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Abstract: Dahlia (Dahlia variabilis) is a widely cultivated ornamental and medicinal plant in China.
Recently, dahlia plants with symptoms of leaf mottling and distortion were collected in Hohhot,
Inner Mongolia, China. The presence of dahlia common mosaic virus (DCMV), an unassigned
species in the genus Caulimovirus, was confirmed by high-throughput sequencing. Three fragments
of DCMV Inner Mongolia isolate (DCMV-IN) were PCR-amplified with specific primers, sequenced
and assembled into the complete genome sequence with a GenBank accession number of OR494328.
The double-stranded circular DNA genome of DCMV-IN consists of 7949 bp and contains six open
reading frames (ORFs). Sequence analysis showed that DCMV-IN shared high sequence identities
with other DCMV isolates available in the GenBank database. Phylogenetic analysis of DCMV isolates
and other representative caulimoviruses based on genome sequence clustered four DCMV isolates
to a single branch which was closest to dahlia mosaic virus (DMV). No recombination event was
detected among the four DCMV isolates.
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1. Introduction

Dahlia (Dahlia variabilis, genus Dahlia, family Asteraceae), also known as Dongyangju
and daliju in Chinese, is a perennial herbaceous plant. It possesses not only ornamental
but also medicinal value [1]. It has been reported to contain high levels of inulin, which
can be used to reduce blood glucose levels for diabetic patients [2]. Dahlia is native to
Mexico and is widely cultivated in Yunnan, Guizhou, Inner Mongolia, and other regions of
China. Due to the fact that dahlia is usually propagated asexually by vegetative tuberous
roots in cultivation, viral infections become a significant threat to dahlias [3]. Dahlia mosaic
disease is a widespread and detrimental disease in dahlia with a variety of symptoms
such as distortion, mosaic and chlorosis of leaves and overall stunting of plant [4,5]. Three
caulimoviruses including dahlia mosaic virus (DMV), dahlia common mosaic virus (DCMV)
and DMV-D10 have been reported to be associated with dahlia mosaic disease [6–8].

DCMV is an unassigned species of the genus Caulimovirus in the family Caulimoviridae,
which was first reported in the Netherlands in 2008 [9]. It has a wide range of hosts includ-
ing the members of the family Asteraceae, Brassicaceae, Amaranthaceae and Chenopodi-
aceae, and it can be transmitted by mechanical inoculation and aphids in a non-persistent
manner [8]. DCMV has an approximately 8 kb circular double-stranded genomic DNA [10].
The genome organization of DCMV is consistent with that of typical members of the genus
Caulimovirus, consisting of at least six open reading frames (ORFs) (ORF I–VI) that succes-
sively encode movement protein (MP), aphid transmission factor (ATF), putative DNA-
binding protein (DNAb), capsid protein (CP), polymerase polyprotein (PP)-containing
protease, reverse transcriptase and RNAse H and an inclusion body protein (IB) [9,11].

Recently, dahlia plants displaying virus-like symptoms of leaf mottling and distortion
(Figure 1) were discovered in the campus of Inner Mongolia Agricultural University. The
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presence of DCMV infection in dahlia plants was confirmed through high-throughput
sequencing (HTS) and PCR confirmation. Furthermore, the complete genome sequence of
the virus was sequenced and analyzed.
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Figure 1. The observed dahlia plants with symptoms of leaf mottling and distortion.

2. Materials and Methods
2.1. Sampling of the Virus Source

In July 2022, Dahlia samples showing obvious virus-like disease symptoms of leaf mot-
tling and distortion (Figure 1) were observed in the campus of Inner Mongolia Agricultural
University in Hohhot, Inner Mongolia, China. Leaf samples were collected, immediately
frozen using liquid nitrogen and transferred to −80 ◦C for further research.

