Nanopore and PacBio, can directly sequence relatively
long transcripts, thus providing the opportunity to examine full-length LINE transcripts. This study
focuses on the development of a new bioinformatics pipeline for the identification and quantification
of active, full-length LINE transcripts in diverse human tissues and cell lines. In our pipeline, we
utilized RepeatMasker to identify LINE-1 (L1) transcripts from long-read transcriptome data and
incorporated several criteria, such as transcript start position, divergence, and length, to remove
likely false positives. Comparisons between cancerous and normal cell lines, as well as human
tissue samples, revealed elevated expression levels of young LINEs in cancer, particularly at intact
L1 loci. By employing bioinformatics methodologies on long-read transcriptome data, this study
demonstrates the landscape of L1 expression in tissues and cell lines.

Keywords: transposable elements; TE; Long INterspersed Elements; LINE-1; long-read sequencing;
gene expression

1. Introduction

Transposable elements (TEs) are mobile DNA sequences that can move from one
part of the genome to another and generate genomic diversity. Barbara McClintock’s
discovery of TEs in the 1940s [1] marked the beginning of an extensive research journey
aimed at understanding the mechanisms and functional effects of TEs [2–4]. In humans,
TEs constitute at least 45% of the genome [5]. Their insertions significantly impact genomic
stability [5–9], leading to a range of effects including developmental abnormalities [10],
neurological disorders [11,12], and genetic diseases [3,13]. The mobilization of TEs can also
result in chromosomal rearrangements and mutations at the insertion sites [14,15], further
giving rise to genomic instability and cancer [16–20].

Among different types of TEs, the Long INterspersed Elements (LINEs) contribute
to approximately 17% of the human genome and replicate using an RNA intermediate
followed by reverse transcription, known as the “copy and paste” mechanism [21]. In the
human genome, LINE-1 (L1) is the most active and abundant retrotransposon [5,6], with at
least 500,000 copies of L1 elements present. However, only a small number of L1 elements
maintain the coding capacity for the machinery required for retrotransposition [13,22].
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Currently, L1s are the only autonomous retrotransposons that are still active in the human
genome [23]. Autonomous L1 retrotransposition requires the expression and translation
of its two open reading frames (ORFs), ORF1 and ORF2. ORF1 encodes a nucleic acid
binding protein that binds to L1 RNA, while ORF2 encodes a protein with endonuclease
and reverse transcriptase activities for retrotransposition [24]. At the transcription level,
the polyadenylation signal is a critical component necessary for the retrotransposition as it
facilitates the synthesis of a polyadenylated RNA intermediate, which is essential to the
retrotransposition process [6,21,25]. Another important factor in L1 transcription is the
upstream RNA promoter. L1s with an active promoter have the potential to be transcribed,
which is necessary for L1 amplification [26].

LINEs have been present in the human genome for millions of years, accumulating
mutations, rendering most inactive. While the majority of the older and mutated L1
elements have lost their ability to retrotranspose, younger and less divergent L1 elements
with fully intact ORFs and polyadenylation signals retain the necessary machinery for
retrotransposition and pose a greater risk for genetic instability [4,22,25–27]. The youngest
L1 element with the ability to become reactivated for retrotransposition belongs to the
L1HS (human specific) subfamily of L1 [27]. Previous studies have shown that L1 elements
can be expressed and potentially active in somatic tissues, possibly contributing to somatic
mutations and becoming potential cancer drivers throughout an individual’s lifetime [28].
Therefore, there is a need to study the contribution of TEs, particularly LINEs, to genomic
instability and disease initiation/progression.

Conventional short-read sequencing techniques have severe limitations when studying
TEs. In particular, TEs are highly repetitive in the genome and make it challenging to
map the short reads to a particular TE when a short read matches to multiple TEs in
the genome [29]. Although TEs are implicated in several diseases, their expression and
activity at the tissue level remain understudied due to these limitations of short-read
sequencing [30]. Long-read sequencing platforms such as Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) are particularly advantageous for analyzing TEs
in terms of sequencing read length and mappability. Compared to short-read sequencing,
long-read sequencing can provide more detailed information on the full length of L1
elements, including the sequences of the 5′ and 3′ untranslated regions (UTRs), ORFs,
and polyadenylation signals [26]. Furthermore, somatic TE insertions can be identified,
which are often missed by short-read sequencing due to their low frequency and high
complexity [31]. This potential for enhanced sensitivity and specificity point to long-read
sequencing as an important tool for studying the activity and impact of L1 retrotransposons
on genome stability.

In this study, we implemented a novel bioinformatics approach to assess the tran-
scription of active L1 elements across multiple cell lines and somatic tissues. Our strategy
involved utilizing RepeatMasker [32] to differentiate between the various repetitive ele-
ments in the genome, with a specific focus on the full-length and intact L1 elements in the
L1Base2 database [33]. Using this approach, we investigated the expression levels of L1
elements in tissues and cell lines using different sequencing platforms, including ONT and
PacBio, with different library preparation and sequencing protocols. Overall, this study
contributes a novel bioinformatics pipeline for the analysis of TEs in long-read RNA-seq
data, which will be helpful in improving our knowledge of the distribution and activity of
TEs in the human genome.

