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Abstract: Alzheimer’s disease (AD) and cardiovascular traits might share underlying causes. We
sought to identify clusters of cardiovascular traits that share genetic factors with AD. We conducted
a univariate exome-wide association study and pair-wise pleiotropic analysis focused on AD and
16 cardiovascular traits—6 diseases and 10 cardio-metabolic risk factors—for 188,260 UK biobank
participants. Our analysis pinpointed nine genetic markers in the APOE gene region and four loci
mapped to the CDK11, OBP2B, TPM1, and SMARCA4 genes, which demonstrated associations with
AD at p ≤ 5 × 10−4 and pleiotropic associations at p ≤ 5 × 10−8. Using hierarchical cluster analysis,
we grouped the phenotypes from these pleiotropic associations into seven clusters. Lipids were
divided into three clusters: low-density lipoprotein and total cholesterol, high-density lipoprotein
cholesterol, and triglycerides. This split might differentiate the lipid-related mechanisms of AD. The
clustering of body mass index (BMI) with weight but not height indicates that weight defines BMI-AD
pleiotropy. The remaining two clusters included (i) coronary heart disease and myocardial infarction;
and (ii) hypertension, diabetes mellitus (DM), systolic and diastolic blood pressure. We found that all
AD protective alleles were associated with larger weight and higher DM risk. Three of the four (75%)
clusters of traits, which were significantly correlated with AD, demonstrated antagonistic genetic
heterogeneity, characterized by different directions of the genetic associations and trait correlations.
Our findings suggest that shared genetic factors between AD and cardiovascular traits mostly affect
them in an antagonistic manner.

Keywords: exome-wide association study; Alzheimer’s disease; pleiotropy; hierarchical cluster analysis;
aging; cardio-metabolic traits; coronary heart disease; myocardial infarction; stroke; heart failure

1. Introduction

Alzheimer’s disease (AD) is an aging-related neurodegenerative disorder, with few in-
terventions available to ameliorate its symptoms. As the number of AD-affected Americans
is expected to increase rapidly, reaching about 12.7 million cases by 2050 [1], identifying
the causes of Alzheimer’s disease would be beneficial for its prevention and treatment.
Several hypotheses have been proposed to explain AD pathology, such as amyloid beta
(Aβ) cascade, tau pathology, calcium, inflammatory, cholinergic, and oxidative stress hy-
potheses [2]. It is likely that many biological processes and pathways related to these
hypotheses contribute to the initiation and progression of AD. In addition to the buildup of
Aβ plaques and neurofibrillary tangles, the loss of neuronal synapse junctions, neuronal
cell death, and brain atrophy can contribute to cognitive impairment underlying AD.

At this time, none of the aforementioned hypotheses alone have succeeded in ex-
plaining AD pathology. The amyloid beta hypothesis has been thoroughly investigated in
the clinical treatment of AD, with a focus on targeting Aβ plaques. Notably, two drugs,
lecanemab and aducanumab, have received approval from the FDA through the accelerated
approval mechanism. Additionally, a third drug, donanemab, has shown promising results
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in clinical trials [3], but there is still no cure for AD at this time. This means that there
are other processes accompanying the disease and contributing to its progression and
severity. This includes the breakdown of the blood–brain barrier (BBB), the immune system
response, reduced cerebral blood flow, altered adult neurogenesis and energy metabolism,
cell membranes and the cell cycle, the cytoskeleton, and lipid and protein metabolism [4,5].
These processes can develop independently and/or be initiated by other age-related traits
or events. The correlation of AD with these other traits may indicate common biological
processes underlying them. Therefore, studying the patterns in the pleiotropic associa-
tions of AD and the other traits can facilitate identifying and understanding the biological
mechanisms underlying AD pathogenesis.

Genome- and exome-wide association studies (GWAS and EWAS, respectively) are
comprehensive tools designed to identify genes and related biological mechanisms asso-
ciated with different traits. While conventional GWAS and EWAS focus on identifying
genetic associations with single traits, pleiotropic GWAS and EWAS take a broader ap-
proach. They aim to simultaneously assess genetic associations with multiple traits and
identify shared genetic components that contribute to the pleiotropy observed in epidemi-
ological studies. Previous epidemiological studies that considered AD and other related
traits helped identify several cardiovascular factors conferring AD risk. For instance, in-
creased levels of LDL-C and TC are considered risk factors for AD [6,7], while increased
levels of HDL-C were highlighted as protective [8]. Pleiotropic GWAS/EWAS provided an
additional opportunity to identify several genetic components and respective biological
mechanisms shared by those multiple traits [9,10].

Certain risk factors can form clusters, i.e., they increase or decrease AD risks simul-
taneously by acting in additive or synergistic manners. Several studies have already
demonstrated the effects of such clusters [11,12]. For example, the clustering of vascular
risk factors, such as midlife obesity, high SBP, and high total cholesterol levels, increased
the risk of dementia and AD in an additive manner [12]. Clusters of hypertension and heart
disease, diabetes, and current smoking also increased AD risk [11].

Many of the previous analyses of clustering of neurodegenerative conditions, includ-
ing AD, used individual-level data for phenotypes as a distance measure [13–17]. In such
types of cluster analyses, strongly correlated phenotypes usually cluster together. This
approach is not quite efficient, however, in cases when the underlying biological mech-
anisms and related genetic components are not major contributors to the phenotypes’
correlations. In this study, we applied an approach in which the statistics of univariate
and pleiotropic genetic associations were used for identifying clusters of AD and its risk
factors. We believe that this approach can more accurately characterize complex roles of
genetic and non-genetic factors in AD pathogenesis [18–21], including complex interactions,
which can be attributed to different biological mechanisms driving antagonistic genetic
heterogeneity [22,23]. Such heterogeneity was shown to be widespread in the genetics of
lipid traits [24]. This phenomenon was also observed in pleiotropic associations with AD
and some traits related to educational attainment and cardiovascular risk factors [25–27].

