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Abstract: The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene
therapy trials remains a major hurdle in the further advancement of the gene therapy field. During
the past decades, AAV research has been predominantly focused on the development of new capsid
modifications, vector-associated immunogenicity, and the scale-up vector production. However,
limited studies have examined the possibility to manipulate non-structural components of AAV such
as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have
been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the
current study, we mutated four variable amino acids in the conservative part of the binding domain
in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had
improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited
similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid
also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve
the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.

Keywords: adeno-associated virus; Rep gene; genome encapsulation; upstream production

1. Introduction

Recombinant adeno-associated viruses (AAVs) are one of the most widely used vector
systems for gene therapy applications, and the number of clinical trials using gene therapies
are increasing. To date, several AAV-based therapies have been approved for commercial-
ization [1]. Glybera, an AAV1 vector for lipoprotein lipase deficiency; Luxturna, an AAV2
vectors for Leber’s congenital amaurosis [2]; Zolgensma and Elevidys, an AAV9 vectors for
spinal muscular atrophy type 1 [3] and Duchenne muscular dystrophy [4], correspondingly;
Hemgenix and Roctavian [5], an AAV5 vectors for Hemophilia B [6] and Hemophilia A,
respectively.

Although AAV production methods are well established [7], optimizing processes and
scale-up operations are becoming an important focus to obtain high yields, superior quality,
and purity of the vectors suitable for clinical trials [8,9]. Regardless of AAV production
methods, around 50% of generated viral particles fail to package AAV genomes. These
“empty capsids” are considered one of the main byproducts during AAV production [10],
and, although the effects of these empty capsids are not fully understood, their presence
increases the total vector load necessary to obtain beneficial clinical effects [11]. Thus,
reducing the number of empty capsids can help enhance efficiency of AAV therapies, and
lower the risk of inactivation of the therapy by preventing the potential elucidation of
capsid related immune responses. The basis of the current AAV manufacturing relies on
the separation of empty capsids in the downstream purification process [12–15]. However,
a higher yield of the functional AAV vectors could be possible with a more efficient
upstream process.
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The wild-type AAV genome is a single-stranded DNA (approximately 4700 nu-
cleotides) flanked by 145 base-pair-inverted terminal repeats (ITR) that form base-paired
harpings [16]. The genome is organized into two open reading frames (Rep and Cap),
-structural and structural proteins, respectively [17].

The Rep gene encodes four Rep proteins responsible for the viral cycle. Rep78 and
Rep68 are generated by one transcript from the p5 promoter and are involved in viral
genome excision, rescue, replication, and integration, as well as the regulation of gene
expression [18,19]. Rep52 and Rep40 are generated by another transcript from the p19
promoter and are essential for genome packaging into pre-formed viral capsids [20].

All AAV Rep proteins (Rep78, 68, 52 and 40) share the central domain with a nu-
clear localization signal [21] and have ATP-dependent helicase activity [22,23]. Rep52/40
helicase activity may translocate single-stranded DNA genomes through the five-fold sym-
metry axis of pre-formed AAV capsids [20,24,25]. Besides the helicase domain, Rep78 and
Rep68 have a DNA binding domain with endonuclease activity located in the N-terminal
region [23] that binds to the Rep binding element located in the ITRs to initiate genome
replication [26–28] after DNA cleavage on the terminal resolution site (trs) [29]. Rep pro-
teins have been described to be members of the HUH endonucleases superfamily that
include a “His-Hydrophobic-His” motif and one or two Tyr residues (Y1 or Y2 subfamilies)
in the catalytic domain required for ssDNA breakage [30].

The Cap gene encodes three structural viral proteins (VP1, VP2, and VP3) driven by
the p40 promoter in approximately a 1:1:10 ratio [31]. It also encodes two short off-frame
accessory proteins: the assembly activating protein (AAP) [32], which works as a scaffold
protein during capsid assembly [33]; and the recently discovered membrane-associated
accessory protein (MAAP) [34].

