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Abstract: Occult macular dystrophy (OMD) is the most prevalent form of macular dystrophy in
East Asia. Beyond RP1L1, causative genes and mechanisms remain largely uncharacterised. This
study aimed to delineate the clinical and genetic characteristics of OMD syndrome (OMDS). Patients
clinically diagnosed with OMDS in Japan, South Korea, and China were enrolled. The inclusion
criteria were as follows: (1) macular dysfunction and (2) normal fundus appearance. Comprehensive
clinical evaluation and genetic assessment were performed to identify the disease-causing variants.
Clinical parameters were compared among the genotype groups. Seventy-two patients with OMDS
from fifty families were included. The causative genes were RP1L1 in forty-seven patients from thirty
families (30/50, 60.0%), CRX in two patients from one family (1/50, 2.0%), GUCY2D in two patients
from two families (2/50, 4.0%), and no genes were identified in twenty-one patients from seventeen
families (17/50, 34.0%). Different severities were observed in terms of disease onset and the prognosis
of visual acuity reduction. This multicentre large cohort study furthers our understanding of the
phenotypic and genotypic spectra of patients with macular dystrophy and normal fundus. Evidently,
OMDS encompasses multiple Mendelian retinal disorders, each representing unique pathologies that
dictate their respective severity and prognostic patterns.
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1. Introduction

Occult macular dystrophy (OMD; OMIM:613587), first described by Miyake et al. in
1989 [1–5], is the most prevalent form of macular dystrophy in the East Asian population [6–16].
This non-syndromic autosomal dominant (AD) disorder is characterised by progressive
loss of visual acuity (VA) in both eyes despite the essentially normal fundus appearance
and normal full-field electroretinogram (ffERG) [1–3]. Thus, functional assessment to de-
tect confined macular dysfunction using focal macular ERG, multifocal ERG (mfERG), or
pattern ERG is key to making a diagnosis [1,2,9,17–23].

The advancement of detailed morphological assessments enables the observation of
characteristic features on spectral-domain optical coherence tomography (SD-OCT) im-
ages [6,9,11,24–32]. A ‘classical’ photoreceptor microstructure phenotype showing blurring
of the ellipsoid zone (EZ) and the absence of the interdigitation zone (IZ) is frequently
observed at the fovea in typical patients with AD-OMD, and subtle morphological changes
predominantly affecting IZ and other EZ and IZ patterns at the parafovea have been found
in patients with mild OMD [6,28].

Monoallelic sequence variants of the retinitis pigmentosa 1 like 1 (RP1L1; OMIM:
608581) gene were first identified as being responsible for OMD in two AD families in
2010 [25,33]. The immunohistochemistry assessment in monkeys demonstrated the ex-
pression of the RP1L1 protein in rod/cone photoreceptor cells, suggesting its role in mor-
phological and functional maintenance [33]. Consequently, many RP1L1 variants have
been reported in families with AD-OMD [6,10,11,14,15,19,34,35]. Since the identifying of
biallelic sequence variants illustrating the loss of function in patients with retinitis pigmen-
tosa (RP) in 2013, RP1L1 variants in an autosomal recessive (AR) manner have also been
reported [12,19,30,36–38].

Various phenotypic features have been reported in OMD caused by monoallelic RP1L1
variants (RP1L1-OMD; Miyake disease) and other disorders with macular dysfunction
and normal fundus (non-RP1L1 OMD), and the disease spectrum of occult macular dys-
function syndrome (OMDS), including hereditary and possibly non-hereditary diseases,
was first suggested in 2016 [11]. Recently, patients with inherited macular dystrophy and
normal fundus caused by genes other than RP1L1 have been reported (hereditary non-
RP1L1 OMD) [39,40]. Therefore, OMDS has been assumed to include multiple underlying
pathologies that affect the macula without an abnormal fundus appearance.

The East Asia Inherited Retinal Disease Society (EAIRDs; https://www.eairds.org/,
accessed on 1 May 2023.) was established in 2016 to investigate and treat IRD in the East
Asian population [6]. The first report described the detailed characteristics of East Asian
patients with RP1L1-OMD and revealed a wide range of clinical findings [6]; the second
report described the objective functional phenotypes detected using mfERG [7]; and the
third report described the scotoma patterns of varying clinical severities [8]. However, the
spectrum of OMDS has yet to be comprehensively investigated because of the lack of data
resources on non-RP1L1 OMD. Therefore, in this study, we aimed to thoroughly delineate
the clinical and genetic characteristics of OMDS in a large cohort of East Asian patients.

