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Abstract: The development of cancer begins with cells transitioning from their multicellular nature
to a state akin to unicellular organisms. This shift leads to a breakdown in the crucial regulators
inherent to multicellularity, resulting in the emergence of diverse cancer cell subpopulations that
have enhanced adaptability. The presence of different cell subpopulations within a tumour, known as
intratumoural heterogeneity (ITH), poses challenges for cancer treatment. In this review, we delve into
the dynamics of the shift from multicellularity to unicellularity during cancer onset and progression.
We highlight the role of genetic and non-genetic factors, as well as tumour microenvironment, in
promoting ITH and cancer evolution. Additionally, we shed light on the latest advancements in
omics technologies that allow for in-depth analysis of tumours at the single-cell level and their spatial
organization within the tissue. Obtaining such detailed information is crucial for deepening our
understanding of the diverse evolutionary paths of cancer, allowing for the development of effective
therapies targeting the key drivers of cancer evolution.

Keywords: cancer evolution; genetic alterations; epigenetics; tumour heterogeneity; clonal expansions;
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1. Introduction

Cancer is a complex disease characterized by the accumulation of cellular abnor-
malities over time [1–5]. Throughout the years, several pivotal models have shaped our
comprehension of this phenomenon. More than a century ago, Theodor Boveri laid the
groundwork for our understanding of the origin of malignant tumours. He postulated that
cancers stem from genetic alterations in normal cells and introduced the concept that most
tumours and their metastases originate from a single cell, influencing the contemporary
notion of clonal expansion [6]. The Armitage and Doll model, established in the 1950s,
emphasized the role of multiple genetic changes over time in transforming healthy cells
into malignant ones [7]. This model proposed that cancer development is a multistep
process characterized by a series of sequential cellular abnormalities, requiring six to seven
successive mutations in affected cells. The cumulative impact of mutations on cancer
growth was demonstrated in landmark research on retinoblastoma in 1971, motivating the
Knudson’s “two-hit” concept [8]. In the late 1970s, Peter Nowell pioneered the integration
of evolutionary concepts to comprehend cancer’s origins and evolution, whereby Dar-
winian key evolutionary principles (variation, heredity, and selection [9]) were applied to
elucidate the mechanisms responsible for cancer formation and development [10]. Nowell’s
model suggested that most tumours arise from a single neoplastic cell and evolve through
a process of selection for somatic alterations, leading to the proliferation and survival of
the most fitted clones [10]. Dynamic heterogeneity, proposed by Harris and colleagues
in the early 1980s, highlighted the emergence of metastatic clones from genetically or
epigenetically diverse cell populations [11]. This concept illuminated the intricate dynam-
ics of cancer evolution and underscored the significance of tumour heterogeneity. In the
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1990s, Fearon and Vogelstein proposed the “multi-hit” model of cancer. It contended that
cancer arises due to the accumulation of multiple genetic mutations in normal cells, and
these mutations are tied to the histological traits of these tumours [12]. This model further
promoted the notion of cancer’s multistage progression and provided key insights into
tumour suppressors and oncogenes.

Altogether, these influential models and concepts have significantly advanced the un-
derstanding of cancer progression mechanisms, paving the way for a Darwinian framework
in modeling tumour evolution and therapy resistance [1,13–17]. However, it is important
to note that individual tumours may not conform to a single evolutionary model, and
multiple mechanisms may operate simultaneously or at different stages of progression.
Recent evidence indicates significant macroevolutionary leaps in cancer, involving rapid
accumulation of genetic abnormalities due to events such as chromosomal instability,
chromoplexy, and chromothripsis [18–23]. Additionally, oncogenes amplification within
extrachromosomal DNA during replication has been identified as a common event in
cancer, with unique inheritance patterns [24–29]. Recently, there has been an increasing
recognition of the fact that tumour evolution is not solely driven by genetic alterations, but
also influenced by non-genetic factors, such as cell plasticity and tumour microenvironment
(TME) [4,30–36].

