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Abstract: Variants in non-homologous end joining (NHEJ) DNA repair genes are associated with
various human syndromes, including microcephaly, growth delay, Fanconi anemia, and different
hereditary cancers. However, very little has been done previously to systematically record the
underlying molecular consequences of NHEJ variants and their link to phenotypic outcomes. In
this study, a list of over 2983 missense variants of the principal components of the NHEJ system,
including DNA Ligase IV, DNA-PKcs, Ku70/80 and XRCC4, reported in the clinical literature, was
initially collected. The molecular consequences of variants were evaluated using in silico biophysical
tools to quantitatively assess their impact on protein folding, dynamics, stability, and interactions.
Cancer-causing and population variants within these NHEJ factors were statistically analyzed to
identify molecular drivers. A comprehensive catalog of NHEJ variants from genes known to be
mutated in cancer was curated, providing a resource for better understanding their role and molecular
mechanisms in diseases. The variant analysis highlighted different molecular drivers among the
distinct proteins, where cancer-driving variants in anchor proteins, such as Ku70/80, were more
likely to affect key protein–protein interactions, whilst those in the enzymatic components, such as
DNA-PKcs, were likely to be found in intolerant regions undergoing purifying selection. We believe
that the information acquired in our database will be a powerful resource to better understand the
role of non-homologous end-joining DNA repair in genetic disorders, and will serve as a source to
inspire other investigations to understand the disease further, vital for the development of improved
therapeutic strategies.

Keywords: non-homologous end joining; DNA repair genes; DNA Ligase IV; DNA-PKcs; KU70/80;
XRCC4; variant analysis; protein-protein interactions

1. Introduction

Maintaining the integrity of the genome is crucial for any organism’s survival [1].
Double-strand breaks (DSBs) are deemed as one of the most harmful forms of DNA damage
since, if left unrepaired, they can result in cell death, or chromosomal rearrangements if
inappropriately repaired, leading to cancer [2]. Nonhomologous DNA end joining (NHEJ)
is one of the main DSB repair pathways used to repair DNA DSBs in mammalian cells and
occurs throughout the cell cycle [3].

The primary participating factors in NHEJ DNA repair machinery include Ku70/Ku80
heterodimers, DNA-PKcs, XLF, XRCC4, and DNA Ligase IV. The Ku70/Ku80 heterodimer
binding to the broken DNA initiates the NHEJ repair machinery. Hence, this recruits
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DNA-PK, whose autophosphorylation is vital for NHEJ. After DSB end-processing, Ligase
IV interacts with XRCC4 and XLF to form an NHEJ-specific Ligase [4].

Variants have been defined in multiple components of the NHEJ DNA repair pathway,
including PRKDC (encoding DNA-PKcs), XRCC4, XRCC5 (encoding Ku80), XRCC6 (encod-
ing Ku70) and LIG4 (encoding DNA Ligase IV) [5]. These variants have been associated
with various human syndromes, including microcephaly [6], severe combined immunodefi-
ciency (SCID) [7], growth delay, Fanconi anemia [8], and different hereditary cancers [9,10].
Additionally, it has been demonstrated by a significant amount of genetic evidence that the
loss or variation of the core NHEJ players leads to increased genomic instability and the
development of cancer [11]

Numerous studies have sought to identify genetic single nucleotide polymorphisms
associated with carcinogenesis in the core NHEJ factors [12–15]. Notably, many of these
studies had small patient sample sizes and needed to be subsequently verified. Indeed,
many of the NHEJ proteins are well described; however, information about the molecular
consequences of missense variants in NHEJ’s main components has yet to be fully charac-
terized by a single source. Thus, this information is scattered throughout the literature.

Previously, we have demonstrated that computational approaches can be applied for
a more profound understanding of the effects of missense variants on the 3D structure of
the protein to elucidate the molecular mechanisms underlying the disease and improve the
prediction of the disease prognosis [16–18].

We prioritized four NHEJ core factors, Ku70/80, Ligase IV, DNA-PKcs, and XRCC4,
for our computational analysis due to the relatively high concentration of cancer-causing
missense variants distributed in these factors. To that end, we characterized and analyzed
cancer-causing missense variants’ structural and functional consequences and compared
them statistically to those caused by nonpathogenic (population) variants. In addition to
providing the most exhaustive list of missense variants for NHEJ core components, this
study incorporates a methodology for exploring and analyzing these variants to better
understand vital mechanisms of genetic disorders.