2. Materials and Methods
2.1. Patients

The research protocol conformed to the principles of the Declaration of Helsinki and
was approved by the local ethics committees of the participating institutions in Japan, South
Korea, and China (National Hospital Organization Tokyo Medical Centre, National Institute
of Sensory Organs [NISO], Bundang Hospital of Seoul National University (SNUBH),
Peking Union Medical College Hospital, Peking Union Medical College (PUMCH), Chinese
Academy of Medical Sciences) (Ref: R19-030, R 21-108, R22-028, JS-2056, B-1105/127-014).
Written informed consent was obtained from all of the participants.

Patients who were clinically diagnosed with OMDS between 1 June 2016 and 1 July
2023 were recruited via the EAIRDs online database. The inclusion criteria were as follows:
(1) evidence of macular dysfunction confirmed by electrophysiological assessment and

https://www.eairds.org/


Genes 2023, 14, 1869 3 of 19

(2) the presence of a normal fundus appearance shown by colour fundus photography or
fundoscopy. Patients with any signs of associated non-ocular abnormalities were excluded.
The affected family members of the proband who met the diagnostic criteria were also
included. Genetic diagnosis was performed in each country, and pathogenicity assessment
of the identified variants was centrally conducted at NISO. All cases were re-confirmed for
diagnosis by a principal investigator from each country (K.F., S.J.W. and R.S.), and cases
where there were differences in opinion between principal investigators were excluded
from this study. Some data on the included cases were partially published in previous
EAOMD reports [6–8].

2.2. Clinical Investigation

A comprehensive clinical examination was performed, including the conversion of the
best-corrected decimal VA (BCVA) to the logarithmic minimum resolution median angle
(logMAR). Detailed disease history, visual symptoms, gender, age, disease onset (when the
patient first noted symptoms or was diagnosed), and disease duration (from onset to exam-
ination) were recorded. Ophthalmological examinations included funduscopic observation,
fundus photographs, fundus autofluorescence images, SD-OCT, visual fields (VF), ffERG,
and mfERG, according to the international standard guidelines of the International Society
of Clinical Electrophysiology of Vision [41–44].

FfERGs were recorded with different recording systems in the 3 institutes [6]. A
custom-made system with a UTAS BigShot (LKC, MD, USA) and a MEB-9400K Neuropack
S1 (NIHON KOHDEN, Tokyo, Japan); and a LE4000 (Tomey, Aichi, Japan) was used in
NISO. A UTAS system (LKC, MD, USA) was used in SNUBH. RETIPort system (Roland
Consult, Wiesbaden, Germany) was used in PUMCH. The mfERGs were recorded with
different recording systems in the 3 institutes [7]. The Visual Evoked Response Imaging
System (VERIS Clinic 5.0.9; Electro-Diagnostic Imaging, San Mateo, CA, USA) was used
with a 61-hexagon stimulus element (5 eccentric rings) in NISO. VERIS (Clinic 6.0) was
used with a 103-hexagon stimulus element (6 rings) in PUMCH. The RETIscan system
(Roland Consult, Brandenburg, Germany) with a 61-hexagon stimulus element (5 rings),
VERIS (Clinic 4.0) with a 103-hexagon stimulus element (6 rings), and UTAS (3.5.0; LKC
Technologies, Gaithersburg, MD, USA) with a 61-hexagon stimulus element (5 rings) were
used in SNUBH.

2.3. Classification of Clinical Parameters (VF, mfERG, SD-OCT)

Based on the clinical parameters, patients were classified into the following subgroups:
VF, mfERG, and SD-OCT findings, according to previous reports [6–8]. Patients were classi-
fied into two patterns based on VF findings using standard automated visual field testing:
pattern 1, central scotoma; and pattern 2, other scotomas (e.g., paracentral scotoma) or no
scotoma [8]. Based on the mfERG findings, the patients were classified into three functional
groups: group 1, paracentral dysfunction with relatively preserved central/peripheral
function; group 2, homogeneous central dysfunction with preserved peripheral function;
and group 3, extensive dysfunction across the entire recorded area [7]. ‘Classical’ SD-OCT
findings were characterised by the blurring of the EZ and the absence of IZ at the macula
according to the previous literature [3,25,33]. The ‘non-classical’ findings show changes
not consistent with the classical phenotype, such as a relatively preserved EZ with focal
loss of IZ, loss of both EZ and IZ in focal areas, or atrophic changes within the outer retinal
layers [6].

2.4. Molecular Genetic Analysis

All monoallelic RP1L1 variants detected in the EAOMD cohort were reviewed and
in silico molecular genetic analyses were conducted in accordance with previous publica-
tions [6,45]. The pathogenicity of each detected RP1L1 variant was assessed according to
the guidelines of the American College of Medical Genetics and Genomics (ACMG) [46,47].
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2.5. Genotype Subgroup Classification

Genotypic subgroup classification of the OMD phenotype was performed based on
the underlying causative genes RP1L1, CRX, GUCY2D, and cases in which causative genes
were not detected (ND).