The goal of this study was to gain insights into pleiotropic predisposition to cardiovas-
cular and AD risk factors and demonstrate complex clustering patterns of AD with 16 risk
factors. We hypothesized that using summary statistics of pleiotropic associations among
AD and related phenotypes (risk factors) could capture clusters of phenotypes based on the
similarities among the genetic effects, rather than solely on the direct correlations among
these phenotypes. This approach may facilitate the discovery of shared biological pathways.
An additional goal was to investigate how antagonistic genetic heterogeneity shapes the
clustering of AD-related phenotypes. For this purpose, we carried out a pair-wise pleiotropic
exome-wide association study (~260 K common genetic variants) on predisposition to AD
and on each of the 16 selected traits in a sample of ~190 K individuals from the UK Biobank.
The analysis included six qualitative traits (coronary heart disease (CHD), diabetes mellitus
(DM), stroke, myocardial infarction (MI), heart failure (HF), and hypertension (HT)), and ten
other cardio-metabolic risk factors (blood glucose (BG), BMI, height, weight, four lipid traits
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(LDL-C, HDL-C, TG, and TC), and systolic (SBP) and diastolic (DBP) blood pressure). Fisher’s
method was used to test the pleiotropic associations, and hierarchical cluster analysis was
used to identify clusters of AD risk factors with similar genetic components.

2. Materials and Methods
2.1. Accession Numbers

This research has been conducted using data from the UK Biobank, a major biomedical
database (http://www.ukbiobank.ac.uk/, accessed on 15 March 2021).

2.2. Study Cohorts

Data from the UK Biobank (UKB) [28,29] on individuals of Caucasian ancestry, men
and women combined, were considered in the analyses. Table 1 provides the basic demo-
graphic information of the genotyped participants. After quality control of genetic and
phenotypic information, 188,260 individuals remained in the subsequent analyses.

Table 1. Basic demographic information of the UK biobank participants with whole exome genotyp-
ing information.

AD
Status PAR N Women BC Range LS Age Mortality

VALUE
(SD) 188,260 103,736

(55.10) 1936–1970 65.21 (8.0) 56.70 (8.03) 899 (0.48)

Quantitative traits

AD DM HT CHD MI STROKE HF

Cases 361 53 (15%) 189 (52%) 89 (25%) 37 (10%) 30 (8%) 20 (6%)

Controls 187,899 11,015 (6%) 45,349 (24%) 16,327 (9%) 5834 (3%) 4589 (2%) 3236 (2%)

p-value 1.33 × 10−9 <2.2 × 10−16 <2.2 × 10−16 3.90 × 10−10 9.97 × 10−9 6.867 × 10−6

Quantitative traits

BG
(mg/dL)

BMI
(kg/m2)

Height
(cm) Weight (kg) SBP

(mmHg)
DBP

(mmHg)
HDL-C

(mg/dL)
LDL-C

(mg/dL)
TC

(mg/dL) TG (mg/dL)

Cases 93.36
(19.93)

27.01
(4.90)

167.18
(9.17)

75.62
(15.40)

146.18
(19.58)

81.79
(10.96)

57.77
(16.30)

133.77
(35.72)

216.97
(47.43)

149.26
(78.77)

Controls 92.13
(21.19)

27.34
(4.73)

168.67
(9.24)

78.03
(15.83)

139.78
(19.58)

82.13
(10.65)

56.49
(14.82)

138.07
(33.44)

221.19
(43.99)

154.26
(89.82)

p-value 5.89 × 10−1 5.05 × 10−1 1.61 × 10−1 1.72 × 10−1 3.46 × 10−2 9.04 × 10−1 4.77 × 10−1 2.68 × 10−1 3.96 × 10−1 5.54 × 10−1

PAR = the name of characteristics/parameter; SD = standard deviation. N = sample size; Women = number
of women (%); BC Range = range of birth years; LS = life span in years; age = mean age measured in years
at the selected examination of quantitative traits. p-values for qualitative and quantitative phenotypes were
assessed by using the exact Fisher and Wald test, respectively. AD = Alzheimer’s disease; DM = diabetes mellitus;
HT = hypertension; CHD = coronary heart disease; MI = myocardial infarction; STROKE = stroke; HF = heart
failure. BG = blood glucose; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure;
HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; TC = total cholesterol;
TG = triglycerides.

2.3. Genotypes

Exome sequencing data for ~200 K individuals were available from the UK Biobank
Exome Sequencing Consortium [30]. In the analyses, we included directly genotyped
markers (no imputation was performed) with minor allele frequency (MAF) greater than
0.5%, which resulted in 258,684 (~250 K) genetic variants. A total of 213,935 SNPs had a
missing call rate better than 5%. For these SNPs, all individuals had a missing call rate better
than 5%. Only these SNPs were considered for reporting the results of this study. We did
not apply the Hardy–Weinberg equilibrium test at this stage because negligible deviation
from Hardy–Weinberg equilibrium was still highly significant in the large UKB sample.

2.4. Phenotypes

We considered incident cases of AD and six other diseases, including DM, HT, CHD,
MI, stroke, and HF (Table 1). All cases were defined by the UK Biobank based on the ICD-9

http://www.ukbiobank.ac.uk/
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and ICD-10 codes. AD status was defined by using codes F00 and G30 according to the
ICD-10 classification.

Ten quantitative phenotypes, BG (mg/dL), BMI (kg/m2), height (m), weight (kg), SBP
(mmHg), DBP (mmHg), HDL-C (mg/dL), TG (mg/dL), LDL-C (mg/dL), and TC (mg/dL)
were considered. Because longitudinal information (multiple measurements) was available
for a small number of participants, we selected measurements based on the first examination
for which information was available (Table 1) (see also Section 2.7). We found significant
differences between the AD cases and controls in the qualitative phenotypes (assessed using
the exact Fisher test) and the mean values for SBP (evaluated using the Wald test).

2.5. Correlations among Phenotypes

Information on the Pearson correlation coefficients between AD and each of the
considered quantitative and qualitative phenotypes and their significance is given in
Table 2. We observed a small positive significant correlation between AD and each of the six
diseases. The largest and most significant correlation was between AD and HT (r = 0.029,
p = 2.41× 10−23). Among the quantitative traits, only weight, height, and SBP demonstrated
small significant correlations with AD (Table 2).

Table 2. Pearson correlation coefficient between Alzheimer’s disease and each of the considered pheno-
types in the UK Biobank based on individual-level data and summary statistics of genetic associations.