2. Materials and Methods
2.1. Datasets

The number of samples and the sequencing platforms used in each dataset are de-
tailed in Figure 1. The long-read RNA sequencing dataset from the Genotype-Tissue
Expression (GTEx) project (v9) is composed of a total of 88 different tissue and K562 cell
line samples, generated using the ONT sequencing platform (dbGAP accession number
phs000424.v9) [34]. The main tissue types include adipose, brain, breast, cultured fibroblast
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cells, heart, liver, lung, muscle, and pancreas. Tissue subtypes include brain: anterior
cingulate cortex, caudate, cerebellum, frontal cortex, and putamen; heart: atrial appendage
and left ventricle; and cultured fibroblast: with and without protein PTBP1 knockdown.
The K562 cell line originated from a patient with chronic myelogenous leukemia [34].
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Figure 1. Overview of the datasets composed of human tissues, as well as normal and cancer cell lines.
Tissues from the GTEx dataset (left) and cell lines (right) with corresponding number of samples. The
GTEx dataset included 88 samples of tissues and fibroblast cell lines sequenced by Oxford Nanopore.
Normal and cancer cell lines with corresponding number of samples are shown in the right panel.
Cell lines sequenced with PacBio (pink), Oxford Nanopore (blue), or both platforms (purple) are
shown in separate sections.

In addition to the GTEx tissue and cell line samples, several long-read RNA sequenc-
ing cell line datasets from both ONT and PacBio platforms were included in the study.
The ONT sequenced datasets included the following cell lines: Universal Human Refer-
ence (UHR), HepG2, Human Embryonic Kidney 293T (HEK293T), HCT116, MCF7, A549,
HeLa, and Acute Myeloid Leukemia (AML). The UHR dataset consisted of ten human
cell lines derived from various human tissues, including liver, testis, mammary gland,
cervix, brain, skin, liposarcoma, macrophage, T-lymphoblast, and B-lymphocyte (BioProject
Accession Number: PRJNA639366) [35]. Datasets of five cell lines were obtained from
the Singapore Nanopore Expression (SG-NEx) project [36] (accessed on 2 June 2023 at
registry.opendata.aws/sg-nex-data): HepG2 cell line of human liver carcinoma, HEK293T
cell line derived from human embryonic kidney cells that were transformed with ade-
novirus E1A and SV40 large T antigen [37], HCT116 cell line originated from human
colorectal carcinoma, MCF7 breast cancer cell line from a patient tissue sample, and A549
lung cancer cell line from a patient tissue sample. The HeLa cell line originated from
cervical adenocarcinoma (BioProject Accession Number: PRJNA777450) [38], and the AML
cell line originated from a patient with AML, a form of blood cancer characterized by
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the production of abnormal myeloblasts in the bone marrow [39] (BioProject Accession
Number: PRJNA640456) [36].

The PacBio sequenced datasets included the following cell lines: UHR (Accessed on 2
June 2023 and available online at https://downloads.pacbcloud.com/public/dataset/UHR_
IsoSeq/) [40], HepG2 (PacBio Encode Accession Number: ENCFF483HTA), HCT116 (Gene
Expression Omnibus: GSM5331110), K562 (Gene Expression Omnibus: GSE175347), and
Esophageal Squamous Cell Carcinoma—ESCC (Gene Expression Omnibus: PRJNA515570).
The ESCC samples used in this study included cancerous KYSE140, derived from a patient
with moderately differentiated squamous cell carcinoma; KYSE510, derived from a patient
with well-differentiated squamous cell carcinoma; TE5, derived from a patient with poorly
differentiated squamous cell carcinoma (two sequencing runs); and an SHEEC cell line
established from malignant transformation of the SHEE normal cell line induced by 12-
O-tetradeeanoyl-phorbol-13-acetate (TPA) [41]. The normal ESCC cell line sample, SHEE,
was an HPV18 E6E7-immortalized human embryonic esophageal epithelial cell line [41].
Supplementary Table S1 provides a comprehensive overview of the sample references
and preparation methods, along with their corresponding sequencing library construction
protocols and sequencing platforms.

2.2. Data Preprocessing and Analysis Methods

An overview of the analysis pipeline employed in this study to characterize the expres-
sion of young L1 elements is presented in Figure 2. Detailed information and the code of the
pipeline used in this study are available at https://github.com/WGLab/LINE-Expression-
LRS. For raw datasets that were in the FAST5 format, FAST5 files were basecalled using
Guppy6 [42] to generate FASTQ files. For raw datasets in FASTQ format, the FASTQ files
were directly processed through the pipeline. For each dataset, sequencing reads in FASTQ
files were filtered with the default base quality Q-score filtering threshold of 7. Replicates
from the same biological sample were further concatenated. The FASTQ files were then
converted into a FASTA file and sequence reads that were less than 1 kb in length were
filtered out. This step helped to improve performance as these shorter reads are unlikely
to be relevant to the analysis of LINE/L1 elements that typically range from 4 to 6 kb in
length. The number of initial reads and reads after the size filtering are presented in Sup-
plementary Table S2. To select reads that contain LINEs, reads were mapped to a custom
library of LINE elements. The custom LINE library was generated by combining (1) LINE
elements greater than 4.5 kb in length from the UCSC Genome Browser RepeatMasker
Track [43] of the human reference genome (hg38); and (2) the LINE consensus sequences in
the RepeatMasker database library. The sequence reads with lengths greater than 1 kb were
mapped to this custom LINE reference using Minimap2 (v2.24) [44] (minimap2 -ax map-ont