2.6. Comparison of Clinical Parameters and Clinical Classifications (VF/mfERG/SD-OCT)

Clinical parameters, including age, onset, disease duration, BCVA, VF classification,
mfERG classification, and SD-OCT classification, were compared between patients with
each causative gene group: RP1L1, CRX, GUCY2D, and ND. Kaplan-Meier survival analysis
was used to assess BCVA (logMAR 0.22 and logMAR 1.00). For genotype subgroups with
a limited number of patients (fewer than three), a literature search was conducted for
cases with identical variants to compile a comprehensive clinical dataset for a ‘genotype
review plus (R+)’. The percentage of patients in each VF/mfERG/SD-OCT subgroup was
calculated for each genotype.

2.7. Statistical Analysis

Statistical analyses were performed using Excel Tokei 4.04, provided by Social Research
and Information Inc. (Social Survey Research Information Co., Ltd., Tokyo, Japan) and SPSS
Statistics (Version 29, Statistical Package for the Social Sciences; IBM Corp, Armonk, NY,
USA). A chi-square test was applied to compare the categorical data (clinical classifications).

Statistical significance was set at p < 0.05. For genotype R+ analysis, cases previously
reported in the literature presenting the identical variants detected in this study were
incorporated [16,40,48–59]. Kaplan–Meier survival analysis was employed, utilising BCVA
metrics (LogMAR 0.22 and LogMAR 1.00 corresponding to the driver’s licence level and
social blind level in Japan, respectively), to generate survival curves to predict the natural
progression of VA deterioration. The log-rank test was used to compare the survival curves
across the different genotype groups.

3. Results
3.1. Patients

Seventy-two patients from fifty families who were clinically diagnosed with OMDS
were included in this study. Detailed information is provided in Table S1.

3.2. Demographics and Clinical Findings

The median age of onset in the 72 patients was 37.5 (range, 2–89) years. Fifty-four
patients reported reduced vision as the main complaint (54/72, 75.0%). Seven patients
(7/72, 9.7%) had no symptoms and five of these asymptomatic individuals were assessed
because of a history of AD inheritance in their families, while the other two were identified
during routine medical check-ups. Photophobia was reported in conjunction with reduced
vision in 20 patients (12/72, 27.8%). The median disease duration in the 72 patients was
10.5 (range, 0–63 years). Fourteen patients were immediately recruited after experiencing
visual symptoms or undergoing ocular examinations (duration, 0 years). The median
logMAR BCVA of the 72 cases was 0.52 and 0.52 for the right and left eyes, respectively
(range, −0.18 to 1.52 for the right and −0.18 to 1.7 for the left).

3.3. Classification of Clinical Parameters (VF, mfERG, SD-OCT)

VF, mfERG, and SD-OCT classifications were performed; detailed information is
provided in Table S1. The VF data were available for 67 patients. A central scotoma pattern
was detected in 50 participants (VF pattern 1, 50/67, 74.6%), and other or no scotoma
patterns were found in 17 patients (VF pattern 2, 13/67, 25.3%). The mfERG data were
available for fifty-eight patients; nine patients demonstrated paracentral dysfunction with
relatively preserved central and peripheral function (mfERG group 1, 9/58, 15.5%), forty-
two patients showed homogeneous central dysfunction with preserved peripheral function
(mfERG group 2, 42/58, 72.4%), and seven patients had widespread dysfunction in the
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recorded area (mfERG group 3, 7/34, 8.87%). The SD-OCT classification was available
for 72 patients. Classical characteristics of blurring of the EZ and absence of the IZ were
demonstrated in 42 patients (classical SD-OCT, 42/72, 58.3%). Non-classical changes that
were not consistent with the classical phenotype, such as a relatively preserved EZ with
focal loss of the IZ, loss of both the EZ and IZ in focal areas, or atrophic changes within the
outer retinal layers, were observed in 30 patients (non-classical SD-OCT, 30/72, 41.7%).

3.4. Molecular Genetics

Information on each genotype group is summarised in Table 1. The genetic data of
51 patients from 33 families are summarised in Table 2 and the detailed results of the
in silico analyses are presented in Table S2. Some of the genetic information has been
published elsewhere and the reference list is presented in Table 2.

Table 1. Demographic data and clinical classifications of 72 patients from 50 families with occult
macula dysfunction syndrome by genotype.