Individual-Level Data Summary Statistics

Phenotype r P r P

HT * 0.0290 2.41 × 10−23 0.0352 <2.2 × 10−16

CHD * 0.0248 1.82 × 10−17 0.0145 2.15 × 10−11

MI * 0.0180 6.52 × 10−10 −0.0169 4.67 × 10−15

STROKE * 0.0166 1.19 × 10−8 −0.0174 8.10 × 10−16

DM * 0.0164 1.76 × 10−8 0.0365 <2.2 × 10−16

HF * 0.0128 1.08 × 10−5 −0.0358 <2.2 × 10−16

BG 0.0025 3.82 × 10−1 −0.0069 1.55 × 10−3

BMI −0.0031 2.82 × 10−1 0.0514 <2.2 × 10−16

Height * −0.0070 1.61 × 10−2 −0.0700 <2.2 × 10−16

Weight * −0.0066 2.30 × 10−2 0.0092 2.03 × 10−5

SBP * 0.0143 9.34 × 10−7 −0.0082 1.41 × 10−4

DBP −0.0014 6.35 × 10−1 0.0164 2.87 × 10−14

HDL-C 0.0038 1.96 × 10−1 −0.0074 5.84 × 10−4

LDL-C −0.0057 5.17 × 10−2 −0.0029 1.87 × 10−1

TC −0.0042 1.48 × 10−1 −0.0086 7.62 × 10−5

TG −0.0024 4.00 × 10−1 −0.0078 3.41 × 10−4

r = Pearson correlation coefficient; P = p-values; * = significant correlation based on individual-level data. DM = di-
abetes mellitus; HT = hypertension; CHD = coronary heart disease; MI = myocardial infarction; STROKE = stroke;
HF = heart failure. BG = blood glucose; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic
blood pressure; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol;
TC = total cholesterol; TG = triglycerides.

Figure S1 and Table S1 display the Pearson correlation coefficients among the vari-
ous traits under consideration. Most correlations were statistically significant, with the
exception of those involving stroke–height and the ones noted above for AD. Among the
observed correlations, the highest were between LDL-C and TC (r = 0.95), CHD and MI
(r = 0.58), SBP and DBP (r = 0.67), weight and BMI (r = 0.83), and weight and height
(r = 0.54). Conversely, the most pronounced negative correlation was between HDL-C and
TG (r = −0.44), as well as HDL-C and weight (r = −0.46).
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2.6. Correlations among Summary Statistics

Table 2 also includes information on the Pearson correlation coefficients that were
obtained by using summary statistics of the genetic associations with AD and each of
the considered quantitative and qualitative phenotypes. Only the correlation coefficient
between the summary statistics for AD and LDL-C was statistically non-significant. The cor-
relation coefficients of the summary statistics for the other traits with AD were statistically
significant. Moreover, for five traits (MI, stroke, HF, weight, and SBP), the correlation based
on individual-level data and on summary statistics demonstrated opposite directions and
were statistically significant. This demonstrates that correlations between the phenotypes
at an individual level can be shaped by other factors in addition to genetic component(s).

2.7. Statistical Analyses

The univariate unconditional analysis—i.e., the univariate exome-wide association
study (EWAS)—of the associations of each SNP with each quantitative phenotype or disease
was performed using a linear or logistic regression model, as implemented in plink 2.0
software. An additive genetic model was considered with the minor allele as an effect
allele. All models in all analyses were adjusted for sex and age at the selected examination.
Therefore, our EWAS provided 17 summary statistics (effect size, standard error, and
p-value) for the estimates of the associations with seven diseases and ten continuous traits
for each SNP.

Pleiotropic meta-analysis was performed for the pairs of traits. We used an AD-
centric approach when each pair included AD and one of the other traits. Given the
small correlations among the traits (Table 2), Fisher’s method [31] was used for pleiotropic
analysis. It combines p-values across phenotypes, disregarding the effect directions and
correlations among them, and addresses the issue of multiple testing by increasing the
number of degrees of freedom. Therefore, 16 pleiotropic meta-analyses were conducted.

2.8. Pleiotropic Associations

As Fisher’s method corrects pleiotropic p-values for testing multiple phenotypes, the
traditional genome-wide (GW) level of significance, pGW = 5 × 10−8, was used to obtain
conclusions about the significance of the pleiotropic effects. Here, we report GW significant
pleiotropic SNPs when at least one of 16 pleiotropic tests attained GW significance, p < pGW,
and the EWAS univariate associations with these traits demonstrated significant association
at the levels of p < 5 × 10−4 for AD and p < 5 × 10−2 for the other traits. As this analysis
was AD-centric, we applied a more stringent threshold for AD associations and a less
stringent threshold for each of the other phenotypes.

2.9. Index SNPs and Gene Mapping

The NCBI dbSNP database and variant effect predictor from Ensembl (assembly
GRCh38.p13) were used for mapping SNPs to genes. Outside of the APOE gene region,
one index SNP was selected per locus. Multiple genes were reported when several genes
overlapped. The index SNPs were selected based on the most significant association
(smallest p-values) within each genetic locus. Furthermore, the selection of index SNPs
took into consideration the proximity of the MAF from the UKB exome chip to the MAF
found in the UK10 K TWINS and/or 1000 G reference datasets, as the MAF for some SNPs
substantially differed. SNPs that met the Hardy–Weinberg threshold p-value = 1 × 10−40,
were retained. We used a small p-value for the Hardy–Weinberg cut-off because even
very small deviation from Hardy–Weinberg equilibrium was highly significant in the large
UKB sample.

2.10. Cluster Analysis

Hierarchical cluster analysis can be applied if a distance measure is defined. Previous
studies [11–17] used individual-level data of phenotype measurements as a distance mea-
sure, which assesses the similarity of phenotypes, including their genetic effects, effects



Genes 2023, 14, 1834 6 of 18

of exogenous exposures, and their interaction. In this study, we proposed using genetic
associations with phenotypes as a distance measure. This approach is more appropriate for
gaining insight into the similarities related to genetic components rather than exogenous
exposures, considering that the contributions of genetic effects and exogenous exposures
on the correlations among the phenotypes can be substantially different (see Table 2).

In this study, SNP–phenotype clusters were identified, leveraging the results of our
univariate and AD-centric pair-wise pleiotropic analyses. First, we identified patterns
characterized by the relative directions of the associations of the same alleles with AD
and each of the other phenotypes and the significance of the pleiotropic associations. The
relative directions were defined by the sign of a product of the effect sizes of the associations
of SNPs with AD and the other phenotype in a pair. For instance, if the associations of
SNPs with these phenotypes were of the same (opposite) directions, such SNPs had the
same (different) pattern.