“L1_reference.fasta” “input_reads.fasta” > “LINE_input_reads.fasta”) to obtain reads that have
at least one mapping to a LINE element. The resulting FASTA file was analyzed with
RepeatMasker (version 4.1.5 released March 2023) [32] for LINE/L1 annotation. Repeat-
Masker was ran using the default library, specifying the species as human. The following
feature checks were skipped: the bacterial insertion element, low complexity DNA or
simple repeats, and small RNA (RepeatMasker -pa 6 -dir “output_directory” -nolow -norna
-species human -no_is -a -u -xsmall -xm “LINE_input_reads.fasta”). Using the RepeatMasker
output, sequences containing L1 elements that were identified as less than 10% diverged
from the consensus sequence, as determined by the “div” column, were selected for the
downstream analysis.

https://downloads.pacbcloud.com/public/dataset/UHR_IsoSeq/
https://downloads.pacbcloud.com/public/dataset/UHR_IsoSeq/
https://github.com/WGLab/LINE-Expression-LRS
https://github.com/WGLab/LINE-Expression-LRS
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Figure 2. Overview of L1 analysis methods. Data Preprocessing: Reads less than 1 kb in length were
removed. A custom LINE reference library was constructed by merging the UCSC hg38 RepeatMasker
track with the LINE/L1 consensus sequences from the Repbase RepeatMasker library. The LINE
custom library was used as a reference for mapping with Minimap2 to obtain input reads (>1 kb)
containing L1 elements. L1 Detection: Reads with L1 elements with less than 10% divergence from
the RepeatMasker L1 consensus were retained for Minimap2 splice-aware mapping to the hg38
reference genome. LongReadSum was utilized to report mapping statistics for quality check analysis.
Artifact-Based Filtering: First, we removed reads where less than 90% of the read itself mapped to the
L1 region of interest. Then, L1 regions with exon overlap, fewer than two mapped reads, inconsistent
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read start position among the reads within the L1 region (threshold 100 bps), and overall starting
positions too far from the L1 region start position (threshold 1.5 kb) were removed from analysis
to filter out likely false positives. L1 Quantification: BEDTools genome coverage and BEDTools
map were used to calculate the average coverage over the three groups of L1 elements, including
active, inactive, and those intact only in ORF2. The resulting values were first normalized by the
total number of reads and then scaled by a million. Subsequently, a weighted average was computed,
considering the length of the L1 element, across all active, intact only in ORF2, and inactive L1
loci, respectively, resulting in the final value. L1 Visual Validation: L1 candidate loci were visually
validated in the Integrative Genomic Viewer.

Reads containing L1 elements with less than 10% divergence were then mapped to
the hg38 reference genome using Minimap2 with splice-aware parameters. A reference
junction BED file (GENCODE.v40 [45]) was used to provide information about the known
junction sites or splice sites within the reference genome. Only primary alignments were
kept for downstream analyses (minimap2 -ax splice --junc-bed reference_splice_junctions.bed
-uf --secondary=no -k14 -t 8 hg38_reference.fasta input_reads.fasta -o aligned_reads.sam). The
generated SAM file was then converted to a BAM file using samtools view, after which the
BAM file was sorted according to genomic location and indexed. LongReadSum (v1.3.0) [46]
was used for the quality check analysis of the mapping result (python LongReadSum bam
-i sample_input.bam) and the following statistics are presented in Supplementary Table
S2: initial total number of reads, N50 read length, median read length, number of reads
greater than 1 kilobase (kb), total number of reads following RepeatMasker, total number
of mapped reads (primary alignments), N50 mapped read length, median mapped read
length, and the total number of reads following artifact-based filtering.