AAV vectors carry the gene of interest flanked by ITRs, and the Rep and Cap genes
are supplied in trans for vector production [35]. Genome replication and capsid formation
are two parallel events that conclude with genome encapsulation to package mature AAV
vectors [36]. Nevertheless, the many empty capsids formed during production could also
be packaged with better upstream processes. Historically, AAV vectors were produced
with the AAV serotype 2 Rep gene and ITRs with the corresponding CapX gene to generate
different serotypes. AAV serotype 2 Rep (Rep2) can package expression cassettes flanked
with ITR2 into all serotype capsids, but the encapsulation efficiency is relatively low, which
results in more empty capsids [37]. Genome packaging is considered a limiting step for
AAV vector production and requires improvement to ensure superior quality of AAV
vectors for clinical application. However, few studies have addressed the use of alternative
or engineered Rep [38,39].

The current study was designed to evaluate the ability of different Rep proteins to
encapsulate the expression cassette flanked with ITR2 or ITR6 into AAV6 vectors. We
compared AAV productivity using AAV serotype 6Rep (Rep6), AAV serotype 2 Rep (Rep2)
and an engineered Rep2/6 hybrid. The Rep N-terminal region contains a DNA binding site
that interacts with the ITR-specific Rep Recognition Sequence (RRS) [40,41]. We anticipated
that endogenous p5, p19 and p40 promoters in Rep6 and ITR6-specific RRS should be
advantageous for AAV6 production. We showed, however, that Rep6 activity alone was
insufficient in packaging the expression cassette into AAV6 vectors, in part due to low
Rep78/68 expression. Site-directed mutagenesis of the four critical amino acids, V65T, Q66E,
L90M, and I92V to the corresponding Rep2 residues significantly improved Rep6 activity,
and thus, the ratio of full vs. empty capsids in purified AAV6 vectors. We also confirmed
activity of the AAV6 vectors generated with the mutated Rep gene by in vivo luciferase
assay after the intramuscular injection of these vectors. Thus, our study confirmed that
optimization of the Rep gene could increase production of fully encapsulated AAV particles.
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2. Materials and Methods
2.1. Cell Culture

Human embryonic kidney cells (HEK293) were maintained in complete Dulbecco’s
Modified Eagle Medium (Thermo Fisher/Gibco, Manassas, VA, USA) supplemented with
10% fetal bovine serum (Thermo Fisher/Gibco Manassas, VA, USA), 1% penicillin and
streptomycin (Genesee Scientific, El Cajon, CA, USA) at 37 ◦C and 5% CO2.

2.2. Animals

Six- to ten-week-old male C57BL6 mice were obtained from Jackson Laboratories (Bar
Harbor, ME, USA). All experiments with mice were performed according to the principles
of the National Research Council’s Guide for the Care and Use of Laboratory Animals, with
approval from the University of Minnesota Institutional Animal Care and Use Committee
(IACUC).

2.3. Plasmids, Cloning, and Rep Mutant Generation

A Rep6Cap6 plasmid was generated by replacing the Rep2 (Sequence ID: UXD78434.1)
gene from a Rep2Cap6 plasmid [42] with a PCR-amplified Rep6 gene using the wild-type
AAV6 genome as a template (Sequence ID: AF028704.1). Rep6 mutant genes were generated
by site-directed mutagenesis [42,43] using the Rep6/Cap6 plasmid as a template with the
following primers: Rep6 V65T (Forward primer 5′-
CTGCAGCGCGACTTCCTGACCCAGTGGCGCCGCGTGAGT-3′ and Reverse primer 5′-
ACTCACGCGGCGCCACTGGGTCAGGAAGTCGCGCTGCAG-3′) to change Valine (GTC)
to Threonine (ACC); Rep6 Q66E (Forward primer 5′-
CAGCGCGACTTCCTGGTCGAGTGGCGCCGCGTGAGTAAG-3′ and Reverse primer 5′-
CTTACTCACGCGGCGCCACTCGACCAGGAAGTCGCGCTG-3′) to change Glutamine
(CAG) to Glutamic acid (GAG); Rep6 L90M (Forward primer 5′-
GGCGAGTCCTACTTCCACATGCATATTCTGGTGGAGACC-3′ and Reverse primer 5′-
GGTCTCCACCAGAATATGCATGTGGAAGTAGGACTCGCC-3′) to change Leucine (CTC)
to Methionine (ATG); Rep6 I92V (Forward primer 5′-
TCCTACTTCCACCTCCATGTTCTGGTGGAGACCACGGGG-3′ and Reverse primer 5′-
CCCCGTGGTCTCCACCAGAACATGGAGGTGGAAGTAGGA-3′) to change Isoleucine
(ATT) to Valine (GTT). Red color indicates changed nucleotides in Rep6 sequence.