These patterns can be subdivided further into clusters based on the p-values of the
associations of SNPs with phenotypes. To improve the resolution of the cluster analy-
sis, we used p-values from the univariate analyses of non-AD phenotypes and selected
pleiotropic SNPs for which the significance of their associations with AD was p < 5 × 10−4.
We further categorized minus-log-transformed p-values from the univariate associations
of non-AD phenotypes, −log(puni), into five categories, denoted as 0 for p > 0.05, 1 for
5 × 10−4 ≤ p < 5 × 10−2, 2 for 5 × 10−6 ≤ p < 5 × 10−4, 3 for 5 × 10−8 ≤ p < 5 × 10−6,
and 4 for p < 5 × 10−8. This procedure created an Aij matrix for the ith SNP and jth
phenotype, in which the sign of each element was determined by the relative directions of
the SNP associations with AD and a respective trait, and its magnitude was defined by the
aforementioned categories.

Two approaches were used for cluster analysis. Both approaches utilized hierarchical
cluster analysis with Euclidian measure and Ward’s method. Under this method, associa-
tions are clustered by minimizing the distance measure inside the clusters and maximizing
this measure between clusters. Our main approach was applied to matrix Aij as imple-
mented by the hclust function in R. This approach estimates clusters based on the similarity
of significances and sign-directions of the SNP–phenotype associations. The ad-hoc height
cut-off threshold for selecting the clusters was equal to five. This analysis was validated us-
ing an approach based on Pearson’s correlation as a distance measure. It was implemented
using the pheatmap function in R package ecodist. This approach estimates clusters based on
the collinearity of phenotypes as vectors of the associations with selected SNPs (collinearity
of columns of matrix Aij) and on the collinearity of the associations of selected SNPs with
the considered phenotypes (collinearity of rows of matrix Aij).

3. Results

Figure 1 represents a flowchart of the analyses performed in this study.

3.1. Univariate Associations from EWAS

A univariate EWAS was performed for seven diseases (DM, HT, CHD, MI, HF, stroke,
and AD) and ten quantitative phenotypes (BG, BMI, weight, height, SBP, DBP, HDL-C, TG,
LDL-C, and TC) in a sample of 188,260 UK biobank participants of European ancestry, for
men and women combined (see Section 2).

For the diseases, the only GW significant associations were observed with AD in the
APOE gene cluster on chromosome 19 for rs112849259 and rs741780 TOMM40 SNPs and
rs440446 and rs429358 APOE SNPs (Tables 3 and S2, Supplementary Materials). Also, for
SNPs in the APOE gene cluster, we identified GW significant associations with at least
one of the lipid traits: HDL-C (three SNPs), LDL-C (six SNPs), TG (five SNPs), and TC
(six SNPs). In total, this cluster of genes harbored 24 GW significant univariate SNP–trait
associations (Table S2).
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Table 3. Associations with risk of Alzheimer’s disease: SNPs from 4 genetic loci and APOE gene region.

N Gene(s) 1 SNP 2 Chr
Location,

Base Pairs
GRCh38

Ref
/Alt

MAF
obs
(%)

PHWE Function Beta SE P Gene
GRASP

SNP
GRASP

r2 PGRASP PMID

1 CDK11B
(MMP23B) rs28688376 1 1,637,577 T/c 26.1 6 × 10−36 intron 0.298 0.079 1.56 × 10−4

2 OBP2B rs11244035 9 133,205,932 C/t 10.2 2 × 10−30 missense 0.393 0.109 3.23 × 10−4 ABO rs8176694 0.02 1.3 × 10−2 20061627

3 TPM1 rs4775613 15 63,056,897 A/g 42.8 3 × 10−2 5′UTR −0.334 0.078 1.99 × 10−5 RAB8B rs10519190 0.00 2.2 × 10−4 17998437

4 SMARCA4 rs28997580 19 11,013,062 C/t 0.9 3 × 10−2 synonymous 0.960 0.255 1.64 × 10−4 LDLR rs2569540 0.00 1 × 10−9 35589863

APOE 19

5 CBLC rs80168591 19 44,781,370 G/a 1.4 0.87 splice 0.911 0.205 8.54 × 10−6 CBLC rs899087 0.00 5.1 × 10−5 22832961

6 BCAM rs28399637 19 44,820,881 G/a 31.5 5 × 10−8 intron 0.382 0.076 4.71 × 10−7 BCAM rs2927480 0.21 5.0 × 10−49 21460841

7 PVRL2 rs283813 19 44,885,917 T/a 6.7 3 × 10−22 intron 0.488 0.123 7.16 × 10−5 PVRL2 rs283813 1 7.6 × 10−28 33589840

8 TOMM40 rs112849259 19 44,894,050 C/t 2.6 0.73 missense 1.227 0.138 4.59 × 10−19

9 TOMM40 rs741780 19 44,901,174 T/c 43.2 7 × 10−2 intron −0.454 0.080 1.14 × 10−8 TOMM40 rs741780 1 1.4 × 10−8 23565137

10 APOE rs440446 19 44,905,910 G/c 35.8 2 × 10−2 missense −0.561 0.087 1.22 × 10−10 APOE rs439401 0.57 1.1 × 10−78 21460841

11 APOE rs429358 19 44,908,684 T/c 15.4 0.54 missense 1.371 0.077 4.63 × 10−71 APOE rs429358 1 2.7 × 10−78 21390209

12 APOE rs7412 19 44,908,822 C/t 8.0 0.66 missense −0.856 0.200 1.87 × 10−5 APOE rs7412 1 5.5 × 10−58 20885792

13 APOC4;
APOC2 rs5167 19 44,945,208 T/g 35.1 0.10 missense 0.315 0.075 2.92 × 10−5 APOC4;

APOC2 rs5167 1 2.8 × 10−9 21460840

1 Multiple genes were assigned if the index SNP was within the region of overlapping genes. 2 One single nucleotide polymorphism (SNP) per gene locus was retained. Chr = chromosome;
Ref/Alt = reference/alternative allele (majuscule/minuscule letters stay for major/minor allele); MAF obs = minor allele frequency observer in our dataset. Beta/SE/P indicates effect
size/standard error/p-value of the association of the alternative (minor) allele vs. the reference (major) allele. SNPGRASP and GeneGRASP denote SNP and related gene, for which
minimum p-value has been reported in either the GRASP [32] or GWAS [33] catalog, where PGRASP is the reported p-value of the association with AD risk and PMID is the PubMed
index of the respective paper. r2 represents LD between previously reported SNP and SNP reported here. Empty cells: no index SNPs from the corresponding genetic locus were
previously reported neither in the GRASP nor in GWAS catalog for their association with AD risk.