The L1Base2 (v2) database for the human genome (Homo sapiens) was generated
from the GRCh38 assembly, where the consensus sequence for different subfamilies and
details about the existence of ORFs are reported [33]. L1Base2 consists of three BED
files with genomic regions of three different L1 categories: (i) full-length L1s with in-
tact ORF1 and ORF2 (FLI-L1s) (146 regions, referred to as “Active” in Figure 2), (ii) full
length non-intact L1s (FLnI-L1s) (13,418 regions, referred to as “Inactive” in Figure 2),
and (iii) L1s with a disrupted ORF1 and an intact ORF2 (ORF2-L1s) (107 regions, referred
to as “ORF2” in Figure 2) [33]. An initial filtering process was performed on these files
using bedtools intersect [47] to generate three distinct reference files for the different cate-
gories of L1 elements. For the active elements (FLI-L1s), any regions with overlapping
occurrences in the inactive (FLnI-L1s) elements were removed. Additional filtering was
completed for downstream artifact-based filtering, where L1 regions overlapping exons
were excluded (GENCODE.v43 [45], bedtools intersect -a “reference_regions.bed” -b “GEN-
CODE.v43.annotation_exons.bed” -v > “reference_no_exons.bed”). As a result, three distinct
reference files were obtained: active L1 elements (FLI-L1s) (115 regions), inactive L1 ele-
ments (FLnI-L1s) (10,993 regions), and L1 elements intact only in ORF2 (ORF2-L1s) (97
regions). The purpose of this filtering was to ensure that each reference file contained spe-
cific and non-overlapping regions for subsequent L1 analysis. Each resulting reference file
(FLI-L1, FLnl-L1s, and ORF2-L1s) was used to determine the coverage of the different types
of L1 elements within the samples. Reads where less than 90% of the read was mapped to
the L1 regions were removed (samtools view -b -L “reference_regions.bed” -o “filtered_reads.bam”
“mapped_reads.bam”, bedtools intersect -a “filtered_reads.bam” -b “reference_regions.bed” -f 0.9
> “filtered_reads_90percent.bam”). By retaining reads with at least 90% mapped to the L1
loci, we ensured the retention of reads primarily aligned within the L1 regions of interest.
Once the number of mapped reads for each locus was determined, reference L1 loci with
fewer than two mapped reads were also excluded. For reads mapped to the remaining L1
loci, the start positions of the reads within each L1 region were compared. L1 loci with
variable read starting positions that were more than 100 bps from the most common read
start position were removed. Finally, the overall most common start positions of the reads
within an L1 region were compared with the L1 region’s start position. An L1 loci was
excluded if the most common read start position was more than 1.5 kb away from the
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reference L1 start position. This filtering approach further improved the accuracy and
reliability of L1 analysis by filtering out potential false positives from possible technical
biases due to library preparation, polymerase chain reaction (PCR) amplification biases,
sequencing errors, and mapping errors.

Following the read filter portion of the artifact-based filtering step, the filtered BAM
files were processed through the bedtools genome coverage function [47] (bedtools genomecov
-ibam “input_reads.bam” -bga -split > “coverage.bg”). This resulted in a bedgraph, which
has varying read count intervals of the coverage values across the L1 loci. Then, the
bedtools map function [47] was used to determine the coverage of the L1 loci (bedtools map -a
reference_L1.bed -b coverage. bg -c 4 -o mean -null 0 > mean_coverage.txt). Here, the bedtools map
function calculated the mean number of RNA sequencing reads that intersected with the
coordinates of the L1 loci from the L1Base2 reference. To determine the general expression
level of these L1 loci, the calculated coverage values were normalized by the total number
of reads in the sample to account for variations from the multiple datasets with varying
total number of reads. A weighted average L1 expression value was then computed across
all L1 loci in each of the reference L1Base2 categories: active, inactive, and intact only
in ORF2, for each sample. This weighted average involved assigning weights based on
the length of the reference L1 element with its corresponding expression value, scaled in
millions, as displayed in Equation (1), where i takes the L1 reference category, “active”,
“inactive”, and “intact only in ORF2” to represent the different categories.

Weighted Averagei =
∑Regionsi

(Mean Number o f RNA Sequencing Reads ·Length o f L1 Element)
∑Regionsi

(Length o f L1 Element)

For i ∈ {Active, Inactive, Intact only in ORF2}
(1)

Subfamily names of L1 elements longer than 4.5 kb in length from the UCSC Genome
Browser (hg38) RepeatMasker Track, namely L1HS and L1PA2, were used to determine
the L1 subfamily breakdown in the active, full-length L1 loci. Manual review using the
Integrative Genomic Viewer (IGV) [48] was performed to visually validate the L1 loci with
expression. This assessment aimed to identify any additional technical artifacts that might
not have been accounted for in the bioinformatics pipeline originally.

3. Results and Discussion

The current study developed a bioinformatics pipeline leveraging long-read sequenc-
ing technologies to investigate the transcription patterns of L1s in human tissue and cell
line samples. The degree to which L1 elements contribute to human genome function varies
depending on several factors, including the tissue-specific regulation, the expression level
of L1s, and the specific genomic locations of their transcription and subsequent insertions.
Building upon previous work in L1 biology, we used long-read RNA sequencing datasets
from ONT and PacBio to examine tissue-specific expression patterns of L1 elements.