2.2. High-Throughput Sequencing (HTS) and Data Analysis

To identify the virus infecting dahlia, total RNA was extracted from the pooled symp-
tomatic leaf samples from three different plants, with each sample weighing approximately
200 mg. TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used for the extraction fol-
lowing the manufacturer’s instructions. Ribosomal RNA (rRNA) was removed from the
total RNA using a Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI, USA), and the
rRNA-depleted RNA was used to construct a cDNA library using a TruSeq RNA Sample
Prep Kit (Illumina, San Diego, CA, USA). The prepared library was sequenced using an
Illumina NovaSeq 6000 platform with a read length of 2 × 150 bp. The raw data obtained
from the original image were processed by trimming adapter sequences and getting rid of
low-quality reads of length < 75 bp using the software Trimmomatic v.0.36 [12]. The taxon-
omy of the clean reads was determined by the software Kraken2 v.2.0.6 [13]. The obtained
virus-associated clean reads were then assembled de novo into contigs using MegaHit with
‘—min-contig-len 500′ parameters [14]. The obtained contigs were subjected to BLAST
analysis against the NCBI nucleotide (nt) sequences database and NCBI non-redundant
protein (nr) database, with an e-value cutoff of 10−5 [15].

2.3. Determination of DCMV Genome

To verify the presence of DCMV in the sample identified by HTS and determine its
complete genome sequence, total DNA was extracted from the pooled symptomatic leaf
samples used for HTS, using EasyPure Plant Genomic DNA Kit (TransGen, Beijing, China).
PCR was performed using three specific primer pairs designed based on the DCMV contigs
obtained from HTS (Table 1). The PCR reaction was carried out in a total volume of 20 µL
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containing 1.0 µL of total DNA; 10.0 µL of KOD OneTM PCR Master Mix (Toyobo, Shanghai,
China); and 0.6 µL of 10 µM corresponding to upstream and downstream primers, with the
following conditions: 35 cycles of denaturation at 98 ◦C for 10 s, annealing at 55 ◦C for 5 s
and elongation at 68 ◦C for 200 bp/s. The PCR products were examined by 1% agarose
gel electrophoresis, purified using EasyPure Quick Gel Extraction Kit (TransGen, Beijing,
China), cloned into the pMD18-T simple vector (TaKaRa, Dalian, China) and sequenced
by the Sanger method. For each amplicon, three independent clones were sequenced. The
complete genome sequence was assembled using Vector NTI software v.10.1.1 (Invitrogen,
Carlsbad, CA, USA) based on overlapping fragments, and the ORFs were predicted using
ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder (accessed on 1 June 2023)). The
online tool MotifFinder (https://www.genome.jp/tools/motif/ (accessed on 1 June 2023))
was used to identify conserved motifs of the encoded proteins.

Table 1. Primers used for determination of DCMV genome.

Primer Sequence (5′-3′) Position a

DCMV-F1 CAGTCTGGAATCGATACACC 409–428
DCMV-R1 TCTTGGTTAGCCACTGTAACCTG 3548–3570
DCMV-F2 AGGAAAGTTATCCTTTAAGGGA 3418–3439
DCMV-R2 GGACCGATTATGAGAAAGCTTC 6252–6273
DCMV-F3 ACCAGAAAACTCTCAACAGGA 6118–6138
DCMV-R3 ATAGCACAAGTTGCCTTTTGCTG 488–510

a Binding position relative to the genome sequences of DCMV-IN (GenBank No. OR494328).

2.4. Genetic Variation, Phylogenetic and Recombination Analysis

The assembled genome sequence was subjected to BLAST analysis in GenBank
database (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 20 June 2023). All DCMV
genome sequences available in GenBank and representative Caulimovirus species were
retrieved and analyzed together with those of the DCMV isolate determined in this work.
Pairwise nucleotide and amino acid sequence identities were determined using SDT 1.0 [16].
All of the circular genomes were linearized starting at the coding region of MP [11]. Multi-
ple sequence alignments were performed using the ClustalW algorithm in MEGA11 [17].
Using MEGA11, maximum-likelihood (ML) phylogenetic trees were constructed based on
the complete genome sequences with 1000 bootstrap replicates. Genetic distances were
calculated by the General Time Reversible (GTR) model which was selected as the best-fit
substitution model through the ‘Find Best DNA/Protein Models’ program, and a discrete γ

distribution was used to model evolutionary rate differences among sites [17]. Seven of the
recombination detection methods, including RDP, Geneconv, Chimera, BootScan, MaxChi,
SiScan and 3Seq, implemented in RDP4 software package v.3.44 [18], were used to identify
potential recombination events. Only the events supported by at least five of the seven
methods with p < 0.01 were accepted.