RP1L1 CRX GUCY2D Other OMD

Inheritance
(number of

families)

AD 23 1 1 5
AR 0 0 0 2

Sporadic 7 0 1 10

Age (years) † 49 (6–88) 54
(40–68)

47.5
(40–55)

55
(15–91)

Age at onset (years) † 30 (2–71) 49.5
(31–68)

26.5
(13–40)

45
(6–49)

Disease duration (years) † 11 (0–63) 4.5
(0–9)

21
(0–42)

8
(0–51)

BCVA
(logMAR) †

Right eye 0.52
(−0.08–1.52)

0.07
(−0.08–0.22)

0.91
(0.82–1)

0.4
(0.18–1.4)

Light eye 0.52
(−0.08–1.7)

0.16
(−0.08–0.4)

0.96
(0.82–1.1)

0.4
(0.18–1.4)

Visual field
pattern ††

Pattern 1 32 0 2 16
Pattern 2 11 2 0 4

mfERG
group §

Group 1 3 2 0 4
Group 2 28 0 2 12
Group 3 6 0 0 1

SD-OCT
classification §§

Classical 41 0 0 1
Non-classical 6 2 2 20

AD, autosomal dominant; AR, autosomal recessive; BCVA, best-corrected visual acuity; logMAR, logarithm of
minimum angle of resolution; mfERG, multifocal electroretinogram; RE, right eye; SD-OCT, spectral-domain
optic coherence tomography. † The median value and range of clinical parameters for each genotype group are
provided. †† Patients were classified into two patterns based on the results of VF testing using standard automated
perimetry: Pattern 1, central scotoma; Pattern 2, other scotomas (e.g., paracentral scotoma), or no scotoma, mainly
according to a previous publication. § Patients were classified into three objective functional groups based on
mfERG findings: Group 1, paracentral dysfunction with relatively preserved central/peripheral function; Group
2, homogeneous central dysfunction with preserved peripheral function; and Group 3, widespread dysfunction
over the recorded area, according to a previous publication. §§ Classical Spectral-domain Optical Coherence
Tomography (SD-OCT) findings were marked as a blurred ellipsoid zone (EZ) and an absence of an interdigitation
zone (IZ) at the macula. Conversely, non-classical findings present alterations incongruent with the typical
phenotype, including a locally absent IZ while retaining a relatively preserved EZ, a focal absence of both the EZ
and IZ, or atrophic transformations within the outer retinal layers.
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The causative genes were RP1L1 in forty-seven patients from thirty families (30/50,
60.0%; RP1L1 genotype group), CRX in two patients from one family (1/50, 2.0%; CRX
genotype group), and GUCY2D in two patients from two families (2/50, 4.0%; GUCY2D
genotype group). No disease-causing genes were detected in 21 patients from 17 fami-
lies (17/50, 34.0%; ND group). The detected variants include nine heterozygous RP1L1
variants, one heterozygous CRX variant, and two heterozygous GUCY2D variants; RP1L1,
NM_178857.6: c.133C>T, p.Arg45Trp; c.3581C>T, p.Thr1194Met/c.3587C>T, p.Thr1196Ile
complex; c.3593C>T p.Ser1198Phe; c.3596C>G, p.Ser1199Cys; c.3599G>A, p.Gly1200Asp;
c.3599G>C, p.Gly1200Ala; c.3602T>G, p.Val1201Gly; c.3602T>C, p.Val1201Ala; CRX,
NM_000554.6: c.128G>A, p.Arg43His; GUCY2D, NM_000180.4: c.2747T>C, p.Ile916Thr;
c.2513G>A, p.Arg838His. Three recurrent variants were identified: RP1L1, p.R45W (16/33,
18.2%), p.S1199C (7/33, 21.2%), and GUCY2D, p.I916T (2/33, 6.1%).

Table 2. Summary of causative genes and variants in 33 families with occult macular dystrophy.

Gene Nucleotide Change,
Amino Acid Change State Family

Number Reference

RP1L1 c.133C>T, p.Arg45Trp Het 16

Akahori et al. (2010) [33],
Tsunoda et al. (2012) [25],
Fujinami et al. (2019) [6],
Wang et al. (2020) [15]

RP1L1
c.3581C>T,

p.Thr1194Met/c.3587C>T,
p.Thr1196Ile

Het 1 Fujinami et al. (2016) [11]

RP1L1 c.3593C>T, p.Ser1198Phe Het 1 Fujinami et al. (2019) [6]

RP1L1 c.3595T>C, p.Ser1199Pro Het 1 Takahashi H et al. (2014) [31],
Fujinami et al. (2019) [6]

RP1L1 c.3596C>G, p.Ser1199Cys Het 7 Kabuto et al. (2012) [32],
Fujinami et al. (2019) [6]

RP1L1 c.3599G>A, p.Gly1200Asp Het 1 Fujinami et al. (2016) [11]

RP1L1 c.3599G>C, p.Gly1200Ala Het 1 Fujinami et al. (2019) [6]