2. Methods
2.1. Data Collection

As a starting point, the disease-causing (clinical) missense variants were collected
from the COSMIC [19] database that incorporates somatic variants in human cancer. These
variants were first curated in 2019 and updated in 2022.

The core NHEJ factors XRCC4 (n = 67) Ligase IV (n = 259), Ku70/80 heterodimer
(n = 346) and DNA-PKcs (n = 654) were favored owing to their strong associations with
disease and their respective enrichments in missense variants. Additionally, we collected a
set of nonpathogenic variants based on population variation acquired using gnomAD [20]
V.2.1.1; these variants were annotated using the Ensembl Variant Effect Predictor (VEP) [21]
V.95. At this stage, we removed those variants that showed inconsistent variantal con-
sequences across both the COSMIC and gnomAD databases to reduce the potential for
misunderstanding, and any remaining population variants in XRCC4 (n = 83) DNA Ligase
IV(n = 444), Ku70/80 heterodimer (n = 380) and DNA-PKcs (n = 1483) were regarded as
nonpathogenic.

2.2. NHEJ Structural Curation

It was possible to obtain the experimental crystal structure of the Ku 70/80 heterodimer
(PDB ID: 6ERG [22]) bound to DNA and XLF generated at a resolution of 2.90 Å. Structural
pre-processing and minimization was performed using Maestro V.11.4 to fill in missing
atoms and residues and to remove atomic clashes. This structure was used to calculate
Ku70/80 variant features, while the AlphaFold2 structure of Ku70/80 was used to obtain
the predicted local distance difference test (pLDDT) scores. DNA-PKcs’ crystal structure
(PDB ID: 5Y3R [23]) was available bound to Ku70/80, and it was used for calculating
the variant features for DNA-PKcs. Similar to Ku70/80, the structure obtained using
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AlphaFold2 of DNA-PKcs was used to calculate pLDDT scores. As RCSB PDB lacks full
experimental structures for LIG4 and XRCC4, AlphaFold2 [24] was used to generate full
structures for these proteins. One experimental structure of LIG4 bound to DNA was found
(PDB: 6BKG, residues 1–620) and used for calculating the variantal features, specifically
(changes in nucleic acid (DNA) affinity).

2.3. Feature Engineering

Biophysical properties of proteins were calculated by considering changes in protein–protein
interaction, function and conservation, stability and dynamics, and local residue environment.
Wildtype residue environment parameters were investigated, including relative solvent acces-
sibility (RSA), backbone phi and psi angles, and residue depth. Several conservation-based
features were incorporated, including rates of residue evolution, ConSurf [25], and deleterious-
ness predictions using Polyphen-2 [26], SNAP2 [27], PROVEAN [28], MTR3D [29], Envision [30],
and SIFT [31]. Further, we considered evolutionary substitution matrices such as PAMs and BLO-
SUMs. Alphafold2 pLDDT scores [24] were also assessed for determining residue localizations
within disordered regions.

We conducted in silico biophysical measurements based on mCSM-Stability [32], Dyna-
Mut2 [33], DynaMut [34], SDM [35], and DUET [36] to predict variants’ changes in stability
and dynamics. Also, we calculated variantal effects on protein–protein interactions via
mCSM-PPI [37] and mCSM-PPI2 [38], along with distances to the interface. The calculations
of protein interactions included gene-dependent Ku heterodimer, DNA-PKcs and LIG4
bound to DNA. The associated impacts of these bindings on affinity were calculated for the
experimental structures 6BKG and 5Y3R with mCSM-NA [39]. For DNA-PKcs, the distance
to ATP was measured. Using Arpeggio [40], we assessed the effects of variant on local
molecular interactions.

2.4. Qualitative and Statistical Analysis

We compared the consequences of pathogenic and nonpathogenic variants on the
calculated features using Welch’s two-tailed t-test to determine potential molecular drivers
in the NHEJ repair machinery. To evaluate features as potential molecular drivers, we
looked for statistically significant differences between the two classes (p-value < 0.05).

A comparison of individual variants in terms of heterodimer affinity (mCSM-PPI and
mCSM-PPI2), protein stability (DynaMut2), and vibrational entropy (ENCoM value, ob-
tained using DynaMut) was performed, as previously described, based on their 0structural
localization. Variants of KU70/80 were assessed based on heterodimer affinity changes
rather than stability changes since even minor changes at the heterodimer interface can
significantly contribute to pathogenicity. It is noteworthy that only variants located within
a 10 Å of the protein–protein interface of the Ku70/80 heterodimer were examined, since
heterodimer affinity has been regarded to subside over distance.