Genes 2023, 14, 1834 8 of 18

Genes 2023, 14, x FOR PEER REVIEW 7 of 18 
 

 

3. Results 
Figure 1 represents a flowchart of the analyses performed in this study. 

 
Figure 1. Flowchart of the analyses of this exome-wide association study (EWAS). 

3.1. Univariate Associations from EWAS 
A univariate EWAS was performed for seven diseases (DM, HT, CHD, MI, HF, stroke, 

and AD) and ten quantitative phenotypes (BG, BMI, weight, height, SBP, DBP, HDL-C, 
TG, LDL-C, and TC) in a sample of 188,260 UK biobank participants of European ancestry, 
for men and women combined (see Section 2). 

For the diseases, the only GW significant associations were observed with AD in the 
APOE gene cluster on chromosome 19 for rs112849259 and rs741780 TOMM40 SNPs and 
rs440446 and rs429358 APOE SNPs (Tables 3 and S2, Supplementary Materials). Also, for 
SNPs in the APOE gene cluster, we identified GW significant associations with at least one 
of the lipid traits: HDL-C (three SNPs), LDL-C (six SNPs), TG (five SNPs), and TC (six 
SNPs). In total, this cluster of genes harbored 24 GW significant univariate SNP–trait 
associations (Table S2). 

Outside of the APOE gene cluster, three SNPs demonstrated five GW significant 
associations with BMI (rs28688376), LDL-C, and TC (rs11244035, rs28997580) (Tables 4 and S2). 

In total, 29 GW significant univariate associations were identified. 
  

Figure 1. Flowchart of the analyses of this exome-wide association study (EWAS).

Outside of the APOE gene cluster, three SNPs demonstrated five GW significant asso-
ciations with BMI (rs28688376), LDL-C, and TC (rs11244035, rs28997580) (Tables 4 and S2).

Table 4. Univariate and pair-wise pleiotropic associations of SNP, which includes Alzheimer’s disease
and one of 16 considered phenotypes: 4 genetic loci outside the APOE gene region.

N Gene(s) 1 SNP 2 Chr
Location,

Base Pairs
GRCh38

Ref
/Alt

MAF
obs
(%)

PH Beta SE P PF

1 CDK11B
(MMP23B) rs28688376 1 1,637,577 T/c 26.1 BMI −0.096 0.017 3.36 × 10−8 1.42 × 10−10

2 CDK11B
(MMP23B) rs28688376 1 1,637,577 T/c 26.1 Weight −0.232 0.052 7.01 × 10−6 2.37 × 10−8

3 OBP2B rs11244035 9 133,205,932 C/t 10.2 LDL-C 1.206 0.187 1.09 × 10−10 1.13 × 10−12

4 OBP2B rs11244035 9 133,205,932 C/t 10.2 TC 1.519 0.243 3.84 × 10−10 3.81 × 10−12

5 TPM1 rs4775613 15 63,056,897 A/g 42.8 TC −0.436 0.146 2.81 × 10−3 9.91 × 10−7

6 TPM1 rs4775613 15 63,056,897 A/g 42.8 HDL-C −0.245 0.048 2.43 × 10−7 1.31 × 10−10

7 TPM1 rs4775613 15 63,056,897 A/g 42.8 SBP 0.156 0.062 1.18 × 10−2 3.84 × 10−6

8 TPM1 rs4775613 15 63,056,897 A/g 42.8 HF −0.052 0.026 4.16 × 10−2 1.24 × 10−5

9 SMARCA4 rs28997580 19 11,013,062 C/t 0.9 LDL-C −5.450 0.591 2.81 × 10−20 <5 × 10−8

10 SMARCA4 rs28997580 19 11,013,062 C/t 0.9 TC −6.141 0.767 1.20 × 10−15 <5 × 10−8

1 Multiple genes were assigned if the index SNP was within the region of overlapping genes. 2 One single
nucleotide polymorphism (SNP) per gene locus was retained. Chr = chromosome; Ref/Alt = reference/alternative
allele (majuscule/minuscule letters stay for major/minor allele); MAF obs = minor allele frequency observer in our
dataset. Beta/SE/P indicates effect size/standard error/p-value of the association of the alternative (minor) allele
vs. the reference (major) allele. PF is the p-value of the pair-wise pleiotropic analysis obtained by Fisher’s method.

In total, 29 GW significant univariate associations were identified.
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3.2. Pleiotropic AD-Centric Pair-Wise Associations

We identified 51 GW significant pleiotropic associations (see Section 2) (Tables S2 and S3A).
They included 20 associations in the APOE gene cluster, which were not driven by the
GW significance of the associations with AD. Four SNPs in the APOE and TOMM40 genes,
which were associated with AD at the GW level, showed 19 GW significant univariate
associations with non-AD phenotypes, totaling 19 GW significant pleiotropic associations.
These SNPs were associated with BMI, weight, and DBP (rs112849259 and rs429358); height
and TC (rs741780 and rs440446); HDL-C (rs112849259 and rs741780); LDL-C (rs741780);
DM (rs112849259, rs440446, and rs429358); HT (rs440446); and CHD and MI (rs429358).
Also, the remaining SNPs from the APOE gene cluster showed five additional signifi-
cant pleiotropic associations with AD and BMI, weight, CHD, and MI (rs7412); HDL-C
(rs28399637), while these SNPs did not attain GW significance in the univariate analysis.
In total, 44 [=20 + 19 + 5] GW significant pleiotropic associations were found for the SNPs
mapped to the APOE gene cluster. Outside of the APOE cluster, we identified seven GW
significant pair-wise pleiotropic associations. These included five SNP–trait pairs with GW
significant univariate effects (Tables 4 and S2) and two additional pleiotropic associations,
including BMI (rs28688376) and HDL-C (rs4775613).

We also identified 11 pleiotropic associations at the suggestive-effect level 5 × 10−8

< p < 5 × 10−6. They included associations of rs4775613 with SBP and TC; rs80168591
with HDL-C and stroke; rs28399637 with BMI, weight, and CHD; rs7412 with SBP and
HT; as well as rs5167 with height and TC. Thus, in total, we found 62 (=51 + 11) pair-wise
pleiotropic associations for 13 SNPs and 14 traits at p < 5 × 10−6 (Tables S2 and S3A). None
of the pleiotropic associations attained even a suggestive-effect level for BG and HF, and
only one for stroke.