In this review, we explore these concepts and advocate for an inclusive approach
considering both Darwinian and non-Darwinian patterns in cancer evolution. We explore
the mechanisms by which unicellularity and multicellularity become decoupled during
cancer’s onset and development. Lastly, we emphasize the significance of advancements in
omics technologies in the study of cancer evolution.

2. Models of Cancer Evolution: From Linear Succession to Punctuated Equilibrium

Currently, our comprehension of tumour evolution encompasses a diverse array of
models, with at least four well-recognized paradigms: linear, branching, neutral, and
punctuated, as depicted in Figure 1 [37]. Traditionally, cancer progression was perceived
as an orderly procession of clonal cell divisions, where genetic modifications accumulate
in precursor cells in a step-by-step manner, providing a substantial selective advantage
to these cells. This advantageous shift eventually leads to the dominance of newer clones
(Figure 1a). Consequently, tumours were believed to contain clonally identical cells because
of ongoing cycles of selective sweeps. Initial studies on tumour evolution adhered closely
to this linear model; however, the advent of advanced genomic technologies, notably
next-generation sequencing (NGS), catalyzed a transformative shift in the field [38,39].
More recently, the use of single-cell sequencing has ushered in a new era of understanding,
allowing for the detection and analysis of intratumour heterogeneity (ITH), which is
explained by the coexistence of molecularly and phenotypically distinct subclones within a
tumour [4]. This scenario supports an alternative model, proposing that tumour growth
occurs in a non-linear, branched pattern. In this model, various subclones, stemming from
a common ancestor, diverge and proliferate simultaneously, each with varying levels of
fitness [1,40] (Figure 1b).

While these models account for accumulating genetic changes influenced by selective
pressure, they prove inadequate in incorporating the full spectrum of cancer’s evolutionary
dynamics. In fact, according to the neutral tumour evolution model [41], cancer-driving
alterations arise not due to selective advantages but owing to the random fixation of
selectively neutral mutations through genetic drift (Figure 1c). Consequently, the ITH
observed in tumours primarily emerges from the stochastic fixation of nearly neutral
changes within the population, lacking a functional role in promoting tumour growth.
Lastly, several lines of evidence suggest that, in some cases, genetic aberrations in cancer
cells may occur in short bursts of time [18–23,42]. The punctuated equilibrium model
embodies this phenomenon, suggesting that tumour cells undergo extended periods of
relatively stable mutational rates interspersed with short spans of intense evolution. During
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these bursts, tumour cells can accumulate multiple driver events, contributing to the
intricate patterns of cancer evolution [43] (Figure 1d).

Overall, our current understanding of tumour evolution has evolved from a linear
clonal progression model to encompass a diverse spectrum of paradigms, including branch-
ing, neutral, and punctuated patterns. These models, shaped by selective pressure, random
mutations, and bursts of intense evolution, collectively contribute to the complex dynamics
of cancer growth and ITH, highlighting the need for the integration of these multifaceted
evolutionary patterns in our quest to decode cancer evolution.
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Figure 1. Models of cancer evolution shaped by genetic alterations. (a–d) Depiction of four distinct
models illustrating the progression of cancer influenced by genetic factors. The cellular representation
(left panel) demonstrates the evolution at the individual cell level, highlighting cells impacted by
genetic changes. The evolutionary trajectory view (right panel) pictures the pathway or progression
of cancer evolution over time due to genetic alterations. In both panels, cells that have accumulated a
new genetic alteration are indicated with a yellow star.

3. Cancer Initiation and Progression as a Reverse Microevolutionary Process

While each of the evolutionary models presented above makes a different assumption
regarding when the mutations occur and how clones navigate through the selective pres-
sure, what is clear is that in most cases, tumours stem from alterations occurring in a single
cell or a small cluster of cells within a larger multicellular ecosystem, such as the human
body. Comparable to multicellularity and the underlying cooperation between cells which
have independently evolved several times [44], the evolution of cancer occurs repeatedly.
Thus, each individual tumour represents a unique occurrence of an evolutionary process.