All measures represented as a difference in Gibbs free energy of folding (∆∆G, in
kcal/mol) were assessed based on their magnitude and direction, low (0.05 ≤ |∆∆G| < 0.5),
intermediate (0.5 ≤ |∆∆G| < 1) or high (|∆∆G| ≥ 1), further highlighting each variant’s
main molecular consequence.

2.5. Model Training

Our final analysis used the ensemble algorithm ExtraTrees (with 100 trees) within
Sci-kit Learn V.0.20.3. [41] to test the predictability of important features for phenotyping
variants. A comparison of the performance of all features and subsets of important features
in phenotyping was conducted, with important features highlighted from each model.

3. Results
3.1. Data Curation and Variant Distribution of NHEJ Principal Components

The final curated database was acquired from COSMIC and gnomAD and incorporates
a total of 1326 pathogenic and 2390 nonpathogenic missense variants in NHEJ main factors,
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spread across five genes, summarised in online Supplemental Table S1. Although missense
variants in the main components of NHEJ repair machinery are not the only cause of the
disease (cancer), computational approaches, such as those accounting for protein structural
consequences, can effectively analyse these types of genetic variation.

Accordingly, we identified potential molecular drivers of disease by applying our
computational analysis pipeline to the most mutated genes in NHEJ DNA repair machin-
ery: LIG4, Ku70/80 (XRCC5/6), DNA-PKcs (PRKDC), and XRCC4. An overview of the
phenotypes collected for each of the NHEJ core components is described in Table 1.

Table 1. Data curation of NHEJ variants.

Protein Class n
Pathogenic 346

Ku70/80 heterodimer Nonpathogenic 380
Pathogenic 654

DNA-PKcs Nonpathogenic 1483
Pathogenic 259DNA Ligase IV

Nonpathogenic 444
Pathogenic 67

XRCC4 Nonpathogenic 83

Next, we visualized the distributions of the missense variants within the structures
of NHEJ principal components (Supplemental Figure S1), which illustrated that cancer-
causing (pathogenic) variants were widely distributed across each gene of the NHEJ core
components and their subsequent 3D structures without a specific localization. Similar
patterns were observed for the population variants (nonpathogenic) within each of the
principal NHEJ players.

3.2. Identifying Molecular Drivers in Ku70/80 Heterodimer

A comparison of the molecular effects of Ku70/80 pathogenic (n = 346) with non-
pathogenic (n = 380) variants (Figure 1A) revealed that pathogenic variants were more
likely to be found close to the protein–protein interface, leading to a disruption of the inter-
action between the KU70/80 heterodimer (Distance_Ku70_80 p-value: 0.043). In addition,
as estimated by measures of functional deleteriousness (SNAP2 p-value: 0.022, PROVEAN
p-value: 0.017, SIFT p-value: 0.003), pathogenic variants tend to occur at functionally
essential protein regions.

Based on these effects, we developed a predictor that could correctly identify 91%
of pathogenic variants and 96% of nonpathogenic variants. As a result of our predictor
predictions, Distance_Ku70_80 has been deemed the most significant pathogenicity driver
(contributed the most by 4%, Figure 1B). According to these observations, tumorigenesis is
primarily associated with a Ku70/80 function disruption, where pathogenic variants are
localized within the protein–protein interface.

As a final analysis, to determine the main drivers of pathogenicity in Ku70/80, we
analyzed each pathogenic variant structurally (Figure 1C). We found that 54% of these
variants decrease stability, and 60% reduce protein–protein interactions within the Ku
heterodimer. The findings indicate that, in addition to reducing stability, Ku-mediated
tumorigenesis is caused by a decrease in protein–protein interactions and conformational
changes within the heterodimer.
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Figure 1. Main drivers of Ku70/80 pathogenicity. Based on statistically significant features (A),
interaction profiles associated with variants play an essential role in Ku-mediated tumorigenesis.
Supervised machine learning (B) confirmed the high predictive potential of the changes in the protein–
protein interface of the Ku heterodimer. Through mapping variants on the heterodimer structure (C),
we were able to verify that stability plays a critical role in disease (red), as do conformational changes
(light blue).

3.3. Identifying Molecular Drivers of Pathogenicity in DNA-PKcs

An analysis of DNA-PKcs pathogenic variants (n = 654) compared to nonpathogenic
ones (n = 1483) showed that pathogenic variants were more likely to be found in functionally
important and intolerant regions undergoing purifying selection based on conservation
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(PAM30 p-value: 3 × 10−5) and function (MTR score p-value: 0.010) calculations for proteins
(Supplemental Figure S2A).