3.1. General Description of the Datasets

Among the datasets used in this study (Figure 1), 88 tissue and cell line samples
from the GTEx dataset were sequenced by ONT. Additionally, we included five cell lines
sequenced exclusively with ONT technology, six cell lines sequenced exclusively with
PacBio technology, and four cell lines sequenced using both ONT and PacBio technolo-
gies. Our dataset included samples subjected to a diverse array of RNA extraction and
sequencing methods, as described in Supplementary Table S1. This diversity includes
incorporation of the poly-A selection during the RNA sample preparation, which can have
an influence on the RNA captured and downstream analysis. Samples prepared with
poly-A selection included A549, HCT116, HepG2, and MCF7 sequenced by ONT, and
HCT116, HepG2, and K562 sequenced by PacBio. Furthermore, the variety within the
dataset extended to the library construction protocols, where some samples underwent
direct RNA sequencing (ONT sequenced: A549, HCT116, HEK293T, HeLa, HepG2, MCF7,
and UHR), while others followed a cDNA-based approach (ONT sequenced: GTEx and
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AML, PacBio sequenced: ESCC and UHR). The initial number of reads among the samples
varied from 46,331 (Nanopore sample GTEX-T5JC-0011-R10A-SM-2TT23.FAK91589) to
13,363,390 (Nanopore sample GTEX-WY7C-0008-SM-3NZB5_ctrl.FAK55628), as detailed
in Supplementary Table S2. The dynamic landscape of the read length is reflected in the
N50 and median read length ranges, which extended from 585 to 3148, and 198 to 2623,
respectively. Both the lower bounds of the N50 and median read length ranges originated
from the ONT sample GTEX-UTHO-2426-SM-38ZXF.FAK46748, while the upper bound
was from the PacBio sample ESCC SRR8691125. After filtering out reads that were less than
1 kb long, the number of reads in each library varied from 9760 (ONT sample GTEX-T5JC-
0011-R10A-SM-2TT23.FAK91589) to 5,839,327 (PacBio sample ESCC SRR8490237). In our
study we recognized the variety of differences in the samples’ origin, as well as the sample
preparation and sequencing techniques. Throughout our analysis, we anticipated that these
variations would inherently result in variable L1 expression levels, since these technical
variations can have an influence on recapitulation of L1 transcripts that are longer than
typical mRNA transcripts. We acknowledge these limitations due to technical heterogene-
ity of the various datasets; however, we utilized them to help provide a comprehensive
overview of each sample’s genomic landscapes. With the evolving landscape of long-read
sequencing (both in library construction protocols and in sequencing platforms), we also
anticipate that future sequencing studies may include longer transcripts (such as L1) in
the sequencing data that were not effectively captured in the current study due to the
limitations of the technologies. With these caveats in mind, these technical variations
contribute to the uniqueness of our datasets and helped facilitate a diverse array of insights
into L1 detection and analysis.

3.2. Overall Expression Levels of L1s

An overview of the analysis pipeline is presented in Figure 2. The initial sequencing
data were preprocessed, filtered, and mapped to a custom LINE reference to select candidate
reads that were longer than 1 kb and contained L1 sequences. We then used RepeatMasker
to identify sequencing reads containing L1s with less than 10% divergence and mapped
these reads to the hg38 reference genome (mapping statistics in Supplementary Table S2).
We then calculated the coverage, scaled in millions, within the active (FLI-L1s), inactive
(FLnl-L1s), and intact only in ORF2 L1s (ORF2-L1s) in each tissue and cell line sample.
A total of 88 human samples from eight major tissue types and two types of cell line
(fibroblasts with or without PTBP1 knockdown) were examined by the ONT sequencing
platform. Figure 3A provides an overview of the overall non-zero coverage across different
human samples from the GTEx project [34]. The tissue types with zero coverage, breast,
pancreas, and subcutaneous adipose, were removed from further analysis. The brain and
liver tissues exhibited the highest expression levels from active L1s, while all other tissues
did not show detectable expression levels of active L1s. Several samples showed relatively
low coverage for inactive L1s. Additionally, only the brain tissues displayed expression of
intact only in ORF2 L1s.

We further examined the distribution of the human tissue subtypes in brain and
heart (Figure 3B) and observed a higher abundance of coverage within L1 regions for
the different brain tissue subtypes, in comparison to the different heart tissue subtypes.
Cerebellar Hemisphere and Putamen (Basial Ganglia) had higher coverage within the
active L1 regions, while the Anterior Cingulate Cortex, Frontal Cortex, and Caudate had
no expression. The heart tissue subtypes showed no expression in the active L1s and intact
only in ORF2, and minimal expression within the inactive L1 regions. The expression level
of the different categories of L1 elements in the tissue subtype samples remained relatively
consistent, showing no apparent difference in L1 abundance among tissue subtypes. The
low coverage values of active, intact only in ORF2, and inactive L1s suggest an overall low
level of L1 transcription in human somatic tissues.
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Figure 3. Average expression of L1 elements in 88 long-read sequenced GTEx human tissues. Average
L1 expression across different human tissue samples within the active (red), inactive (blue), and
intact only in ORF2 (purple) L1 categories. The general expression level of these L1 categories was
determined by the mean number of reads that intersected with the L1 loci, normalized by the sample’s
total read count, followed by a weighted average based on the length of the L1 element and its corre-
sponding expression value, scaled in millions. (A) Average overall expression levels of L1 elements
in the human tissue types from GTEx dataset. (B) Average overall expression levels of L1 elements in
tissue subtypes from the GTEx dataset, including anterior cingulate cortex, cerebellar hemisphere,
frontal cortex (BA9), putamen (basal ganglia), and caudate for brain, and atrial appendage and left
ventricle for heart tissues.



Genes 2023, 14, 1893 10 of 18

There are several caveats to the analysis: first, because existing long-read RNA-seq
library and sequencing protocols are geared towards typical transcripts (~1.5 kb length on
average), they may not be optimal for the analysis of L1 elements (~6 kb length) as only
part of the L1 transcript sequences may be present in the data. Second, we used a relatively
stringent bioinformatics protocol and removed a portion of the candidate L1 transcripts
from the final analysis to focus on the most reliable subset of reads arising from L1 elements
in the analysis. Third, the “less than 10% diverged” was a relatively arbitrary threshold
to focus our analysis to recently diverged elements, but the ~3% sequencing error rate of
ONT (when sequenced with R9 flowcell and basecalled by Guppy6 [42]) and the repetitive
nature of the L1 elements may have influenced the effectiveness of this threshold. With
the recent introduction of R10.4.1 flowcell with sequencing kit V14, the sequencing error
rate has dropped to 1%. Lastly, the large variation in the sequencing depth among GTEx
samples might have affected the sensitivity of L1 expression detection sensitivity among
samples.