Within the framework of multicellular organisms, a multitude of regulatory pathways
actively suppress the fitness of individual cells, thereby safeguarding the overall fitness of
the organism [45]. Adhesion proteins were one of the earliest components that facilitated
the organisms to transition from uni- to multicellular. These proteins played a pivotal role in
fostering coherence between neighboring cells [46]. This process led to enhanced interaction
and synchronization among diverse cell types, as well as the specialization of various cell
lineages within an organism, resulting in improved adaptability and overall fitness gain [47].
This phenomenon is often described as a shift from prioritizing individual cell fitness to
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favoring the fitness of the entire organism. Interestingly, the very regulatory mechanisms
that evolved to ensure effective cell interactions have also introduced vulnerabilities. When
these finely tuned cellular regulations are disrupted, they can create conditions conducive
to the development of malignant tumours [48]. Many recognizable traits of cancer can
indeed be traced back to the disruption of molecular networks that were established during
the evolutionary emergence of multicellularity [49,50]. A multitude of characteristics
exhibited by cancer cells remarkably mirror those of their unicellular counterparts. These
encompass sustained signals for cell proliferation, evasion of programmed cell death, and
the acquisition of unlimited replicative potential, among other traits [51].

In essence, the onset of cancer can be viewed as a form of reverse microevolution, a
process whereby cancer cells regress from the multicellular agreement and evolve towards a
state reminiscent of unicellular organisms [51–53]. The interplay between the driving forces
of multicellular evolution and the complex pathways of cancer development underscores
the profound interconnectedness of these biological phenomena.

4. Diverse Dimensions in Cancer Evolution: Beyond Genetic Drivers

The application of models inspired by Darwinian evolutionary principles has provided
a suitable framework for studying cancer evolution [16,54]. In fact, human somatic cells
take part in an evolutionary process characterized by continuous changes, selection, and
the growth of cell clones. In recent years, pervasive somatic mutations have been identified
across a plethora of healthy tissues, suggesting that cancer often arises from premalignant
clonal outgrowths [55–64], as in the context of clonal hematopoiesis. In this process, cells
accumulate various alterations, most of which are passenger events without functional
impact [65]. However, occasionally, clones of cells carrying specific alterations can take
over healthy tissues, leading to the development of preneoplastic lesions and malignant
tumours [66]. In this scenario, a single cell might acquire a new heritable genetic or non-
genetic alteration that increases its chances of producing a viable offspring, often referred to
as a selective advantage (Figures 1 and 2). These cells then outcompete their counterparts
that are lacking the advantageous alteration, leading to clonal expansion [1]. As this process
unfolds, the growing population continues to diversify through additional alterations and
undergoes positive selection [36,54,67,68]. This diversity supports the notion that cancer is
not a singular entity; rather, numerous distinct subpopulations exist within each tumour.
This increasing ITH presents a grand challenge for effective cancer treatment, increasing the
odds of both pre-existence of tolerant and resistant subpopulations [69]. As the population
of cancerous cells further enlarges, so does its clonal diversity. This diversity furnishes
the tumour with a vast array of alterations, some of which may confer adaptability to
therapy [70,71]. Consequently, even with the advancements in therapeutic approaches,
many malignant tumours adapt rapidly and return in a more aggressive and resilient
form [72]. To address this challenge, it is key to determine the functional significance of ITH
and trace the evolution of diverse cancer cell clones. Such insights will shed light on the
specific subsets of cells that drive disease progression. Moreover, genetic and non-genetic
drivers identified during cancer evolutionary trajectories have the potential to serve as
critical biomarkers for early disease monitoring and assist clinical decision making [73,74].
This could result in the development of alternative treatment strategies to prevent tumours
from advancing to life-threatening stages.