As a result of this localization, pathogenic variants were likewise highly likely to
be solvent-accessible (RSA p-value: 0.004) and, hence, reactive towards binding partners.
Regarding ligand binding (ATP), pathogenic variants were particularly clustered near the
ATP binding sites (p-value: 0.004). Closeness to ATP binding implies that ATP-mediated
changes in catalytic DNA-PKcs activity likely drive pathogenicity.

A machine learning-based predictor was trained using all significant features, which
correctly classified 97% of pathogenic variants and 94% of nonpathogenic variants. Based
on the various contributors to these predictions (Supplemental Figure S2B), it was found
that changes in ATP-binding affinity (distance to ATP) contributed the most (16%). In
contrast, the MTR score contributed substantially (8%). We also investigated changes in
the DNA affinity of the DNA-bound structure (PDB 5Y3R, residues 1503–1538) caused
by a subset of three pathogenic and 10 nonpathogenic variants (Supplemental Table S2).
No notable differences between phenotypic classes were observed besides the significant
enrichment of nonpathogenic variants. It is suggested, however, that DNA-mediated effects
are not important drivers of tumorigenesis as the DNA-binding region within DNA-PKcs
is enriched in nonpathogenic variants.

3.4. Uncovering Molecular Drivers in LIG4

When analyzing the molecular consequences of pathogenic (n = 259) variants in
comparison to nonpathogenic (n = 444) variants in DNA LIG4 (Figure 2A), we observed
that pathogenic variants tend to cluster in functionally essential regions of the protein (MTR-
3D p-value: 7 × 10−5, SNAP2 p-value: 0.023, Envision score p-value: 0.009). Additionally, it
was observed that pathogenic variants reduce protein stability (∆∆G-sdm p-value: 0.044).

The phenotypes of all pathogenic and nonpathogenic variants in our dataset could
be predicted using a machine-learning analysis combining these influential molecular
descriptors. For the predictions, the developed classifier used functional scores represented
by MTR-3D (4%), Envision (3.2%), SNAP2 (2.7%), and ∆∆G-sdm (2.6%, Figure 2B), further
highlighting their involvement in pathogenicity.

Using changes in stability and vibrational entropy to analyze pathogenic variant in
LIG4 (Figure 2C), we found that most variants were associated with increased flexibility
(23%) or protein destabilization (30%), further establishing the role of protein conforma-
tional changes in tumorigenesis and pathogenicity of LIG4.

3.5. Uncovering Molecular Drivers in XRCC4

Although comparable drivers of pathogenicity were observed in XRCC4 (Figure 3A),
as expressed by protein conservation (ConSurf p-value: 0.016), distinctive mechanisms
for variant localization were seen. The distribution of phi angles (phi p-value: 0.007) for
pathogenic variants (n = 67) was more distinct than that for nonpathogenic ones (n = 83);
they tend to cluster at the core of the protein (residue depth p-value: 1.6 × 10−5). In
addition, variantal changes in stability highlighted that pathogenic variants in XRCC4 are
highly destabilizing (∆∆G_dynamut p-value: 0.042).

When we trained a machine learning-based predictor by combining all of these sig-
nificant features, 95% of pathogenic and 81% of nonpathogenic variants were correctly
classified. The local residue environment represented by residue depth contributed the
most towards the predictor predictions, followed by phi angle (17.5%), ConSurf (9%) and
ddg_dynamut (9%) (Figure 3B). It is evident from the highlighted results that variant local-
ization explains how different protein conformational states result in functional changes
that are essential for elucidating disease.

When pathogenic variant consequences on the protein structure were examined in
terms of protein stability and vibrational entropy (Figure 3C), it was found that, in XRCC4,
pathogenic variants mainly cause clinical phenotypes by destabilizing the protein (35.8%),
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as well as causing a rise in protein flexibility (43%), indicating that protein conformational
changes contribute to disease development as precursor mechanisms to carcinogenesis.
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Figure 2. Main drivers of LIG4 pathogenicity. The statistically significant features (A) determined
by Welch’s sample t-test revealed that LIG4-mediated carcinogenesis is driven by both stability and
MTR3D, which signifies functional deleteriousness, as verified via supervised machine learning (B),
which had the most considerable predictive power. Most pathogenic variants (C) result in destabiliz-
ing (red) or increasing flexibility (light blue), providing further evidence of conformational effects.
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Figure 3. Main drivers of XRCC4 pathogenicity. Welch’s sample t-tests identified statistically signifi-
cant features (A) that suggested protein conformation plays an essential role in XRCC4-mediated
tumorigenesis, which may expose key residues close to the protein surface, as indicated by supervised
machine learning (B). Residue depth had the most considerable predictive power. As we mapped
variants in 3D (C), we were also able to establish the role of stability and conformational changes in
disease (displayed in red and light blue).