Next, we extended our analysis to include a variety of cell lines. Cell lines sequenced
by PacBio are shown in Figure 4A, including UHR, HepG2, K562, and five ESCC lines. All
cell lines except HCT116 showed expression of active L1s at varying levels. Three ESCC
cell lines (KYSE510, KYSE140, and TE5) showed the highest expression among the cell lines.
Cell lines sequenced by ONT included HCT116, HepG2, UHR, K562, HEK293T, HeLa, AML,
MCF7, and A549. For ONT datasets, only AML showed L1 expression across the inactive
regions (6.0) and intact only in ORF2 regions (1.0). Among the four cell lines (HCT116,
HepG2, UHR, and K562) that were sequenced by both ONT and PacBio, HepG2, UHR,
and K562 showed L1 expression as sequenced by PacBio but not by ONT (Supplementary
Table S3), likely due to the much higher sequencing coverage in the PacBio sequencing data
(Supplementary Table S2). Furthermore, focusing on specific L1 subfamilies that are present
in the active L1 category, L1HS and L1PA2, Figure 4B displays a heatmap of the average
number of expressed active L1 regions for these subfamilies in cell line samples. L1HS and
L1PA2 are among the most active L1 elements [49] and had shown evidence of expression.
The number of active L1 loci with expression from both L1HS and L1PA2 subfamilies was
generally lower in the ESCC SHEE (Normal), HepG2, and K562 cell lines, compared to
UHR and the ESCC cancer cell lines (Figure 4B). In particular, the cancerous ESCC cell
lines displayed the highest number of active L1 loci with expression, exceeding that of
the normal ESCC cell line. The identification of L1HS expression in the cell lines further
supports the need for targeted investigations into the functional impact of L1 elements in
various cellular contexts.

3.3. Expression Levels within L1 Regions with High Coverage and Manual Evaluation in IGV

To further confirm that our results reflect authentic L1 transcription, we manually
evaluated L1 expression levels and patterns at the identified L1 regions using the Integrative
Genomics Viewer (IGV) [48]. We examined various aspects, such as read alignment pattern,
depth, and coverage distribution, to gain insights into the transcription dynamics among
the L1 elements with the evidence of expression. In the manual evaluation process, we
closely examined the coverage distribution across over 100 different high coverage L1
regions across the three L1Base2 reference categories—active, inactive, and intact only
in ORF2—in different samples. This enabled the identification of areas with consistently
high coverage that may signify increased expression levels. Similar to previous studies,
we adopted the assumption that the transcripts started at or near the 5′ end of the L1
locus are likely to be from autonomous transcription of the L1 element [50]. We integrated
this criterion into the manual review specifically for samples exhibiting high coverage to
identify robust transcriptional activity. In IGV, we also included tracks of the hg38 reference
genome, GENCODE.v43 annotation [45], and L1Base2 active, inactive, or intact only in
ORF2 L1 reference regions [33].
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Figure 4. Average overall expression of L1 elements in normal and cancerous cell lines, following
artifact-based filtering. (A) Average L1 expression for the following cell lines as sequenced by PacBio:
ESCC, HepG2, UHR, and K562, within the active (red), inactive (blue), and intact only in ORF2
(purple) L1 categories. The general expression level of these L1 categories was determined by the
mean number of reads that intersected with the L1 loci, normalized by the sample’s total read
count, followed by a weighted average based on the length of the L1 element and its corresponding
expression value, scaled in millions. (B) Heatmap of the number of L1 loci with expression within
the active L1 regions for active L1 subfamilies, L1HS and L1PA2, across cell line samples sequenced
by PacBio. The top row indicates the total number of regions manually validated in IGV and the
last column displays the total number of unique L1 regions validated in IGV, including counts for
both L1HS and L1PA2 subfamilies with expression evidence (top value) and the percentages of active
loci for each family (bottom value). The color gradient ranges from 0 to 40, with white indicating no
region and purple indicating the highest number of L1 regions.
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Various alignment patterns were observed, including almost full coverage, reads
concentrated at the 5′ or 3′ ends, and reads distributed throughout the middle of the
region. Figure 5 displays an active L1 region, chr22:28,662,282-28,670,329 (hg38), which
showed expression among the four cancerous ESCC cell line samples. By inspecting the
alignment patterns across the different ESCC samples, we found that the samples had
regions of coverage towards the 5′ end of the L1 (111 bps downstream of the L1 region
start position) and KYSE510 showed almost complete coverage of the L1 locus. Among
the ESCC samples, SHEEC and TE5 showed higher mismatch patterns than KYSE140
and KYSE510. This difference is likely attributed to the characteristics of PacBio IsoSeq
data. Notably, the first two samples displayed fewer mismatches due to the shorter
fragments in their initial 1 kb regions. Shorter reads possess higher accuracy from the
IsoSeq sequencing, benefiting from the consensus-based error correction during the IsoSeq
analysis. Alternatively, the mismatch patterns in the bottom three samples may suggest
the transcripts mapped to this locus originated from polymorphic L1 elements that are not
represented in the reference genome. Furthermore, Supplementary Figure S1 shows the
alignment patterns of reads within the ESCC KYSE140 cancer cell line at an inactive L1
region (Supplementary Figure S1A, chr6:57,284,305-57,294,481, hg38) and an intact only in
ORF2 L1 region (Supplementary Figure S1B, chr10:85,354,505-85,362,552, hg38). Analyzing
these alignment patterns was crucial in confirming the presence, structure, and precise
location of the L1 transcripts. The evidence of L1 expression from multiple active L1 loci in
the ESCC samples corroborates with previous studies that highlighted the possibility of L1
elements being involved in esophageal squamous cell carcinoma through the examination
of aberrant methylation patterns [51,52]. These results support the functional relevance of
L1 components in ESCC and call for future research into how L1 transcription and somatic
retrotransposition can influence cancer progression.