Current NGS data challenge the conventional perspective that cancer progression
and resistance solely stem from genetic alterations. In fact, only a minority of genetic
variants have been identified as responsible drivers for tumour progression, metastasis,
immune evasion, and therapy resistance [75,76]. An approach by which tumours can
survive treatment is for some cells to randomly (stochastically) enter a treatment-resistant
state, in a process not mediated by heritable, genetic mechanisms [33,77–79] (Figure 2a).
However, recent studies also point to an alternate route: heritable mechanisms that are
non-genetic (Figure 2a), which facilitate cancer evolution allowing persistence or lineage
plasticity [75,80]. As evidence, lung cancer cells have demonstrated non-genetic heritable
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resistance to treatment when subjected to therapeutic inhibition of the EGFR protein [76].
Similarly, melanoma cells can adopt specific drug-tolerant transcriptional profiles that
show a degree of heritability [81,82]. Lastly, even in cancer cell populations with largely
identical genetic backgrounds, a significant degree of plasticity, a phenomenon in which a
cell can switch states in a dynamic and reversible manner, is observed [31,83]. Cancer cell
plasticity can be triggered by, among other factors, heterogeneity at either transcriptomic
or epigenomic level or both, resulting in changes in survival, stemness potential, and
proliferative capability. For instance, in a recent study on lung cancer, a high-plasticity cell
state was identified. These cells revealed high capacity of differentiation, proliferation, and
resistance to chemotherapy, suggesting that this high-plasticity state might have a role in
driving disease aggressiveness and progression [73].
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Figure 2. Cancer evolution and the non-genetic factors involved in treatment resistance. (a) Non-
genetic factors can be either heritable (partially) or non-heritable. In case of non-heritable factors,
some cells can gain the beneficial state for resistance, but they cannot pass it on to the next generation
of cells (top). The heritable states might follow a heritable path, although the degree of heritability
is lower than genetic factors. (b) Top: Examples of intrinsic factors causing non-genetic changes in
the cell. Only one example of the regulators of cell plasticity is shown (the H3K27 methyltransferase
EZH2, the H3K4 methyltransferase MLL, and the lysine demethylase KDM). Bottom: A zoomed-in
representation of the cell state changes caused by non-genetic factors. These changes lower the
barriers between malignant cells, increasing cell state plasticity.

Recent breakthroughs, especially in single-cell sequencing technologies (discussed in
the next section), have shown extensive intratumoural variability in cell states, epigenetic
profiles, spatial dynamics, alternative splicing patterns, and tumour microenvironment
interactions [34,55,56,84]. These non-genetic modifications are crucial contributors of cancer
cell phenotypes. In fact, human cells possess mechanisms that allow inheritable phenotypic
changes in the absence of DNA changes. Epigenetic identities can be reliably perpetuated
from the initial altered cell, permitting inference of the cell of origin, like the faithful
propagation of the cancer cell’s genetic information. Consequently, just as stochastic errors
in the genome can lead to genetic variability and diversification within tumours, similar
errors in the epigenetic makeup might result in a diverse epigenetic landscape within the
tumour (Figure 2b). This blurs the lines between epigenetic identities and key non-genetic
factors that drive cancer’s progression [84–89]. Telomere lengthening, addition of methyl
groups (methylation) to DNA, changes to the DNA-binding histone proteins, binding of
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various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and modifications
to the chromatin structure are some key examples of epigenetic changes with ample
evidence supporting their heritability, as well as their contribution to the pathobiology
of malignancies (Figure 2b, top) [90–96]. For instance, previous studies, based on bulk
bisulfite sequencing, have identified thousands of loci with a “noisy” stochastic pattern
of DNA methylation changes. These changes indicate significant heritable variations
in the epigenome of both normal and cancerous tissues [84–89]. In addition, changes
that disrupt chromatin can lead to overly permissive chromatin states, lowering barriers,
ultimately resulting in increased cell plasticity (Figure 2b, bottom) [97]. As cancers progress,
this epigenetic variation amplifies, leading to a loss of distinct epigenetic identity. This
enhances the evolutionary potential of the cancer, often resulting in unfavorable outcomes.
A high degree of DNA methylation can also inactivate genes that aid in tumour suppression.
A well-known example of such a process is the methylation and silencing of the promoter
region of MGMT gene, a O-6-methylguanine-DNA methyltransferase. Methylation of
this gene drives a hypermutator phenotype that generates many genetic subclones in the
tumour [98], thus suggesting that epigenetic alterations might precede and directly lead to
genetic changes [97].