4. Discussion

Our work comprehensively analyzes the consequences of missense variants driving
carcinogenesis in the core players of the NHEJ DNA repair machinery, Ku70/80, XRCC4,
Ligase IV and DNA-PKcs. Despite being involved in distinctive physiological functions,
each of these genes shows standard molecular drivers of disease. Mainly, according to
our predictors, all pathogenic variants were functionally deleterious across three core
components of NHEJ, Ku70/80, DNA-PKcs and LIG4, while those in XRCC4 localized
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in areas with a low evolution rate (ConSurf). However, when viewing pathogenic and
nonpathogenic variants within protein structures, all variants were widely distributed
across the whole structure, with no particular domain localization.

Other distinctions between the five genes were associated with their unique biological
functions. Specifically, pathogenic variants of LIG4 and XRCC4 reduced protein stability,
consistent with our previous findings [5].

In addition, Ku70/80 interaction measurements suggest that protein–protein affinity
change is crucial for Ku70/80 function, as pathogenic variants cluster near the protein
interface and reduce the heterodimer binding. On a larger variant dataset, this study
demonstrated the importance of protein–protein interaction affinity in Ku70/80-mediated
carcinogenesis, which has been briefly investigated and implicated in destabilizing Ku’s
carboxy-terminal arm region that plays an essential role in heterodimerization [42].

Interestingly, when supervised machine learning was used to fit the data, these affinity
changes had the highest phenotypic prediction potential. This observation suggests that
these changes may play a role in tumorigenesis and pathogenesis.

Nevertheless, we could not observe conclusive impacts on nucleic acid affinity caused
by pathogenic variants when examining the interaction profile of Ku70/80, DNA-PKcs and
DNA Ligase IV variants to nucleic acids due to a need for more sufficient data. Despite
extensive data curation, pathogenic variants were not detected within nucleic acid binding
regions, suggesting that these interactions are crucial for transcription.

Regarding the four protein structures, the molecular drivers identified can be inter-
preted as a cause of cancer progression and genomic instability. Our work emphasizes how
protein–protein affinity change plays a crucial role in Ku70/80-mediated disease, in which
protein–protein affinity change presents the best predictability of classifying variants using
machine learning. Among the robust predictive features of DNA-PKcs was the distance
to ATP and MTR, since pathogenic variants tend to be found closer to ATP binding and
intolerant regions undergoing purifying selection. Protein function consequences best
indicated the LIG4 variant phenotype. Lastly, when viewing XRCC4, variant phenotype
was best predicted by the residue depth, as pathogenic variants were found to occur at
the protein core. A closer look at molecular changes revealed several disease mechanisms
associated with carcinogenesis.

Over 2983 missense variants are listed in our final database (online Supplemental Table S1),
making it the most comprehensive list of NHEJ missense variants available. Cancer patients
have also been diagnosed with non-missense variants, such as indels; however, in our work,
we focused on missense variants, since structure-based techniques can be used to analyze
them with a high throughput, so the three-dimensional consequences of a variant can be
adequately considered.

Our database represents the present landscape of missense variants in the NHEJ
repair machinery. As missense variants are readily detected in the clinic, cross-referencing
variants with our resource can help in the early detection of cancer risk, allowing for
the development of therapeutic strategies to slow the disease’s progression. In silico
simulations of variantal change can be used to gain insight into disease mechanisms
across various genes, as demonstrated in this work using LIG4, Ku70/80 (XRCC5/6), DNA-
PKcs (PRKDC), and XRCC4. We have gained insight into disease development across the
four proteins by combining structure-based estimators. Furthermore, since cancer is a
complex disease with multiple aspects, the structural insights regarded in this study and
the implications that may follow may be used to identify effective anticancer treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14101890/s1, Figure S1: An overview of mutation distribu-
tions in NHEJ core components; Figure S2: Main drivers of DNA-PKcs pathogenicity; Table S1: NHEJ
mutation curated database; Table S2: Mutation effects on DNA affinity in DNA-PKcs;.