RP1L1 c.3602T>G, p.Val1201Gly Het 1 Fujinami et al. (2016) [11]

RP1L1 c.3602T>C, p.Val1201Ala Het 1 This study

CRX c.128G>A, p.Arg43His Het 1 Fujinami-Yokokawa et al.
(2020) [39]

GUCY2D c.2747T>C, p.Ile916Thr Het 1 de Castro-Miró et al. (2014)
[49], Liu et al. (2020) [40]

GUCY2D c.2513G>A, p.Arg838His Het 1 Payne et al. (2001) [48],
Liu et al. (2020) [40]

OMDS, occult macular dysfunction syndrome; Het, heterozygous. Reference: NM_178857.5, ENST00000382483.3,
GRCh37; NM_000554.6 ENST00000221996.12,GRCh37,NM_000180.4, ENST00000254854.5GRCh37. Reference
numbers described in the text are provided for previous publications.

3.5. Demographics for Each Genotype Group

The demographic data for each genotype are summarised in Table 1 and representative
cases are presented in Figure 1. The box plots of the clinical parameters for each genotype
group are demonstrated in Figure 2. AD inheritance was detected in twenty-three RP1L1
families (23/30, 76.7%), one CRX family (1/1, 100.0%), and one GUCY2D family (1/2,
50.0%). In the ND genotype group, there were five families with AD inheritance (5/17,
29.4%) and two families with AR inheritance (2/17, 11.8%). The median ages for the RP1L1,
CRX, GUCY2D, and ND genotype groups were 49.0 (range, 6–88), 54.0 (range, 40–68),
47.5 (range, 40–55), and 55.0 (range, 15–91), respectively. The median age of onset for the
RP1L1, CRX, GUCY2D, and ND genotype groups was 30.0 (range, 2–71), 49.5 (range, 31–68),
26.5 (range, 13–40), and 45.0 (range, 6–49), respectively. The median duration of the disease
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for the RP1L1, CRX, GUCY2D, and ND genotype groups was 11.0 (range, 0–63), 4.5 (range,
0–9), 21.0 (range, 0–42), and 8.0 (range, 0–51), respectively.
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Figure 1. Representative cases with occult macular dysfunction syndrome in each genotype
group. The clinical presentation of typical cases in each genotype group (RP1L1, CRX, GUCY2D,
and cases in which the causative genes were not detected [ND]); fundus photographs, fundus
autofluorescence images, static visual fields (30-2), spectral-domain optical coherence tomography
(SD-OCT) images, and multifocal electroretinogram (mfERG). OMD, occult macular dystrophy. Top
low (patient 8): 19-year-old female, best-corrected decimal visual acuity (BCVA) to the logarithmic
minimum resolution median angle (logMAR) 0.82 in the right eye (RE) and 0.82 in the left eye
(LE). Second low (patient 44): 51-year-old female, logMAR BCVA RE −0.08 LE −0.08. Third low
(patient 48): 35-year-old male, logMAR BCVA RE 0.22 LE 0.4. Forth low (patient 51): 55-year-old
female, logMAR BCVA RE 1.0 LE 1.1. Bottom low (patient 60): 29-year-old male, logMAR RE 0.4
LE 0.4.
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Figure 2. Comparison of age, onset, duration, and best-corrected visual acuity (BCVA) among
RP1L1, CRX, GUCY2D, and other genotype (ND) groups. Age, onset, duration, and logarithm of the
minimum angle of resolution best-corrected visual acuity (logMAR BCVA) were compared among
the RP1L1, CRX, GUCY2D, and ND genotype groups. No statistically significant differences were
found in the clinical parameters, although there was a trend toward earlier onset and more severe
BCVA in the RP1L1 and GUCY2D genotype groups. ND, not detected.