In addition to the ESCC samples, the UHR dataset sequenced using PacBio exhibited
high coverage values in a few active L1 regions. Over the identified regions, the supporting
reads revealed a consistent pattern of aligning towards the 5′ end, as displayed in Supple-
mentary Figure S2 for two active L1 loci (1003 and 877 bps downstream of the L1 region start
position, respectively). This suggested the presence of transcriptional initiation sites within
these regions, where the transcription machinery initiates L1 transcription. The distribution
of reads consisted of those extending only to the 5′ UTR of the regions and some reads
mapped to the middle of the L1 regions. This heterogeneous distribution of reads indicated
potential alternative transcriptional initiation and termination sites, including internal
transcriptional activity within the L1 regions. Alternatively, this observation may represent
sequencing artifacts of incomplete transcripts due to the relatively large transcript sizes.
Overall, we manually evaluated 75 active L1 expression loci in different samples, where all
40 unique loci showed patterns of authentic L1 transcription (Figure 4B, Supplementary
Table S4). This result suggested that by employing the rigorous artifact-based filtering, we
had eliminated most of sequenced reads that did not derive from L1 transcription. This
resulted in high confidence in identifying regions with authentic L1 expression for reliable
L1 expression analysis.

Our analysis also examined the L1 expression patterns in human tissues, where the
brain samples had the highest level of L1 expression. Analyzing the IGV plots from
the brain sample provided evidence that suggested the expression of active L1 elements
(Supplementary Figure S3). Supplementary Figure S3A is an active L1 region within three
brain cerebellar hemisphere tissue samples. We also extended our analysis to inactive
L1 loci, with an example shown in Supplementary Figure S3B. Our analysis of human
tissue samples from the GTEx project revealed evidence of somatic L1 expression within
the brain, including active L1s. Furthermore, the increased levels of L1 expression in
human brain tissues are consistent with previous studies that showed L1 expression in
diverse brain areas [53–55]. These consistent results add to the growing evidence that
L1 retrotransposons potentially contribute to normal brain function and pathological
conditions. While L1 retrotransposons are likely to play a role in the normal function of the
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human brain, it is important to note that their contribution to pathological conditions could
be more substantial [56–58]. Our study did not examine brain samples from patients with
neurological diseases, so we hope to perform a comparative analysis to study this aspect in
the future.
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Figure 5. Expression of an active L1 region among cancerous ESCC cell line samples. The following
samples are displayed from the top to the bottom panel: ESCC KYSE140, KYSE510, SHEEC, TE5
(sample 1), and TE5 (sample 2) at the shared active L1 region (chr22:28,662,282-28,670,329, hg38). The
bottom panel shows reference annotations including, RefSeq (hg38, dark blue), GENCODE.v43 [45]
(light blue) with the respective strandness, and the active L1 regions (pink) from the L1Base2 reference
with the respective unique identifier (UID), subfamily name, and strandness,. For each sample, the
sequencing reads are represented by grey lines, with the coverage shown in the top section.
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In our analysis we noticed a wide variety of alignment patterns within the L1 regions,
including consistently uniform expression of L1 loci at the 5′ end. The partial L1 coverage
alignment pattern suggested that full-length coverage was limited to certain portions of
the L1 regions, or that only a partial portion of full-length transcripts were sequenced
due to technical limitations such as RNA degradation or lower efficiency of reverse tran-
scription for longer RNAs during the sequencing library construction. The results further
emphasized that the lack of concordance in profiling L1 elements remained, even after
implementing a rigorous filtering strategy to exclude low abundance reads that could have
potentially introduced artifacts or were prone to mapping errors. The assumption that the
expression at the 5′ end of L1 transcripts can be considered as an estimate for autonomous
transcription was influenced by previous studies and by the observed imbalance between
5′ truncated copies and those fuller-length copies, which aligns with findings from prior re-
search [50]. Given additional confirmation of internal transcriptional activity, we also found
reads distributed across the middle of the predefined regions. These alignment patterns
shed light on the structure and position of the expressed L1 elements in the samples.

3.4. Diverse Sequencing Statistics and Their Differential Impact on L1 Profiling

One important aspect of our analysis was the utilization of data from both PacBio and
ONT long-read sequencing technologies. Given the highly repetitive nature of L1 elements,
the sequence similarity of different subfamilies, and the accumulation of mutations through
time, longer reads from both technologies helped to assign the reads more accurately to
their proper positions during genome mapping. However, it is important to note that ONT
sequencing is known for its higher levels of basecalling error (compared to the PacBio HiFi
protocol), which can impact mapping accuracy [59]. Although recent chemistry and R10
flowcell versions of ONT sequencing greatly improves basecalling accuracy, the data that
we used in the current study were generated using the R9.4 flowcell with a higher level of
basecalling errors.