Author Contributions: Conceptualization, D.B.A.; methodology, R.A.-J., M.K. and Y.M.; software,
Y.M.; formal analysis, R.A.-J. and M.K.; data curation. R.A.-J.; writing-original draft preparation,

https://www.mdpi.com/article/10.3390/genes14101890/s1
https://www.mdpi.com/article/10.3390/genes14101890/s1


Genes 2023, 14, 1890 10 of 11

R.A.-J.; writing-review and editing, M.K., Y.M. and D.B.A.; visualization, R.A.-J. and M.K.; supervi-
sion, D.B.A.; project administration, D.B.A.; funding acquisition, D.B.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by an Investigator Grant from the National Health and Medical
Research Council (NHMRC) of Australia [GNT1174405] and the Victorian Government’s Operational
Infrastructure Support Program.

Data Availability Statement: This article includes all data relevant to the study, or the data are
provided as supplementary information. A list of all the data collected and generated in this study
can be found at http://biosig.unimelb.edu.au/strunhej (accessed on 28 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, M.; Hong, F.; Wang, Q.-E. DNA Damage Response and Cancer Metastasis: Clinical Implications and Therapeutic Opportuni-

ties. In Metastasis; Exon Publications: Brisbane, AU, Australia, 2022; pp. 117–136.
2. Trenner, A.; Sartori, A.A. Harnessing DNA double-strand break repair for cancer treatment. Front. Oncol. 2019, 9, 1388. [CrossRef]

[PubMed]
3. Chang, H.H.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to

double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [CrossRef] [PubMed]
4. Yano, K.-I.; Morotomi-Yano, K.; Adachi, N.; Akiyama, H. Molecular mechanism of protein assembly on DNA double-strand

breaks in the non-homologous end-joining pathway. J. Radiat. Res. 2009, 50, 97–108. [CrossRef]
5. Murray, J.E.; Van Der Burg, M.; IJspeert, H.; Carroll, P.; Wu, Q.; Ochi, T.; Leitch, A.; Miller, E.S.; Kysela, B.; Jawad, A. Mutations in

the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 2015, 96, 412–424. [CrossRef]
6. Rosin, N.; Elcioglu, N.H.; Beleggia, F.; Isgüven, P.; Altmüller, J.; Thiele, H.; Steindl, K.; Joset, P.; Rauch, A.; Nürnberg, P. Mutations

in XRCC4 cause primary microcephaly, short stature and increased genomic instability. Hum. Mol. Genet. 2015, 24, 3708–3717.
[CrossRef] [PubMed]

7. Gao, Y.; Chaudhuri, J.; Zhu, C.; Davidson, L.; Weaver, D.T.; Alt, F.W. A targeted DNA-PKcs-null mutation reveals DNA-PK-
independent functions for KU in V (D) J recombination. Immunity 1998, 9, 367–376. [CrossRef]

8. Nie, Y.; Li, Y.; Li, X.; Wilson, A.F.; Pang, Q. The non-homologous end-joining activity is required for Fanconi anemia fetal HSC
maintenance. Stem Cell Res. Ther. 2019, 10, 114. [CrossRef] [PubMed]

9. Woodbine, L.; Gennery, A.R.; Jeggo, P.A. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair
2014, 16, 84–96. [CrossRef]

10. Bau, D.-T.; Fu, Y.-P.; Chen, S.-T.; Cheng, T.-C.; Yu, J.-C.; Wu, P.-E.; Shen, C.-Y. Breast cancer risk and the DNA double-strand break
end-joining capacity of nonhomologous end-joining genes are affected by BRCA1. Cancer Res. 2004, 64, 5013–5019. [CrossRef]

11. Caracciolo, D.; Riillo, C.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Alternative Non-Homologous End-Joining: Error-Prone
DNA Repair as Cancer’s Achilles’ Heel. Cancers 2021, 13, 1392. [CrossRef]

12. Sishc, B.J.; Davis, A.J. The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 2017, 9, 81.
[CrossRef] [PubMed]

13. Ferguson, D.O.; Sekiguchi, J.M.; Chang, S.; Frank, K.M.; Gao, Y.; DePinho, R.A.; Alt, F.W. The nonhomologous end-joining
pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl. Acad. Sci. USA 2000,
97, 6630–6633. [CrossRef] [PubMed]