3.6. Clinical Parameters and Classifications for Each Genotype Group

The median logMAR BCVA in the right/left eye for the RP1L1, CRX, GUCY2D, and
ND genotype groups were 0.52 (range, −0.08–1.52)/0.52 (range, −0.08–1.70), 0.07 (range,
−0.08–0.22)/0.16 (range, −0.08–0.4), 0.91 (range, 0.82–1.00)/0.96 (range, 0.82–1.10), and
0.40 (range, 0.18–1.40)/0.40 (range, 0.18–1.40). VF data were available for forty-three
RP1L1, two CRX, two GUCY2D, and 20 ND patients (Figure 3). The number of VF pattern
1/2 detected in the RP1L1, CRX, GUCY2D, and ND genotype groups was 32 (74.4%)/11
(25.6%), 0 (0.0%)/2 (100.0%), 0 (0.0%)/2 (100.0%), and 16 (80.0%)/4 (20.0%), respectively.
There were thirty-seven RP1L1, two CRX, two GUCY2D, and seventeen ND patients from
whom mfERG data were available (Figure 3). The mfERG group 1/2/3 detected in the
RP1L1, CRX, GUCY2D, and ND genotype groups was as follows: 3 (8.1%)/28 (75.7%)/6
(16.2%), 2 (100.0%)/0 (0.0%)/0 (0.0%), 0 (0.0%)/2 (100.0%)/0 (0.0%), and 4 (23.5%)/12
(70.6%)/1 (5.9%). SD-OCT data were available for forty-seven RP1L1, two CRX, two
GUCY2D, and twenty-one ND patients with available SD-OCT data (Figure 3). The number
of classical/non-classical SD-OCT findings in the RP1L1, CRX, GUCY2D, and ND genotype
groups were 41 (87.2%)/6 (12.8%), 0 (0.0%)/2 (100.0%), 0 (0.0%)/2 (100.0%), and 1 (4.8%)/20
(95.2%), respectively.
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Figure 3. Visual field (VF), multifocal electroretinogram (mfERG), and spectral-domain optical
coherence tomography (SD-OCT) classifications for each genotype group. The proportions of VF
patterns, mfERG groups, and SD-OCT classifications were compared among the genotype groups. A
severe VF pattern with a central scotoma was frequently detected in the GUCY2D, ND, and RP1L1
genotype groups. Classical SD-OCT findings were detected in forty-one patients (41/47, 87.2%) with
the RP1L1 genotype group, while only one case with classical SD-OCT findings was detected in
the ND genotype group. mfERG group 2 was frequently found in the RP1L1, GUCY2D, and ND
genotype groups. ND, not detected.

3.7. Comparison Analyses among Genotype Groups

The following clinical parameters were compared among genotype groups; age, dis-
ease onset, disease duration, BCVA, VF classification, mfERG classification, and SD-OCT
classification (Figures 2 and 3). No statistically significant difference was found regarding
the clinical parameters, although there was a trend of earlier onset and more severe BCVA
in the RP1L1 and GUCY2D genotype groups. The proportions of the VF pattern, mfERG
group, and SD-OCT classification were compared among the genotype groups. A severe
VF pattern with a central scotoma was frequently detected in the GUCY2D, ND, and RP1L1
genotype groups. mfERG group 2 was frequently found in the RP1L1, GUCY2D, and ND
genotype groups. Classical SD-OCT findings were detected in forty-one patients (41/47,
87.2%) of the RP1L1 genotype group, while only one case with classical SD-OCT findings
was detected in the ND genotype group (1/21, 4.8%).

3.8. Genotype R+ Data Set

For the GUCY2D genotype group, BCVA data of 58 previously reported cases in
29 families with the identical variant to those detected in this study were incorporated
(Tables 3 and S3) [16,40,48–61]. Three families with p.I916T and fifty-three families with
p.R838H were included in the GUCY2D genotype R+ cohort. No previously reported cases
with identical variants were detected in the CRX genotype group. The median age at
onset/examination in the GUCY2D genotype R+ dataset was 7.5 (range, 1–55 years)/28
(range, 2.5–71). The median duration was 13 years (range, 0–32) and the medial logMAR
BCVA in the right and left eye was 0.80 (range, 0.03–2.30) and 0.60 (range, 0.02–2.70),
respectively. The phenotypic features of cone dystrophy (COD) and con-rod dystrophy
(CORD) were documented in 37 and 20 patients (63.8% and 34.5%, respectively).
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Table 3. Previous reports of CRX and GUCY2D variants identified in this study.

Gene Variant Previous Report Inheritance
Phenotype

(Family
Number)

Presence
with Normal

Fundus
(Subject
Number)

CRX c.128G>A,
p.Arg43His

Fujinami-Yokokawa
et al. (2020) [59] AD OMD (1) Yes (2)

GUCY2D

c.2747T>C,
p.Ile916Thr

de Castro-Miró et al.
(2014) [49] AD COD (1) NA

Liu et al. (2020) [40] AD OMD (1) Yes (1)
Rodilla C et al.

(2023) [56] AD CORD (1) NA

c.2513G>A,
p.Arg838His

Payne et al. (2001) [48] AD CORD (1) No(1)
Ito et al. (2004) [50] AD COD (1) Yes (1), no (1)
Weigell-Weber et al.

(2000) [52] AD CORD (1) NA

Lazar et al. (2015) [60] AD COD (2),
CORD (1) No (2)

Kim et al. (2019) [16] AD COD (1) NA
Sharon et al.
(2019) [62] AD COD (1) NA

Udar et al. (2003) [61] AD CORD (1) NA
Kitiratschky et al.