3.3. Clusters of Pleiotropic Associations

For cluster analysis (see Section 2.10), we used 61 pleiotropic associations, excluding
unique association with stroke (Table S3A). Matrix Aij for this analysis included infor-
mation on 13 SNPs and 13 phenotypes (Table S3B). Hierarchical cluster analysis using
the Euclidian measure and Ward’s method provided two-dimensional dendrogram in
the SNP–phenotype domain (Figure 2). Phenotype-specific one-dimensional dendrogram
exemplified seven clusters for 13 phenotypes, i.e., (1) (LDL-C, TC), (2) TG, (3) (CHD, MI),
(4) height, (5) (HT, SBP, DBP, DM), (6) HDL-C, and (7) (weight, BMI) (Figure 2). Pearson’s
correlation approach (Figure S2) provided similar results, except that a pair of (HT, SBP)
phenotypes was clustered with (CHD, MI) rather than with (DBP, DM). This discrepancy
is likely due to diminished power to identify clusters using different distance measures,
given the moderate p-values from the univariate associations with these six phenotypes
(Table S2). Both approaches of cluster analysis aggregated SNPs into the same eight clusters
(Figures 2 and S2).

Figure 2 shows that the largest group of GW significant univariate (8 for LDL-C and
8 for TC) and pleiotropic (9 for LDL-C and 10 for TC) associations was observed for the
(LDL-C, TC) cluster. The second largest group was observed for TG (five univariate and five
pleiotropic GW significant associations), followed by HDL-C (three univariate and seven
pleiotropic GW significant associations) and BMI (one univariate and four pleiotropic GW
significant associations) + weight (four pleiotropic GW significant associations) clusters.
Two distinct clusters emerged from the analysis, namely (LDL-C, TC) and (BMI, weight),
which were composed of traits with the largest Pearson correlation coefficients of r = 0.952
and r = 0.833, respectively, evaluated using individual-level data (Figure S1 and Table S1).
This arrangement follows the anticipated clustering pattern where correlated traits are
grouped together. However, in contrast, height and weight, despite having a substantial
significant correlation of r = 0.538, were placed in separate phenotypic clusters.
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Figure 2. Eight clusters of SNPs and seven clusters of phenotypes based on significant pleiotropic
pair-wise associations with AD and each of the other 13 age-related traits. Blue (red) color and its
shades shows SNP–phenotype associations with the same (opposite) effect direction compared to
the respective SNP–AD associations. Alleles, which demonstrated detrimental association with AD
(positive betas), were considered effect alleles. Boxes show SNP and phenotypic clusters of pleiotropic
associations, which were selected at a score (height) level of 5, as represented by axes with numbers
on the horizontal (phenotypes) and vertical (SNPs) dendrograms. The x-axis shows the phenotypes,
while y-axis refers to the SNPs and their respective genes. The horizontal solid line in the center
shows the separation of the SNP clusters into two groups based on their significance and the effect
directions of their associations with the first phenotypic cluster (LDL-C, TC). Hierarchical cluster
algorithm with Euclidian measure and Ward’s method as implemented in R function hclust was used
for this plot.

3.4. Antagonistic Genetic Heterogeneity

Figure 2 emphasizes the complex forms of genetic heterogeneity when the same alleles
from different SNPs can have the same (e.g., ε2-encoding rs7412 SNP) or opposite (e.g., mi-
nor allele of rs28997580) directions of the associations with AD and other phenotypes in
a pair, e.g., (AD, LDL-C). This pattern, i.e., two sets of SNPs, was observed for each of
the eight phenotypes from six phenotypic clusters: LDL-C + TC, TG, HDL-C, height (H),
HT + SBP, and CHD.
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Figure 3 provides further insight into the phenomenon of antagonistic genetic hetero-
geneity. It includes the results of the significant pleiotropic associations for the traits that
demonstrated significant correlations with AD. Associations with lipid traits, BMI, and
DBP were excluded because of their nonsignificant correlations with AD (Table 2). Each
cell in Figure 3 displays the sign of a product of effect sizes for SNP–AD and SNP–trait
associations and the Pearson correlation coefficient (calculated by using individual-level
data) of AD and the corresponding trait. Red (blue) cells, which correspond to the negative
(positive) sign of the product mentioned just above, represent pleiotropic associations with
antagonistic (non-antagonistic) genetic effects. From this figure, it follows that 33% (7 out
of 21) of the pleiotropic associations in 3 of 4 phenotypic clusters (75%) demonstrated
antagonistic genetic heterogeneity, i.e., alleles, which demonstrated detrimental association
with AD, also demonstrated the opposite sign direction of their association with the con-
sidered trait compared to the correlation of that trait with AD. Two traits demonstrated a
more homogeneous pattern. Significant associations with DM demonstrated antagonistic
pleiotropic effects only, while all significant pleiotropic associations, which included weight,
were non-antagonistic ones (Figure 3).
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Figure 3. Antagonistic genetic heterogeneity of significant pleiotropic pair-wise associations with
AD and each of the other 13 age-related traits. Blue (red) color shows non-antagonistic (antagonistic)
genetic heterogeneity. The results are presented for phenotypes that exhibit significant correlations
with AD. Therefore, associations involving lipids, BMI, and DBP were excluded from this figure (see
Table 2). Refer to Figure 2 caption for other notations.

4. Discussion

In this EWAS, we performed AD-centric pair-wise pleiotropic and cluster analyses of
the associations of SNPs with AD and 16 phenotypes of cardiovascular and AD risk factors.

4.1. AD-Centric Pair-Wise Pleiotropic Associations

AD-centric pleiotropic analysis considered the associations of SNPs with AD and
one of the 16 phenotypes. This analysis identified 13 SNPs with genome-wide significant
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pleiotropic associations (Figure 2). Nine SNPs were mapped to the APOE gene cluster on
chromosome 19 (including APOE, TOMM40, APOC2/APOC4, PVRL2 (NECTIN2), BCAM,
and CBCL genes), which is a well-known genetic risk factor for AD. Four other SNPs
were from CDK11 (rs28688376), OBP2B (rs11244035), TPM1 (rs4775613), and SMARCA4
(rs28997580) gene loci. These SNPs were associated with AD at p < 5 × 10−4 and attained
genome-wide significance (p < 5 × 10−8) in the pleiotropic analysis.