Briefly, primers containing single nucleotide mutations were used to introduce point
mutations in the AAV6 Rep gene. Two-step PCR was performed as described previously
with high-performance Velocity DNA polymerase (Bioline, London, UK) [42]. The PCR
product was purified with a DNA Clean and Concentrator Kit (Zymo Research, Irvine,
CA, USA) and digested with DpnI restriction enzyme (New England BioLabs, Ipswich,
MA, USA) prior to transformation. Mutagenesis was confirmed with sequencing prior to
AAV packaging.

2.4. AAV Production and Purification

All AAV vectors were packaged with a single-strain expression cassette harboring
chicken β-actin promoter-driven fusion of firefly luciferase, and yellow fluorescent protein
(YFP) [44] or green fluorescent protein (GFP). Vectors were produced by the triple trans-
fection method as previously described [45,46]. Briefly, HEK293 cells were co-transfected
with three plasmids by polyethylenimine (Polyscince, Warrington, PA, USA) and were
harvested 72 h post-transfection. Cell lysates were subjected to three rounds of freeze–
thaw and then digested with 50 U/ml benzonase (Sigma, St. Louis, MO, USA) at 37 ◦C
for 1 h. Viral vectors were purified by iodixanol (Sigma, St. Louis, MO, USA) gradient
ultracentrifugation followed by ion-exchange chromatography using HiTrap Q HP (Cytiva,
Piscataway, NJ, USA) with TRIS-NaCl buffer and concentrated by centrifugation using
centrifugal spin concentrators with 150 K molecular-weight cutoff (Orbital Biosciences,
Topsfield, MA, USA). Viral vectors were finally resuspended in 500 µL PBS.
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2.5. Quantitative PCR Analysis for AAV Titration

AAV titers were quantified by relative to standard qPCR analysis using chicken b-actin
promoter-specific primers (Forward primer 5′-TCCCATAGTAACGCCAATAGG-3′ and
reverse primer 5′-CTTGGCATATGATACACTTGATG-3′) with a SensiFast SYBR No-ROX
Kit (Bioline, London, UK). Aliquots from AAV productions were digested with TURBO
DNase (Thermo Fisher Scientific, Waltham, MA, USA) to remove DNA contaminants
followed by proteinase K (Invitrogen, Waltham, MA, USA) digestion to release AAV
genomes from AAV capsids.

2.6. Western Blots

Rep and capsid viral protein (VP) expression was analyzed by Western blotting on pro-
duction cell lysates or purified vectors [47]. Briefly, cell lysates from production cells were
separated on 10% polyacrylamide/SDS gels and transferred to nitrocellulose membranes.
Primary antibodies anti-VP Anti-AAV VP1+VP2+VP3; clone B1 (mouse mAb 1:2000) or
Anti-AAV Replicase (Rep 78, 68, 52, 40); clone 259.5 (mouse mAb 1:1000) (ARP, Waltham,
MA, USA), followed by secondary horseradish peroxidase-linked antibodies (1:1000) (Cell
Signaling Technology, Danvers, MA, USA) were used to visualize protein expression. Pre-
cision Plus Kaleidoscope Prestained Protein Standards (BioRad, Hercules, CA, USA) was
used to relate molecular weight of viral proteins.

2.7. In Vivo Luciferase Activity

C57BL6/J mice were intramuscularly injected with 1 × 1010 vg/mice with AAV vec-
tors encoding the luciferase-YFP fusion gene. Expression was monitored weekly with
IVIS Lumina S5 Imaging System (Perkin Elmer, Waltham, MA, USA) [43,44]. Biolumi-
nescence images were obtained by intraperitoneal injection (250 µL/mice) of D-luciferin
substrate (Promega, Madison, WI, USA) and analyzed using Living image v4.7.4 software
(Perkin Elmer, Waltham, MA, USA) according to manufacture protocol. Background was
normalized by imaging of non-injected animals.