Using the data from both ONT and PacBio platforms also allowed us to examine the
sequencing statistics (Supplementary Table S2) and assess the impact of sequencing tech-
nologies on our analysis. These statistics highlight the differences in initial number of reads,
number of reads remaining after data processing prior to mapping to the hg38 reference
genome, read lengths, the number of primary and supplementary mappings, and number
of reads remaining after artifact-based filtering. It is important to consider the impact of
library construction and sequencing technique on the detection and quantification of L1
expression. The library construction varied between cDNA and direct RNA sequencing,
which resulted in a varying number of sequenced reads overall. For example, ONT direct
RNA sequenced HepG2 resulted in 1,537,237 reads while ONT cDNA sequenced AML
resulted in 8,061,683 reads. The inherent differences in the library construction resulted
in fewer reads for direct RNA sequenced HepG2; however, the median read lengths were
1696 and 613 bps for HepG2 and AML, respectively, as shown in Supplementary Table S2.
This indicated that while cDNA was able to generate additional sequences, direct RNA
sequencing was able to generate longer, full-length transcripts. Additionally, the initial
number of reads within the UHR datasets sequenced by ONT and PacBio were vastly
different from each other, i.e., 476,000 compared to 6,775,127 reads, respectively. Following
the first filtering of reads that were less than 1 kb long, the remaining number of reads
in the UHR datasets sequenced by ONT and PacBio changed to 211,577 and 5,374,170,
respectively. As additional artifact-based filtering methods were applied, only the UHR
dataset sequenced by PacBio had a subset of 37 reads remaining for L1 detection and
analysis. To mitigate differences such as these and gain further insights into the expression
patterns of younger L1s in the different samples, we analyzed datasets from both PacBio
and ONT datasets. However, due to the lack of a correlation between the two sequencing
platforms, the comparison between these regions was not applicable.
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4. Conclusions

Our study provides insights into the expression patterns and characteristics of L1
elements in human tissue and cell line samples, specifically focusing on L1s that diverged
less than 10%. We observed low expression levels of full-length L1s in normal tissues,
except for the brain, while variable expression was found in cell lines, with higher levels
observed in tumor cell lines. As one of our future research directions, we plan to examine L1
elements in putamen samples from Parkinson’s disease patients and compare these with L1
expression in normal putamen samples. This is motivated by our observation of substantial
coverage of active L1 regions in the putamen, which is implicated in the pathology of
Parkinson’s disease. The prominent expression of the active L1HS subfamily supports its
potential role in transpositional mutagenesis in the context of disease [60–62]. The findings
from this study reinforce the significance of studying L1 expression dynamics and their
functional impact in normal brain tissues and cell lines. While datasets used in this study
are generated at varying timepoints and technologies, it is important to note that there
have been continuous advancements in long-read sequencing protocols and methodologies,
and the data quality is improving constantly. Our L1 detection and quantification pipeline
provided a means to evaluate L1 expression levels and patterns in full-length RNA-seq
data. Through a set of stringent filtering criteria, the bioinformatics pipeline presented
in the study can adapt to diverse types of long-read RNA-seq datasets generated by
different library preparation protocols on different sequencing platforms. This is because
the underlying principles and approaches for identifying and quantifying the expression of
L1 elements remain relevant and applicable, regardless of the specific sequencing platform
or improvements in protocols. Overall, our study contributes to the understanding of L1
expression patterns and highlights the importance of utilizing long-read platforms followed
by a robust bioinformatics analysis pipeline with rigorous filtering methods to accurately
assess L1 expression. Building upon the pipeline presented in this paper, researchers
can incorporate these advancements and refine their analyses, taking advantage of the
continuous improvements in sequencing techniques for the comprehensive analysis of
transposable elements.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14101893/s1, Table S1. Sample Reference, Sample Preparation
Method, Sequencing Library Protocol, and Sequencing Platform. Table S2. LongReadSum Mapping
Statistics Initially and Following RepeatMasker, Mapping to hg38 Reference Genome, and Artifact-
Based Filtering. Table S3. Average Number of Reads, scaled to reads per million, for the Active,
Intact ORF2-Only, and Inactive L1 Elements across Tissue and Cell Line Samples. Table S4. Manually
Reviewed Unique L1 Loci Genomic Locations with Corresponding Average Number of Reads, scaled
to reads per million, for the Active L1 Elements across the PacBio sequenced Cell Lines. Figure S1.
Manual validation of inactive and intact only in ORF2 L1 regions within ESCC KYSE140 cancer cell
line using the Integrative Genomics Viewer (IGV). Figure S2. Manual validation of inactive and intact
only in ORF2 L1 regions with high coverage within the UHR cancer cell line, sequenced by PacBio,
using the Integrative Genomics Viewer (IGV). Figure S3. Manual validation of active and inactive L1
regions with high coverage within human brain tissues from the GTEx project using the Integrative
Genomics Viewer (IGV).
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