The CDK11B (cyclin-dependent kinase 11B) gene plays a role in cell apoptosis. Recent
studies have demonstrated that CDK11 showed an altered expression in AD vulnerable
neurons, which may be related to APP signaling processes [34,35]. A predominantly
increased expression of CDK11 was observed in the cytoplasm of neuronal cells in AD cases,
while it was expressed specifically in the nuclei of post-mitotic neurons in most controls [34].
CDK11 is regulated by checkpoint kinase 2 (CHK2), which phosphorylates tau at an AD-
related site, enhancing tau toxicity [36,37], which demonstrates an additional link of the
CDK11B gene to AD. Altered expression of CDK11B can be a cause of neuronal apoptosis
and, consequently, of decreased brain weight through this process. This suggestion is
consistent with our results that the minor allele of rs28688376 from the CDK11B gene was
associated with an increased risk of AD and decreased levels of weight and BMI.

TPM1, TPM3, and TPM4 genes encode tropomyosin isoforms in neuronal cells. TPM1
products were found in the presynaptic compartment of the central nervous system (CNS)
neurons [38]. Tropomyosins (Tpm) actin-binding proteins stabilize the actin filaments,
which play a key role in the synaptic function of the CNS and mediate processes of
memory and learning [39]. Microtubules, neurofilaments, and microfilaments (actin fil-
aments) form the cytoskeleton of neurons. Dysregulation of tropomyosin and the actin
cytoskeleton can induce synapse loss, which takes place in the early stages of AD pathology.
Tropomyosin participation in the neurofibrillary pathology of AD was immunochemically
demonstrated [40]. A significant increase in tropomyosin-1 abundance in the platelets
of AD female patients was recently observed [41], in addition to a proteomics study that
showed TPM1 gene products increasing in the white matter of AD patients when com-
pared to controls [42]. Recently, it has been demonstrated that TPM1 plays a key role in
cardio-genesis and cardiovascular disorders [43], providing a link to the associations of
SNPs from this gene with SBP observed in this study.

The protein encoded by the SMARCA4 gene is a member of the SWI/SNF family
of proteins, which regulate gene activity by a chromatin remodeling and are involved in
repairing damaged DNA, replicating DNA, and controlling the growth, division, and dif-
ferentiation of cells. SMARCA4 is in the same gene region as the LDLR gene. LDLR is a key
regulator of cholesterol metabolism and encodes the protein involved in receptor-mediated
endocytosis of low-density lipoprotein cholesterol [44]. The genome-wide-significant asso-
ciation of rs2569540 from the LDLR gene with AD was demonstrated in a recent GWAS
study [45].

The OBP2B gene plays a role in chemosensory behavior and the perception of smell.
Impaired sense of smell, or olfactory dysfunction, is often seen as an early indicator of AD
pathology in the brain. A recent study indicated that individuals with olfactory dysfunction
also exhibit changes in the blood levels of LDL-C and TC [46]. The current study aligns with
these findings and adds additional insight, suggesting how blood cholesterol levels and
AD-related changes could be intertwined. Specifically, our results suggest that olfactory
dysfunction, which is considered as an early manifestation of AD, can be related to altered
levels of LDL-C and TC in the blood. This link highlights the need for further investigation
to determine whether AD might play a causal role in altering lipid metabolism.

Our findings suggest the involvement of other mechanisms contributing to the disease
pathogenesis in addition to the amyloid-beta mechanism. Specifically, they highlight actin
filaments, chromatin remodeling, neuronal apoptosis, and lipid abnormalities as potential
targets for the development of new AD drugs.
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4.2. Clustering of Genome-Wide Significant Pair-Wise AD-Centric Pleiotropic Associations

In previous studies [11–17], the clustering of neurodegenerative conditions, including
AD, was considered based on correlations among phenotypes. Our cluster analysis added
a pleiotropic genetic component and, therefore, it can help in gaining further insights
into the biological mechanisms associated with the pleiotropic effects. Such biological
mechanisms may or may not be those which drive correlations among phenotypes. In this
study, phenotypes belong to the same cluster if the associations of the SNPs with these
phenotypes and AD demonstrated similarity defined by the same effect directions and
the level of statistical significance (see Section 2.10). Thus, clustering is considered in a
two-dimensional SNP/gene and phenotype domain. Similarity within phenotypic clusters
suggests underlying biological mechanisms, which may contribute to AD. Our cluster
analysis identified eight clusters of SNPs and seven clusters of phenotypes, which demon-
strated similar SNP–phenotype associations (Figure 2). Cluster analysis was harmonized
by considering alleles predisposed to AD as effect alleles.

We found that lipids defined three clusters: one cluster was defined by LDL-C and
TC, while TG and HDL-C were in two separate clusters. This finding suggests at least
partial independence of the biological mechanisms underlying the pleiotropic associations
of each of these lipid traits and AD. This result corroborates previous studies [25,47], which
reported partially independent mediation of the genetic associations with AD through
LDL-C, TG, and HDL-C for SNPs inside and outside of the APOE gene region.

A CHD and MI cluster was defined by significant associations of SNPs from the
APOE gene locus (Figure 2 and Table S2). Interestingly, while most alleles with ele-
vated risks for CHD and MI (rs7412_C: βCHD = 0.12, p = 8.25 × 10−8; and rs423958_c:
βCHD = 0.06, p = 2.90 × 10−4) were associated with higher risk of AD (rs7412_C: βAD = 0.86,
p = 1.87 × 10−5; and rs423958_c: βAD = 1.37, p = 4.63 × 10−71), rs283813 (PVRL2 gene)
demonstrated the opposite relationship, i.e., rs283813_a was favorably associated with
CHD (βCHD = −0.05, p = 3.01 × 10−2) but adversely with AD (βAD = 0.49, p = 7.16 × 10−5).
This finding demonstrates that alleles associated with increased risks of CHD can be associ-
ated with either a higher or lower risk of AD. This is in line with antagonistic pleiotropic
associations identified for AD and other cardiovascular factors, such as DM, that likely
reflects contributions of different biological processes [27,48,49].

Four traits (HT, SBP, DBP, DM) defined a cluster with a complex pattern of associations.
As they are risk factors for CHD and MI, they are typically considered together with these
diseases. Meanwhile, in this study, these phenotypes belong to two different clusters, as
there is more similarity within the clusters than among the clusters. All six phenotypes
and height would belong to the same cluster if the cut-off of the cluster height level was
increased to 7 (Figure 2, see the vertical axis with the numbers in the top left corner).
Interestingly, SNPs encoding APOE ε2 and ε4 alleles were associated with two different
subclusters, (HT, SBP) and (DBP, DM), respectively. This finding emphasizes that the
pleiotropic associations of these APOE alleles have different etiologies.