2.8. Transmission Electron Microscopy (TEM)

An AAV sample (3 µL) was placed on a 150 mesh copper grid coated with 5–6 nm
Formvar/carbon EMS CF150-Cu film (Electron Microscopy Sciences, Hatfield, PA, USA)
for 1 min. The grid was washed with 3 drops of 6 µL distilled water. Excess water was
removed with Whatman filter paper. The sample was negatively stained with 6 µL 0.75%
uranyl acetate (SPI Supplies, West Chester, PA, USA) for 30 s. Excess staining solution
was removed with Whatman filter paper and the grid was dried at room temperature.
We captured 6–12 electron micrographs of AAV capsids using a Tecnai G2 Spirit BioTwin
electron microscope (FEI, Hillsboro, OR, USA) equipped with a 4K CCD Gatan Ultrascan
camera (Gatan, Pleasanton, CA, USA) at an accelerating voltage of 120 kV and a nominal
magnification of 30,000× and 49,000×.

2.9. Statistical Analyses

All data are shown as mean ± SEM. Statistical significance was determined by un-
paired two-tailed t-tests or ANOVA using GraphPad Prism software 7.3 (GraphPad Soft-
ware, La Jolla, CA, USA). We set statistical significance as a p value < 0.05.

3. Results
3.1. Rep2/6 Hybrids Improve Wild-Type Rep6 Activity

The AAV3 Rep gene (Rep3) can package AAV vectors flanked by ITR2 or ITR3 [39].
However, similar results were not obtained with Rep6, which failed to package AAV6
vectors either with ITR2 or ITR6.

The binding domain of AAV6 Rep78 protein differs from the AAV2 Rep78 protein
(Figure 1A). Here, we mutated four distinct residues in the conservative region about ninety
amino acids downstream from the start codon and generated two double (V65T/Q66E
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and L90M/I92V); four triple (V65T/Q66E/L90M, V65T/L90M/I92V, V65T/Q66E/I92V,
and Q66E/L90M/I92V); and one quadruple (V65T/Q66E/L90M/I92V) Rep6 mutants
maintaining wild-type Rep52/40 and Rep6 p19 and p40 promoter boosted the integrity.
To evaluate the effects of each amino acid in Rep6 packaging activity, we produced AAV6
vectors carrying the ITR2-luciferase-GFP reporter gene to compare productivity for all
mutant combinations (Figure 1B).
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Figure 1. Rep6 mutagenesis to generate Rep2/6 hybrids: (A) Rep6 and Rep2 protein sequences
alignment of DNA binding region). Black squares located in positions 65/66 and 90/92 indicate
the difference in sequences between Rep6 and Rep2. (B) Diagram of Rep6 to Rep2 amino acids
substitutions. Green color corresponds with Rep6 sequences while orange color corresponds with
Rep2 amino acids. (C) qPCR titration with promoter specific primers of AAV6-luciferase vectors
produced with different Rep6 mutants from small-scale (6-well plate) production presented as viral
genome (vg) copies per cell. (D) Western blots of anti VP and viral titer (qPCR) from purified
AAV6-luciferase vectors produced in 25 × 15 cm plates.

Rep6 double mutants did not restore AAV6 production (Figure 1C), while the triple
and quadruple mutants increased AAV6 yield significantly compared with wild-type Rep6.
The Rep6-V65T/L90M/I92V triple mutant produced a vector yield per cell two times lower
than that of Rep2. Our results suggest a failure of the Rep6 binding regions activity during
AAV production.