The coexistence of genetic and non-genetic factors driving cancer evolution has also
been observed in patient samples. Additionally, the evolutionary pressures and selection
processes that shape the growth and progression of tumours can differ widely, even within
a single type of cancer [72,99,100]. A specific study on triple-negative breast cancer ex-
emplifies this: whole exome and RNA sequencing of autopsy tissues demonstrated that
distinct metastatic lesions had evolved independently [101]. Some lesions had different
mutations in drug target regions, consistent with the higher mutation rate observed in
this subtype of breast cancer. Yet, other lesions displayed unique gene expression patterns
without any detectable key mutations. This indicates that even within a single primary
tumour, multiple evolutionary pathways might be at play. Therefore, for effective cancer
treatment, it is crucial to consider this complexity and distinguish between functional
changes and inconsequential ones, regardless of whether they originate from genetic or
non-genetic factors. However, in some cases, there is consistency in the evolutionary trajec-
tories between genetic and non-genetic factors. For instance, a multiregion study of lung
adenocarcinomas found that the tumour evolution patterns inferred from both somatic
copy number alterations and DNA methylation were vastly comparable [102]. Similar
congruencies in genomic and epigenomic evolution have been observed in papillary renal
cell carcinoma [103].

Cancer cells might also inherit transcriptional plasticity and epigenetic memory from
their initial cell state, which may contribute to their ability to adapt within the tumour
environment, including developing resistance to treatments and the potential to metasta-
size (Figure 2a) [75,104–106]. Indeed, current research indicates that the cancer-enabling
phenotypes, such as persistence and lineage plasticity, might be encoded and propagated
epigenetically [34,97,106–108]. Additionally, critical transcription factors (TFs) may facil-
itate the propagation of treatment-resistant cellular traits [109]. For instance, abnormal
activation of embryonic pluripotency TFs including SOX2, OCT4, and NANOG could drive
cancer cells into a stem-like state and promote further acquisition of aggressive pheno-
types [110–112]. Other studies have shown that in prostate and breast cancer, plasticity
and lineage reprogramming can be driven by activation of JAK/STAT pathway, which
promotes resistance to endocrine therapy [113,114].

Resistance to cancer therapy is usually multifaceted; hence, targeted therapies might
not always be effective in such circumstances. A better understanding of key functional
genetic and non-genetic factors underlying tumour resistance will influence treatment
strategies. For instance, over the last decade, immunotherapy has revolutionized the
treatment of many tumours [115,116]. Several in-depth studies have shown that a high
mutation burden, often caused by errors in DNA mismatch repair, is a strong indicator of
how effective immune checkpoint inhibitors could be [117,118]. However, relying solely
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on the mutational burden alone does not guarantee success, as many patients do not have
a long-lasting response to these treatments [119]. Moreover, mismatch repair deficiency
does not always lead to immune activation in cancer [120]. Growing evidence suggests
that epigenetic alterations might be the basis for individual variations in patient-specific
drug response. Epigenetic alterations frequently exhibit high plasticity. This means they
can be potentially reversible and thus represent promising therapeutic targets. Currently,
the primary treatments targeting these epigenetic alterations focus on DNA methylation,
modifications of DNA-associated proteins (such as histone deacetylation), and noncoding
RNAs like microRNAs [121]. The incidence of multiple genetic and non-genetic aberrations
in tumours suggests that combining standard treatments with those targeting epigenetic
changes could lead to more effective treatments, for instance by restoring the sensitivity in
resistant tumour cells by reactivating previously silenced genes [122].

Altogether, these findings highlight the need for more comprehensive models of
cancer evolution. The integration of multiple layers of information from individual cancer
cells is critical for fully grasping the mechanisms driving cancer progression and to better
understand how genetic and non-genetic factors contribute to cancer progression and
resistance. Addressing these challenges can greatly benefit from multiomics technologies,
enabling the capture of simultaneous layers of information at the single-cell level—the
fundamental unit of cancer evolution [4].