14. Gu, Y.; Jin, S.; Gao, Y.; Weaver, D.T.; Alt, F.W. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity,
defective DNA end-binding activity, and inability to support V (D) J recombination. Proc. Natl. Acad. Sci. USA 1997, 94, 8076–8081.
[CrossRef] [PubMed]

15. Nussenzweig, A.; Sokol, K.; Burgman, P.; Li, L.; Li, G.C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage:
The effects of ionizing radiation on growth, survival, and development. Proc. Natl. Acad. Sci. USA 1997, 94, 13588–13593.
[CrossRef]

16. Portelli, S.; Phelan, J.E.; Ascher, D.B.; Clark, T.G.; Furnham, N. Understanding molecular consequences of putative drug resistant
mutations in Mycobacterium tuberculosis. Sci. Rep. 2018, 8, 15356. [CrossRef]

17. Portelli, S.; Barr, L.; de Sá, A.G.; Pires, D.E.; Ascher, D.B. Distinguishing between PTEN clinical phenotypes through mutation
analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3097–3109. [CrossRef]

18. Airey, E.; Portelli, S.; Xavier, J.S.; Myung, Y.C.; Silk, M.; Karmakar, M.; Velloso, J.P.; Rodrigues, C.H.; Parate, H.H.; Garg, A.
Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–32.

19. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.
COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019, 47, D941–D947. [CrossRef]

20. Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.;
Birnbaum, D.P. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443.
[CrossRef]

http://biosig.unimelb.edu.au/strunhej
https://doi.org/10.3389/fonc.2019.01388
https://www.ncbi.nlm.nih.gov/pubmed/31921645
https://doi.org/10.1038/nrm.2017.48
https://www.ncbi.nlm.nih.gov/pubmed/28512351
https://doi.org/10.1269/jrr.08119
https://doi.org/10.1016/j.ajhg.2015.01.013
https://doi.org/10.1093/hmg/ddv115
https://www.ncbi.nlm.nih.gov/pubmed/25839420
https://doi.org/10.1016/S1074-7613(00)80619-6
https://doi.org/10.1186/s13287-019-1206-0
https://www.ncbi.nlm.nih.gov/pubmed/30925933
https://doi.org/10.1016/j.dnarep.2014.02.011
https://doi.org/10.1158/0008-5472.CAN-04-0403
https://doi.org/10.3390/cancers13061392
https://doi.org/10.3390/cancers9070081
https://www.ncbi.nlm.nih.gov/pubmed/28684677
https://doi.org/10.1073/pnas.110152897
https://www.ncbi.nlm.nih.gov/pubmed/10823907
https://doi.org/10.1073/pnas.94.15.8076
https://www.ncbi.nlm.nih.gov/pubmed/9223317
https://doi.org/10.1073/pnas.94.25.13588
https://doi.org/10.1038/s41598-018-33370-6
https://doi.org/10.1016/j.csbj.2021.05.028
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1038/s41586-020-2308-7


Genes 2023, 14, 1890 11 of 11

21. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The ensembl variant effect
predictor. Genome Biol. 2016, 17, 122. [CrossRef]

22. Nemoz, C.; Ropars, V.; Frit, P.; Gontier, A.; Drevet, P.; Yu, J.; Guerois, R.; Pitois, A.; Comte, A.; Delteil, C. XLF and APLF bind Ku80
at two remote sites to ensure DNA repair by non-homologous end joining. Nat. Struct. Mol. Biol. 2018, 25, 971–980. [CrossRef]

23. Yin, X.; Liu, M.; Tian, Y.; Wang, J.; Xu, Y. Cryo-EM structure of human DNA-PK holoenzyme. Cell Res. 2017, 27, 1341–1350.
[CrossRef] [PubMed]

24. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef] [PubMed]

25. Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to
estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [CrossRef]

26. Adzhubei, I.; Jordan, D.; Sunyaev, S. Predicting functional effect of human missense mutations using PolyPhen-2. In Current
Protocols in Human Genetics; Wiley: Hoboken, NJ, USA, 2013; Chapter 7, Unit 7.20.