(2008) [54] AD COD (3) Yes (1), no (6)

Xiao et al. (2011) [58] AD COD (1) No (8)
Mukherjee et al.

(2014) [55]
AD

(de novo) COD (1) No (3)

Zobor et al. (2014) [59] AD COD/CORD
(1) Yes (1), no (2)

Jiang et al. (2015) [53] AD COD (4),
CORD (1) No (6)

Sun et al. (2020) [57] AD CORD (1) No (2)
Rodilla C et al.

(2023) [56] AD CORD (8) NA

AD, autosomal dominant; OMD, occult macular dystrophy; OMDS, occult macular dysfunction syndrome; COD,
cone dystrophy; CORD, cone rod dystrophy; MD, macular dystrophy; NA, not available. Reference numbers
described in the text are provided for previous publications.

3.9. Kaplan-Meier Survival Analyses for BCVA

Kaplan-Meier survival analysis was used to assess BCVA (logMAR 0.22 and logMAR
1.00). The BCVA data of forty-seven RP1L1, two CRX, fifty-eight GUCY2D R+, and twenty-
one ND genotype patients were analysed (Figure 4). The diagram for logMAR 0.22 indicates
that approximately half of the patients in the RP1L1 genotype group reached a BCVA level
of 0.22 at age 49, while approximately half of the patients in the GUCY2D group reached
that level at age 36. Thus, there was a 13-year difference in VA reduction between the RP1L1
and GUCY2D genotype groups. The diagram for logMAR 1.00 shows that approximately
half of the patients in the RP1L1 genotype group reached a VA level of 1.00 at age 74, while
approximately half of the patients in the GUCY2D genotype group reached that level at
age 44; and in the other genotype groups, most patients (>80%) did not reach 1.00.
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Figure 4. Survival curve analyses of BCVA for the genotype groups. Survival curves of BCVA for age
were generated for the RP1L1, CRX, GUCY2D, and ND genotype groups in terms of two BCVA levels:
(A) logMAR BCVA of 0.22 and (B) logMAR BCVA of 1.00. For the GUCY2D genotype group, the
BCVA data of 58 previously reported cases from 29 families with identical variants detected in this
study were incorporated. Approximately half of the patients in the RP1L1 genotype group reached a
BCVA level of 0.22 at age 49, while approximately half of the patients in the GUCY2D genotype group
reached that level at age 36. Thus, there was a 13-year difference in VA reduction between the RP1L1
and GUCY2D genotype groups. Approximately half of the patients in the RP1L1 genotype group
reached a VA level of 1.00 at age 74, while approximately half of the patients in the GUCY2D genotype
group reached that level at age 44; and in the other genotype groups, most patients (>80%) did not
reach 1.00. A statistically significant difference was revealed between OMDs in terms of survival
curves of BCVA (p < 0.01). VA, visual acuity; ND, not detected; OMD, occult macular dystrophy;
BCVA, best-corrected visual acuity; logMAR, logarithm of minimum angle of resolution. For the
GUCY2D genotype group, logMAR BCVA data of fifty-eight previously reported cases in twenty-nine
families with the identical variant to those detected in this study were incorporated and four of these
cases presented normal fundus appearance.

4. Discussion

The clinical and genetic spectrum of OMDS, illustrating macular dysfunction with
a normal fundus appearance, has been comprehensively outlined, identifying different
severities and prognoses based on each genotype group. New clinical entities of OMDS
have been established, including Mendelian hereditary disorders (RP1L1-OMD, CRX-
OMD, GUCY2D-OMD, and other hereditary OMD) and OMD-like non-Mendelian disorder
(progressive occult maculopathy) (Figure 5).

In the current study, 75% of patients with OMDS had a chief complaint of VA decline.
We observed a trend of different severities of BCVA based on each genotype group, although
it did not reach statistical significance, and a statistically different survival curve of BCVA
was observed among the genotype groups. The most severe BCVA curve was observed
in the GUCY2D genotype group, and there was a 30-year gap between the GUCY2D
and RP1L1 genotype groups in terms of social blindness (logMAR 1.00). In contrast, the
CRX and ND genotype groups exhibited better VA curves. These differences in clinical
severity were consistent with the distinct molecular mechanisms of RP1L1-retinopathy,
CRX-retinopathy, and GUCY2D-retinopathy [63–83].
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Figure 5. Clinical entity of occult macular dysfunction syndrome. The clinical entities of occult
macular dysfunction syndrome have been established, including Mendelian hereditary disorders
(RP1L1-OMD, CRX-OMD, GUCY2D-OMD, other hereditary OMD) and OMD-like non-Mendelian
disorder (progressive occult maculopathy). OMD, occult macular dystrophy.