5. Integrating Single-Cell and Spatial Multiomics for Comprehensive Insights into
Cancer Evolution

The advent of next-generation sequencing (NGS) techniques has significantly pro-
pelled our comprehension of the molecular compositions of cancer cells [123–126]. However,
a substantial portion of these data has been garnered from molecules extracted from bulk
tumour samples, a heterogeneous mix of malignant and non-malignant cells, each playing
pivotal roles in tumour progression and resistance [127].

Cells, as the fundamental constituents of multicellular organisms, exhibit remarkable
diversity in morphology and function throughout development and disease. Typically,
cells are categorized into discrete “types” or “states” based on traits such as gene expres-
sion, morphology, and functionality. Single-cell RNA sequencing (scRNA-seq) has revolu-
tionized this classification paradigm by measuring gene expression in thousands—even
millions—of individual cells [127]. This technology has facilitated finer-grained identi-
fication of cell types, subtypes, and states within dynamic and complex cancer systems.
Recent studies have highlighted transcriptional cell state diversity across tumour types that
is often independent of genetic heterogeneity [128–130]. For instance, in brain tumours,
several distinct malignant cell states have been identified, with some associated with higher
stemness potential (neural progenitor-like and oligodendrocyte progenitor-like cells) and
others associated with a more differentiated state (astrocyte-like and mesenchymal-like
cells) [131–136]. However, the transcriptome is only one component of a cell’s phenotype,
and it is an incomplete representation of cellular identity. In fact, molecular and cellu-
lar identity emerge from the interplay of numerous cellular modalities, all of which can
fluctuate due to internal and external factors [137]. Alongside the widespread adoption
of scRNA-seq, novel single-cell multiomics sequencing methods have emerged, enabling
the simultaneous assessment of multiple factors influencing ITH and cancer evolution
(Figure 3). These factors encompass clonal heterogeneity, intratumoural differentiation
programs, tumour microenvironment (TME), and spatial organization, as well as metastasis
and resistance mechanisms.
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Figure 3. An overview of the power of single-cell and spatial multiomics techniques for studying
intratumour heterogeneity and TME. Using bulk sequencing methods, different modalities (shown
in five colours of blue, green, yellow, orange, and red) can be studied in each cell type, but only an
average value per sample is measured. Single-cell technologies allow the study of different modalities
within each individual cell simultaneously. Using spatial omics, the interactions between cancer cells
as well as TME can be studied in a spatial context.