27. Hecht, M.; Bromberg, Y.; Rost, B. Better prediction of functional effects for sequence variants. BMC Genom. 2015, 16 (Suppl. 8), S1.
[CrossRef] [PubMed]

28. Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels.
Bioinformatics 2015, 31, 2745–2747. [CrossRef] [PubMed]

29. Silk, M.; Pires, D.E.; Rodrigues, C.H.; D’Souza, E.N.; Olshansky, M.; Thorne, N.; Ascher, D.B. MTR3D: Identifying regions within
protein tertiary structures under purifying selection. Nucleic Acids Res. 2021, 49, W438–W445. [CrossRef] [PubMed]

30. Gray, V.E.; Hause, R.J.; Luebeck, J.; Shendure, J.; Fowler, D.M. Quantitative Missense Variant Effect Prediction Using Large-Scale
Mutagenesis Data. Cell Syst. 2018, 6, 116–124.e3. [CrossRef]

31. Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814.
[CrossRef]

32. Pires, D.E.; Ascher, D.B.; Blundell, T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures.
Bioinformatics 2014, 30, 335–342. [CrossRef]

33. Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. DynaMut2: Assessing changes in stability and flexibility upon single and multiple
point missense mutations. Protein Sci. 2021, 30, 60–69. [CrossRef]

34. Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and
stability. Nucleic Acids Res. 2018, 46, W350–W355. [CrossRef] [PubMed]

35. Pandurangan, A.P.; Ochoa-Montaño, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein
stability. Nucleic Acids Res. 2017, 45, W229–W235. [CrossRef] [PubMed]

36. Pires, D.E.; Ascher, D.B.; Blundell, T.L. DUET: A server for predicting effects of mutations on protein stability using an integrated
computational approach. Nucleic Acids Res. 2014, 42, W314–W319. [CrossRef]

37. Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. mmCSM-PPI: Predicting the effects of multiple point mutations on protein–protein
interactions. Nucleic Acids Res. 2021, 49, W417–W424. [CrossRef] [PubMed]

38. Rodrigues, C.H.; Myung, Y.; Pires, D.E.; Ascher, D.B. mCSM-PPI2: Predicting the effects of mutations on protein–protein
interactions. Nucleic Acids Res. 2019, 47, W338–W344. [CrossRef] [PubMed]

39. Pires, D.E.V.; Ascher, D.B. MCSM-NA: Predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res.
2017, 45, W241–W246. [CrossRef]

40. Jubb, H.C.; Higueruelo, A.P.; Ochoa-Montaño, B.; Pitt, W.R.; Ascher, D.B.; Blundell, T.L. Arpeggio: A web server for calculating
and visualising interatomic interactions in protein structures. J. Mol. Biol. 2017, 429, 365–371. [CrossRef]

41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

42. Doherty, A.J.; Jackson, S.P. DNA repair: How Ku makes ends meet. Curr. Biol. 2001, 11, R920–R924. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1038/s41594-018-0133-6
https://doi.org/10.1038/cr.2017.110
https://www.ncbi.nlm.nih.gov/pubmed/28840859
https://doi.org/10.1038/s41586-021-03819-2
https://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1093/nar/gkw408
https://doi.org/10.1186/1471-2164-16-S8-S1
https://www.ncbi.nlm.nih.gov/pubmed/26110438
https://doi.org/10.1093/bioinformatics/btv195
https://www.ncbi.nlm.nih.gov/pubmed/25851949
https://doi.org/10.1093/nar/gkab428
https://www.ncbi.nlm.nih.gov/pubmed/34050760
https://doi.org/10.1016/j.cels.2017.11.003
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1093/bioinformatics/btt691
https://doi.org/10.1002/pro.3942
https://doi.org/10.1093/nar/gky300
https://www.ncbi.nlm.nih.gov/pubmed/29718330
https://doi.org/10.1093/nar/gkx439
https://www.ncbi.nlm.nih.gov/pubmed/28525590
https://doi.org/10.1093/nar/gku411
https://doi.org/10.1093/nar/gkab273
https://www.ncbi.nlm.nih.gov/pubmed/33893812
https://doi.org/10.1093/nar/gkz383
https://www.ncbi.nlm.nih.gov/pubmed/31114883
https://doi.org/10.1093/nar/gkx236
https://doi.org/10.1016/j.jmb.2016.12.004
https://doi.org/10.1016/S0960-9822(01)00555-3

	Introduction 
	Methods 
	Data Collection 
	NHEJ Structural Curation 
	Feature Engineering 
	Qualitative and Statistical Analysis 
	Model Training 

	Results 
	Data Curation and Variant Distribution of NHEJ Principal Components 
	Identifying Molecular Drivers in Ku70/80 Heterodimer 
	Identifying Molecular Drivers of Pathogenicity in DNA-PKcs 
	Uncovering Molecular Drivers in LIG4 
	Uncovering Molecular Drivers in XRCC4 

	Discussion 
	References