Next, we selected four different Rep constructs to further evaluate AAV production
and encapsulation. Purified vectors were analyzed either by qPCR or Western blots to
evaluate productivity, presence, and ratio of viral protein subunits (Figure 1D). As expected
from our preliminary results, Rep6 produced a yield approximately 100 times lower than
Rep2, but the triple mutant Rep6-V65T/L90M/I92V and the quadruple mutant Rep6-
V65T/Q66E/L90M/I92V (called hybrid Rep2/6 hereafter) produced titers within a similar
range as Rep2. We observed no differences in AAV purification profiles in terms of bind-
ing/elution to ion-exchange columns. To test capsid integrity and VP protein proportion,
we loaded equal aliquots of different purified vectors into SDS-PAGE columns. All four
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AAV6 vectors showed the same capsid protein distribution on Western blots (Figure 1D),
although the total amount of detected VP proteins normalized to vector genome yields dif-
fered. This discrepancy might be partially explained by different full/empty capsid ratios.

We examined packaging efficiency of different Rep proteins by electron microscopy to
compare the ability to encapsulate AAV genomes into pre-formed capsids. Rep6 produced
a limited amount of fully encapsulated AAV6 vectors compared with Rep2, and this ratio
was not improved by any double mutations on Rep6 (Figure 2). Furthermore, the yield
of AAV6 vectors produced with the Rep6 double mutants were approximately 100 times
lower than the Rep2-produced vectors (Figure 1C). Nevertheless, triple mutant Rep6-
V65T/L90M/I92V partially restored Rep6 packaging capability (37% of full capsid) and
produced a genomic titer similar to Rep2-produced vectors. Surprisingly, the Rep2/6
hybrid (or quadruple Rep6 mutant), which showed lower yields, restored packaging ability
and produced up to 50% of fully encapsulated AAV vectors similar to Rep2 (Figure 2). Our
data suggest the importance of the Rep N-terminus region, which is involved in Rep78/68
expression and DNA binding.
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Figure 2. Characterization of AAV6 vectors produced with different Rep genes: (A) Representative
TEM micro images for each variant of Rep used to package AAV6-luciferase vectors. Green arrows
indicate fully encapsulated vectors (open circle) and red arrows indicate empty vectors (circle
with black dot). (B) Percentage of full vectors counted from 2 independent preparations with the
corresponding Rep gene. Representative images are shown.

3.2. AAV6 Vector Activity Is Independent of the Rep Production System

To test transduction efficiency, C57BL6 mice were intramuscularly injected (n = 3/group)
with Rep2, Rep2/6, and Rep6 produced AAV6 vectors carrying ITR2-luciferase-GFP as a re-
porter gene. Due to the low yield of Rep6 produced vectors, we used two different matching
doses for the Rep2, Rep2/6 (1 × 1010 vg/animal) and the Rep2, Rep6 (1 × 108 vg/animal)
groups. Two experiments were performed using independent viral productions, and whole-
body in vivo luciferase activity was followed for 3 weeks after vector injection (Figure 3A).
We observed no significant differences in luciferase activity between both vectors (Rep2/6
and Rep6) compared to Rep2 control mice (Figure 3B). This result suggests that transduction
ability of AAV6 vectors is autonomous of the Rep gene used for production.
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Figure 3. In vivo activity of AAV vectors produced with different Rep genes: Intramuscular admin-
istration of AAV6-luciferase (1010 vg/animal) produced with Rep2 or Rep2/6 and (108 vg/animal)
produced with Rep2 or Rep6 in C57BL6 mice (n = 3). (A) In vivo imaging of luciferase activity 2 and
3 weeks after administration. (B) Luciferase activity quantification at the endpoint of experiment.
Representative images are shown. The color bar and min/max value represents the range of lumi-
nescence intensity (radiance p/sec/cm2sr) automatically calculated by Living image v4.7.4 software.
n.s.—non significant.