Height and (BMI, weight) defined two non-overlapping clusters, indicating a role of
independent mechanisms contributing to height and BMI or weight and AD.

Three phenotypes (BG, HF, and stroke) did not define any phenotypic cluster because
of the lack of significant genetic associations that could be used for clustering.

4.3. Antagonistic Genetic Heterogeneity Was Observed for AD-Centric Pleiotropic Associations
with Five Traits

Antagonistic genetic heterogeneity is characterized by misalignment of the signs
of the product of the effects of genetic associations with different phenotypes and the
correlations among these phenotypes [22–26]. This heterogeneity in our study was seen
in the associations of seven SNPs with five traits in three phenotypic clusters (Figure 3).
For each cluster of phenotypes (apart BMI, weight and DBP, DM), there were two sets
of SNPs, which were characterized by antagonistic and non-antagonistic genetic effects
in the associations with AD and the second phenotype in a pair (Figure 3). For example,
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rs283813 showed antagonistic genetic heterogeneity because it was adversely associated
with AD and favorably with CHD, despite a significant positive correlation between AD
and CHD (Table 2). The rs429358 did not show antagonistic heterogeneity with AD and
weight because opposite-direction associations of this SNP with these phenotypes were
aligned with a negative correlation between AD and weight.

Antagonistic genetic heterogeneity can also be viewed as a source of SNP/gene-
phenotype clustering. For example, antagonistic genetic heterogeneity differentiates a
cluster of height from that of BMI and weight because the height cluster includes antago-
nistic heterogeneity whereas the latter does not.

Antagonistic genetic heterogeneity plays a substantial role in the genetic associations
with AD and its risk factors. This heterogeneity indicates that an effect allele from an
SNP can confer the risk of one trait while being favorably associated with the other traits.
Such a relationship likely indicates the role of different biological processes associated with
the genes and pathways mapped to such SNPs on AD and its risk factors. For example,
for DM, all significant pleiotropic associations were antagonistic. The alleles of SNPs
with a significant adverse effect on DM were favorably associated with AD. This finding
corroborates previous results [27,48,49] and highlights the complex contribution of genetic
components to these diseases.

4.4. Protective Effect of Higher BMI Level against AD Is Related to High Weight

Previous studies demonstrated the protective effect of a high BMI level in late life
against AD [20,21]. BMI is defined by two phenotypes, weight and height. Our cluster
analysis showed that weight and height belong to different clusters. Moreover, SNPs that
demonstrated genome-wide significant pleiotropic associations with BMI and weight were
not significantly associated with height and vice versa. This finding suggests that protective
effects of a higher BMI level against AD are related to higher weight rather than smaller
height. While an increased BMI resulting from weight gain is associated with a higher risk
of cardiovascular diseases (such as CHD, MI, and hypertension) and diabetes in midlife, a
decreased BMI resulting from weight loss in later life can increase the risk of AD. This risk
is attributed to the deteriorated functions of an aging organism, which include impaired
metabolism, reduced cholesterol levels, decreased muscle mass, frailty, and sarcopenia,
among other factors.

5. Conclusions

This study reports four novel genetic loci showing pleiotropic associations with AD and at
least with one of 13 cardiovascular and AD risk factors. Genes harboring these loci are involved
in cell apoptosis (CDK11), the stabilization of actin filaments, i.e., the cytoskeleton of neurons,
(TPM1), the regulation of chromatin remodeling (SMARCA4), and chemosensory behavior
and sensory perception of smell (OBP2B). No pleiotropic associations were identified for BG,
HF, or stroke. Leveraging information on univariate and pleiotropic genetic associations, we
found seven clusters in the domain of 13 SNPs and 13 phenotypes. Nine of thirteen pleiotropic
SNPs were mapped to the APOE gene cluster (Figure 2).

AD-centric pleiotropic analysis confirmed partially independent mechanisms of pleiotropic
associations with AD and lipid traits; although LDL-C and TC defined one phenotypic
cluster, TG and HDL-C formed independent clusters because of the different patterns of
the genetic associations.

Our analysis identified that 61% (9 of 13) of the considered traits demonstrated antag-
onistic pleiotropic AD-centric associations. Our cluster analysis found that weight, which
was clustered with BMI, but not with height, defined pleiotropy of BMI and AD. SNPs
identified by significant pleiotropic associations with AD and DM were from the APOE
gene cluster, which corroborates previous findings.

Our cluster analysis in a two-dimensional SNP/gene-phenotype domain highlighted
a more complex role of genetic and non-genetic factors in AD pathogenesis than the cluster
analyses based on phenotype correlations did. Indeed, assuming that the clustering of
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phenotypes is related to their correlations, it is expected that correlated phenotypes should
be in the same cluster. For LDL-C and TC (Pearson’s correlation coefficient, r = 0.952),
BMI and weight (r = 0.833), and CHD and MI (r = 0.581), this was the case, as each pair
of these phenotypes was in its own cluster. This was not the case, however, for the other
correlated phenotypes, such as, for example, height and weight (r = 0.538), HDL-C and
weight (r = −0.462), and HDL-C and TG (r = −0.439) (see Table S1 and Figure S1) because
these phenotypes were in different clusters. Accordingly, our cluster analysis approach
was capable of capturing the biological mechanisms relevant to pleiotropy underlying
AD and other age-related phenotypes that may be not readily available from analyses
relying on information about the correlations of phenotypes. Defining more homogeneous
patterns of phenotypes and genetic factors can aid in the identification of more homogenous
groups of individuals who are at varying risks of AD. Subsequent research can facilitate
the identification of genetic and non-genetic components, contributing to the pleiotropic
effects associated with AD. Such insights can be valuable for developing comprehensive
treatment approaches that combine drug therapy and lifestyle interventions.

The proposed approach can be applied to published summary statistics of genetic
associations with different traits. Such an extension can help identify phenotypes that share
genetic components and, therefore, overlapping biological mechanisms between different
complex traits.

This study has some limitations. First, the analyses were performed for the entire
sample but not separately for groups that are at different risk levels of AD, such as, for
instance, within each sex group and/or at different ages. Second, we used a threshold
p-value = 5 × 10−4 for associations with AD, which substantially limited the number of
significant pleiotropic associations/SNPs. Third, a small number of SNPs (because of
the second limitation) were available for hierarchical cluster analysis, which limited the
precision of identifying phenotype clustering.
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