As a cancer cell population evolves, cells accumulate genetic and non-genetic alter-
ations that trigger the emergence of new clones with distinct, selective advantages (see
Section 4). It is therefore essential to connect these alterations to cellular phenotypes or func-
tions, to ultimately unveil functional drivers of advantageous clonal outgrowths. Single-cell
multiomics methodologies allow for the integration of genotypic data—ranging from single
nucleotide variations to whole chromosome alterations—with epigenomic, transcriptomic,
and proteomic data [4,138,139]. For instance, we recently developed a method for the con-
current profiling of gene expression, surface proteins, somatic mutations, and RNA splicing
in individual cells [56]. By utilizing this method, we investigated the effects of mutations in
genes encoding RNA splicing factors in patients with myelodysplastic syndrome and clonal
hematopoiesis, unveiling splicing abnormalities that lead to lineage-specific clonal expan-
sions. On another end, epigenetic remodeling also underpins the plasticity that enables
cancer cells to switch between different states at various disease stages, including tumour
initiation, metastasis, and development of therapy resistance [97]. By employing multi-
omics methods that capture epigenome, transcriptome, and genomic alterations within
the same cell, we and others have characterized patterns of DNA methylation, chromatin
accessibility, and gene expression in single glioma cells. These methods reveal epigenomic
underpinnings of cellular heterogeneity and plasticity, including mechanistic insight into
cellular transitions between stem-like and differentiated-like states, suggesting that epige-
netic dysregulation contributes to the maintenance of stemness features [34,108,140]. These
single-cell multiomics approaches highlight instances where non-genetic factors, rather
than genetic mutations, drive cancer progression and resistance to therapies ([32,33]; also
reviewed in [4]).
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The propensity of certain cancer cells to leave their Initial location and infiltrate
distant organs, also known as metastasis, is the leading cause of cancer-related mortal-
ity [50]. From its transformation to its settlement on a new tissue, the metastatic cancer
cell undergoes significant modifications, such as adopting a greater motility program
(epithelial-to-mesenchymal transition), evading immune cell monitoring, and adjusting
to the new secondary location [141,142]. ScRNA-seq coupled with lineage tracing tech-
nologies applied to non-small-cell lung cancer tumours has revealed a striking diversity
in cells’ ability to metastasize. Interestingly, this heterogeneity was shown to have arisen
from pre-existing, heritable transcriptional cell states [143]. By applying a similar approach
on pancreatic cancer metastasized tumour, a rare epithelial-to-mesenchymal transitioning
state was discovered that showed the highest metastatic potential [144]. Dynamic epige-
netic processes appear to govern pivotal stages of metastasis, as no single mutation or
set of mutations stands out as reliable predictors of metastatic behavior across tumour
types [145,146]. For instance, in lung adenocarcinoma, single-cell epigenomic profiling
revealed a chromatin state continuum in the transition toward metastatic state and defined
a premetastatic accessibility program characterized by activation of RUNX transcription fac-
tors [147]. Regarding therapy resistance, undetected by bulk techniques due to their rarity,
certain malignant subclones harbor critical genetic and non-genetic alterations conferring
resistance to treatments. These subclones often dominate after initial therapy, triggering
recurrence. Several single-cell studies have proven that in multiple cancer types, cells that
survived chemotherapy were often derived from minor clones in sensitive populations, and
that therapy resistance is the result of both pre-existing non-genetic features and subsequent
cell state transitions [32,75,105,148,149].

Although single-cell multiomics methods have allowed us to explore the complex
interplay between genetic and non-genetic determinants of cancer evolution, it is impor-
tant to recognize that the full understanding of a cancer cell’s identity hinges not only on
its molecular makeup but also on its life history and spatial context within the tumour
tissue. As opposed to being randomly distributed within the tumour, malignant and
non-malignant cells occupy specific niches within the tumour space, leading to defined
cell–cell interactions. These microenvironmental interactions have a direct impact on cancer
development by profoundly altering the transcriptome and epigenome of both cancerous
and neighboring non-cancerous cells [150], as well as by promoting clonal selection. For
example, in clonal hematopoiesis, during chronic inflammation, the production of proin-
flammatory cytokines has been shown to promote the growth of mutated hematopoietic
stem cells (HSCs) [151–154]. Further, single-cell spatial mapping of cellular composition
and spatial organization of the primary and metastatic brain tumours’ TME has revealed
that several cellular neighborhoods characterized by CD4+ T cells or M1-like macrophages
are correlated with patient survival [155]. Moreover, investigations into locoregional tu-
mours have revealed that DNA methylation patterns are intricately tied to the spatial
configuration of colorectal cancer cells [156]. The diversity in DNA methylation profiles
in such cases has been linked to better outcomes such as relapse-free survival or a higher
overall survival rate.

Recent advances in spatial methods based on DNA, RNA, multiplexed fluorescence,
and isotope labelling have provided insights into cellular composition of tissues while
preserving spatial information [157]. These techniques have aided in unraveling tumour
architecture and microenvironmental interactions. For example, in glioblastoma samples,
a recent study employed spatially resolved multiomics to identify distinct niches charac-
terized by immunological and metabolic stress factors. These spatial niches were shaped
by the tumour microenvironment and showcased transcriptional adaptations to inflam-
matory or metabolic stimuli, mirroring neural developmental stages [158]. Further, the
emergence of spatial multiomics approaches, which integrate the detection of mRNA and
proteins [159], or mRNA and epigenomic patterns [138,160,161], has introduced a new di-
mension to our understanding of cancer progression (Figure 3). These methodologies offer
unprecedented glimpses into clonal development, the intricate interplay between cancer
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cells and the tumour microenvironment, and the regional diversity within the tumour. This
essential information might illuminate non-genetic mechanisms behind cancer progression
and treatment resistance, such as faulty regulatory systems that let cancer cells evade the
immune system.