3.3. Rep2/6 Hybrid Restores Rep78/68 Expression Diminished in Rep6

According to our previous data, Rep6 was not able to package AAV6 vectors, but all
were produced using commonly used ITR2 flanked genomes. To determine if this effect
stemmed from ITRs, we packaged separate ITR2 and ITR6 flanked genomes in AAV6
vectors, produced with Rep2, Rep6, and Rep2/6 hybrids. First, we analyzed cellular lysates
for VP and Rep protein expression and distribution by Western blots in packaging HEK293
cells at their harvest point (Figure 4A). Rep6 produced lower amounts of Rep78/68 proteins
compared with Rep2, but that expression level was restored with Rep2/6 mutations in
the N-terminus region. These results suggest that Rep6 did not efficiently package AAV6
vectors due to a lack of Rep78/68 expression. On the other hand, all vectors packaged with
ITR6 showed higher amounts of VP protein compared with the homologous Rep packaged
with ITR2, suggesting that encapsulation of the viral genome is lower with ITR6 vectors
than with ITR2-contained vectors (Figure 4A). Similar to observations in production cell
lysates, purified AAV6 vectors produced with Rep2 and ITR6 yielded higher amounts of
protein compared with other vectors, leading to a discrepancy between total VP proteins
and viral titers (Figure 4B). Moreover, all ITR6- and ITR2 contained vectors showed the
same VP ratios. At the same time, the purified AAV vectors, packaged with ITR2 and ITR6
with the same Rep gene, showed similar viral titers (Figure 4C).
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3.4. AAV6 Vector Activity Is ITR-Independent

The transduction efficiency of AAV6 vectors was evaluated in vivo in ITR2 and
ITR6-containing expression cassette vectors. ITR2 or ITR6 flanked luciferase-GFP vec-
tors produced with Rep2 or hybrid Rep2/6 were intramuscularly injected into C57BL6
mice (1 × 1010 vg/animal). Whole-body imaging was performed weekly for 3 weeks to
measure luciferase activity (Figure 5). All four AAV6 vectors showed similar activity, with
no statistically significant differences in in vivo transduction, suggesting that transduction
efficiency is independent of the production system.
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C57BL6 mice (n = 3). (A) In vivo imaging of luciferase activity 3 weeks after administration. (B) Lu-
ciferase activity quantification at the endpoint of experiment. Representative images are shown. The
color bar and min/max value represents the range of luminescence intensity (radiance p/sec/cm2sr)
automatically calculated by Living image v4.7.4 software. n.s.—non significant.

3.5. Rep2/6 Hybrids Rescue Rep6 Encapsulation Capability of ITR2 and ITR6

Finally, we examined the ability of Rep6 and Rep2/6 vectors to package ITR6 or ITR2
flanked expression cassettes using electron microscopy. Three independent viral produc-
tions were analyzed for each group and the percentage of fully encapsulated vectors was
quantified using 5 to 10 images with 30,000×magnification for each packaging condition.
Representative images with higher magnification (49,000×) are shown in Figure 6. For both
ITR2 and ITR6, Rep6-produced vectors showed low vector genome yield (approximately
26% of all capsids were full). ITR6 packaged with Rep2 showed an exceptionally low
amount of fully encapsulated vectors (below 10%). However, hybrid Rep2/6 restored Rep6
encapsulation abilities, comparable to Rep2, with ITR2 (60.01%) and increased encapsu-
lation up to 35.43% for ITR6-contained vectors (Figure 6). Our data suggests that Rep
engineering can be used as a strategy to improve the production of functional particles.
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4. Discussion

The choice of AAV serotype as a tool for gene delivery or gene editing depends
on the tropism for desired target tissues as well as the ability to generate sufficiently
high-quality titers. AAV6-based vectors became commonly used for targeting lymphoid
cells [48–50], myeloid cells [42,50–52], hematopoietic stem cells [53,54], muscular cells [55–57],
cardiomyocytes [58–60], pulmonary cells [44,61] and others.

According to previous studies, ITR3-Rep3 has been used to package AAV3 vectors to
produce higher titers than standard ITR2-Rep2 systems, suggesting that matching AAV
vectors with wild-type ITRs and the Rep gene could generate better titers and purities than
standard protocols [39]. In the current study, we applied a similar strategy to improve
packaging on AAV6 vectors. All AAV serotypes had similar Rep78 sequences (85–90%) [38],
except for AAV5 Rep78 (58% identity). AAV6 Rep78 protein showed 87% identity when
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compared with the AAV2 Rep78 protein. Moreover, differences between AAV2 and AAV6
Rep proteins were located in the variable region for Rep proteins of all AAV serotypes, while
differences in the binding domain of Rep78/68 were minimal, suggesting the conservative
nature of that region. The Rep binding region contains the two pairs of His (H89 and H91),
which were conserved and essential for HUH endonuclease activity. The His pair domain
of HUH motif provides the coordination site for divalent metal ions (Mg2+ or Mn2+), which
is essential for ssDNA cleavage [62–64] and mutations in this region or close to this region
could affect DNA recognition and cleavage.