GUCY2D, denoted as guanylate cyclase 2D (OMIM: 600179), encodes one of the
two retinal membrane guanylyl cyclase isozymes expressed on photoreceptors [62,84].
GUCY2D-retinopathy encompasses severe AR-Leber congenital amaurosis (AR-LCA),
AR-RP, AD-CORD, AD-COD, and AD-MD [40,56,62]. Most patients with GUCY2D-AD-
COD/CORD show progressive atrophic fundus abnormalities, which is consistent with
the more severe and progressive phenotype of GUCY2D-OMD than that of RP1L1-OMD.
Considering the AD-COD/CORD cases with retinal atrophy, patients with GUCY2D-OMD
in this study could potentially develop visible macular atrophy with age. CRX, a cone–rod
homeobox-containing gene (OMIM: 602225), encodes a homeodomain transcription factor
crucial for the development and survival of photoreceptors [85,86]. CRX-retinopathy en-
compasses severe AR-LCA, AR-RP, AD-CORD, AD-COD, and AD-MD; AD-MD shows a
mild phenotype [39,87–101]. The relatively mild phenotype of patients with CRX-OMD is
consistent with the previous AD-CRX cases [87], although there are no reported CRX cases
with the identical variant.

The clinical classification of the VF pattern, mfERG, and SD-OCT demonstrated differ-
ent features based on each genotype group. A severe VF pattern with a central scotoma
was frequently detected in the GUCY2D, ND, and RP1L1 genotype groups. Homogeneous
central dysfunction with preserved peripheral function (mfERG group 2) was frequently ob-
served in patients with OMDS, except in those in the CRX genotype group. Other scotoma
patterns and foveal functional preservation were observed in the CRX genotype group,
which may be related to the bull’s eye changes. Classical SD-OCT findings were detected
in most (>80%) patients in the RP1L1 genotype group and these features were almost
exclusively specific to RP1L1-OMD. Non-classical SD-OCT findings have been reported
in mild cases with RP1L1-OMD [6]. However, in the current study, such morphological
findings were demonstrated both in the severe and the mild genotype groups (GUCY2D
and CRX, ND).
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In this study, causative genes were not detected in 21 patients. Seven families (7/17,
41.2%) reported a family history of AD/AR (5/2), and unrevealed Mendelian hereditary
disorders were included in this ND genotype group. However, the presence of non-
hereditary disorders (e.g., occult maculopathy) cannot be excluded, given the elderly cases
(e.g., 89-year-old female with AD inheritance in a family with three affected members across
the two generations; and a sibship pair of a 91-year-old female and an 88-year-old male with
AR inheritance in a consanguineous family). Variable pathologies presenting presumably
AD, AR, and other inheritance patterns potentially underlying the ND genotype group
can support a wide range of clinical parameters, including onset and BCVA. Interestingly,
survival curve analyses suggested a mild prognosis. More detailed genetic analyses could
reveal further causative genes, which would help to clarify the mechanisms of the ND
genotype group in this study.

This study has several limitations. First, the sequencing methods applied, the selec-
tion of analysed genes, and the pathogenicity prediction protocols were rigorous but not
absolute. Therefore, uncertainties may remain, and the results may not be completely
exact. We did not analyse genes that were not registered in RetNet, possibly overlooking
some genetic factors tied to OMDS pathologies. Whole-genome analysis could reveal more
genetic irregularities in unresolved familial cases. Although the in silico analyses offer
preliminary insights into potential genetic pathogenesis, these results are speculative and
necessitate further verification. Second, this study cohort mainly comprises adult partici-
pants, with fewer pediatric or late-onset cases. Since some patients remain asymptomatic,
our findings may not represent the entire disease spectrum. Rigorous clinical examinations
including colour vision testing and genetic screening, especially for patients at risk of IZ
disappearance, are crucial for early detection. Third, the intrafamilial variability in terms of
the onset of the disease was observed in 16 families with multiple affected family members.
This may be because of the molecular mechanisms of dominant negative/gain of function
in AD disorders. However, a larger cohort would be valuable to elucidate the intrafamilial
variation. Finally, this cross-sectional, retrospective study provides a snapshot of the genetic
background of the East Asian population. Future longitudinal studies of global populations
could better map the epidemiology, progression, and underlying mechanisms of OMDS.

5. Conclusions

This multicentre study, representing the largest cohort to date, significantly broadens
our understanding of the phenotypic and genotypic spectra of patients with macular
dystrophy who exhibit a normal fundus appearance. OMDS includes multiple Mendelian
retinal disorders and beyond, with each presenting distinct pathologies that determine
their specific severity and prognostic trajectory. These features enrich the accurate clinical
and genetic diagnosis, which could inform patient monitoring and counselling, as well as
the design of future therapeutic trials.
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