The non-genetic mechanisms discovered to drive cancer evolution could pave the
way for new therapeutic strategies. For pre-existing features that confer cancer cells’
resilience against chemotherapy agents, treatment combination against both proliferation-
and resistance-related targets could be administrated simultaneously and be more effective
in eliminating the tumour. For instance, simultaneous treatment with specific epigenetic
agents (e.g., KDM6i and 5FU) prevented H3K27me3 demethylation and entry into drug-
tolerance states, delaying tumour relapse [162]. Additionally, research on epithelial-to-
mesenchymal transition (EMT), a key non-genetic regulator in cancer progression, showed
the effectiveness of an anti-netrin-1 antibody (NP137) in inhibiting tumour growth and
enhancing chemotherapy sensitivity in endometrial carcinomas. This has led to promising
early-stage clinical trials [163,164]. Furthermore, in the TME, studies have indicated the role
of tumour-associated macrophages in promoting tumour growth, with the STAT3 pathway
being a key player [165]. Immunotherapeutic agents targeting this pathway are currently
being tested in clinical trials (e.g., NCT03382340), showing promising response rates in
certain cancer patient groups.

In sum, emerging single-cell and spatial multiomics techniques provide an unprece-
dented opportunity to not only decipher the genetic and non-genetic determinants of cancer
but also to offer transformative prospects for novel therapeutic strategies. Further multi-
omics advances promise insights into the coordinated regulation of individual cells, crucial
for understanding holistic cellular phenotypes in development, health, and cancer therapy.

6. Conclusions and Perspectives

In conclusion, studying cancer progression and resistance has undergone a remark-
able evolution, driven by the interplay of innovative models and technologies that have
expanded our understanding of cancer complexity. From Boveri’s foundational genetic
alterations concept to the multi-hit model of Fearon and Vogelstein, and Peter Nowell’s
integration of evolutionary principles, these models have significantly contributed to our
insights into cancer origin and development. However, the complexity of cancer evolution
extends beyond these models, encompassing a spectrum of paradigms including linear,
branching, neutral, and punctuated patterns. These patterns underscore the multifaceted
nature of cancer evolution, influenced by both genetic and non-genetic factors.

While genetic mutations remain a cornerstone of cancer evolution, non-genetic mech-
anisms have gained prominence as key contributors to ITH, resistance to therapy, and
metastatic potential. Recent advancements in omics technologies, particularly single-cell
and spatial techniques, have unveiled the intricate interplay between genetic and non-
genetic determinants, revealing the importance of epigenetic modifications, transcriptional
plasticity, and microenvironmental interactions in shaping cancer cell identity and behav-
ior. The incorporation of spatial context further enriches our understanding by shedding
light on the interactions between cancer cells and their surroundings. In this context,
the concept of cancer evolution mirrors the fundamental transition from unicellularity to
multicellularity, as cancer cells seem to regress from the collaborative state of multicellular
organisms to a more individualistic, unicellular-like behavior. This reverse microevolution
underscores the intricate interplay between the forces that drive multicellular evolution
and the pathways that govern cancer development.

It is evident that embracing a comprehensive approach that integrates both genetic
and non-genetic determinants in the study of cancer evolution is essential. This entails
integrating Darwinian and non-Darwinian patterns of evolution and recognizing the
impact of diverse mechanisms, from genetic mutations to non-genetic modifications and
microenvironmental interactions. As our knowledge of cancer evolution expands, it is vital
to harness technological advancements in multiomics methodologies, in conjunction with
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spatial analysis, to decipher the coordinated regulation of individual cancer cells. This will
ultimately enhance our capability to predict tumour behavior, identify subclones resistant
to treatment, and pave the way for innovative therapeutic strategies that directly anticipate
and address cancer evolution.
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