In this study, AAV6 vectors were purified without specific efforts to separate empty
and full capsids to understand how non-AAV2 Rep proteins can affect AAV production
and packaging. Although each of the wild-type AAV have their own Rep genes, Rep6
did not produce a sufficient amount of AAV6 vectors compared with the commonly used
Rep2. This result is consistent with other recent studies that showed low efficiency of
Rep6 in production of AAV vectors [65]. Our data suggests that insufficient packaging
can be partially explained by lesser Rep78/68 proteins being expressed by the Rep6 gene
compared with the Rep2 gene (Figure 4A).

Rep genes are involved in viral genome replication (Rep78/68) and encapsulation
into pre-formed capsids (Rep52/40) [20,24,25]. We showed that Rep6 produced AAV6
vectors with approximately a 2-log lower titer and poor full/empty ratios compared with
Rep2-AAV6 vectors (Figures 4C and 6). These results correlate with the lack of sufficient
expression of Rep78/68, which might lead to insufficient genome replication—which is
required for gene encapsulation into AAV capsids.

Next, we showed that mutations on critical amino acids on the N-terminus region of
Rep6 (to corresponding amino acids on Rep2) rescued viral productivity per packaging
cell, and total viral yield correlated with restored Rep78/68 expression (Figure 4). Rep6-
V65T/L90M/I92V mutations increased viral productivity but showed poor full/empty
ratios similar to Rep6. Substitution of the four amino acids on Rep6 (V65T; Q66E; L90M;
I92V), which we termed as hybrid Rep2/6, restored efficiency of encapsulation to ratios
similar to those of Rep2.

Unexpectedly, combining ITR6 and Rep6 to encapsulate AAV genomes into AAV6
capsids that resembled wild-type AAV6 (and presumably provide natural Rep6 activity
and p5, p19, and p40 promoter activity) resulted in impaired vector production (Figure 4).
When expression in cell lysates from packaging cells were compared at the harvest point,
the Rep6/Cap6 and Rep2/Cap6 produced similar amounts of VP proteins (Figure 4A).
However, yields from both ITR2- and ITR6-flanked vectors were 50 to 100 times higher than
Rep6 (Figure 4C). Additionally, the full/empty ratio was significantly higher in vectors
produced with hybrid Rep2/6 compared with Rep6 (Figure 6). These results suggest that
VP protein expression and capsid assembly might not be a reason for poor vector yield
and quality. Rep78/68 expression was reduced in Rep6 and could be responsible for lower
genome replication and sequentially lower genome encapsulation. Our data partially
contradicts the results of recent studies that showed low p40 promoter activity in Rep and,
thus, lower VP production [38].

Regardless of the high similarity of sequences, Rep2 produced less than 10% of fully
encapsulated vectors with the ITR6 flanked expression cassette. The Rep2/6 hybrid, which
contained the N-terminus part of Rep2, increases encapsulation of ITR6 vectors compared
to Rep6 and Rep 2, although it showed lower levels of encapsulation of ITR2 compared to
Rep2 (Figure 6).

AAV2 Rep can be used to package AAV vectors, however, the titer and full/empty
ratio depends on the different Rep genes and no rational design and control of expression
can fully predict the outcome of Rep activity [38,66,67]. We found that a Rep2/6 hybrid
can produce AAV6 vectors with the same in vitro and in vivo transduction efficiency and
capsid integrity as standard Rep2, suggesting that the replacement of Rep is only affecting
packaging capability and genome encapsulation. Standard AAV6 vectors typically show a
50/50 empty/full ratio, and efforts are focused on optimizing the downstream process to
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improve the full capsid ratio [68,69]. However, our results highlight that Rep optimization
in upstream packaging processes could be another complementary tool to obtain high-titer
and high-quality AAV vectors.
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