3. Results and Discussion
3.1. Virus Identification by HTS

A cDNA library was constructed from pooled leaf tissues of three symptomatic dahlia
plants and sequenced using Illumina NovaSeq 6000 platform. A total of 36,031,741 clean
reads with Q20 of 96.91% and Q30 of 91.59% were obtained after trimming adapter se-
quences and discarding low-quality reads. The virus-associated clean reads were assembled
de novo into 2213 contigs ranging from 141 to 6630 bp (Supplementary Table S1). Further
BLAST analysis showed that, among these contigs, the longest one with a length of 6630 bp
covered 83.4% (6630/7949) of the genome of DCMV New Zealand isolate DCMV-NZ (Ac-
cession No. JN032736) [11] and shared a 99.46% pairwise identity. Therefore, the DCMV
isolate associated with dahlia mosaic disease that was collected in Inner Mongolia of China
in this study was named DCMV-IN.

https://www.ncbi.nlm.nih.gov/orffinder
https://www.genome.jp/tools/motif/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.2. Determination and Characterization of the DCMV-IN Genome

Three fragments with lengths of 3162 bp, 2856 bp and 2343 bp were PCR-amplified
from total DNA with specific primers DCMV-F1/DCMV-R1, DCMV-F2/DCMV-R2 and
DCMV-F3/DCMV-R3, respectively. The complete genome sequence of DCMV-IN was
assembled based on overlapping regions and deposited in the NCBI GenBank database
under accession number OR494328. DCMV-IN genome consisted of 7949 bp containing six
ORFs. ORF I (1–969 nt) encoded MP of 322 aa. The transport domain GNLCYGKFMFTVY
associated with cell-to-cell movement for caulimoviruses was found from 166 to 178 aa,
which was consistent with other DCMV isolates although the cysteine was replaced by
alanine for other caulimoviruses [9]. ORF II (962–1453 nt) encoded ATF of 163 aa, and
the essential motif for aphid transmission through interaction between ATF and virus
particle (IXG) was observed at the C-termianl [19]. DNAb of 120 aa and CP of 505 aa were
encoded by ORF III (1450–1812 nt) and ORF IV (1797–3314 nt), respectively. An RNA-
binding domain (CX2CX4HX4C) CWICAEEGHY ANEC was identified at 441–454 aa of
CP [20]. ORF V (3311–5332 nt) encoded a polyprotein of 673 aa. Three conserved motifs in
caulimovirus replicases including aspartyl protease, reverse transcriptase and ribonuclease
H at aa positions 76–132, 290–447 and 511–645, respectively, were identified by MotifFinder
in the polyprotein. ORF VI (5459–6973 nt) encoded IB of 504 aa, and a conserved motif of
caulimovirus viroplasm was identified at 144–181 aa.

3.3. Comparison of DCMV Genome Sequences

BLAST analysis retrieved the complete genome sequences of three DCMV isolates,
including one isolate from New Zealand (DCMV-NZ, JN032736) [16], one from Japan
(DCMV-JP, LC625373) [21] and one from Beijing, China (DCMV-BJ, KX098538), and one near-
full-length genome which covered all ORFs from Taiwan, China (DCMV-TW, AB740270-
AB740275) [22]. DCMV-IN shared high genome sequence identities of 99.4%, 99.3% and
99.4% with DCMV-NZ, DCMV-JP and DCMV-BJ, respectively (Table 2). The pairwise
nucleotide sequence identities between DCMV-IN and other DCMV isolates ranged from
97.9 to 99.1%, 97.2 to 99.6%, 98.4 to 99.7%, 98.8 to 99.7%, 99.1 to 99.5% and 99.3 to 99.6% for
ORF I–VI, respectively. The amino acid sequence identities were 97.5–98.8%, 96.3–99.4%,
95.8–99.2%, 98.2–99.8%, 99.1–99.7% and 98.8–99.8% for ORF I–VI, respectively.

Table 2. Pairwise nucleotide (upper) and amino acid (lower) sequence identities of DCMV-IN with
four other DCMV isolates available in GenBank.

Virus Isolate Genome ORF I ORF II ORF III ORF IV ORF V ORF VI

DCMV-NZ 99.4
-

99.1
98.8

99.6
98.8

98.4
95.8

99.7
99.8

99.4
99.6

99.4
99.4

DCMV-JP 99.3
-

98.8
98.8

99.6
99.4

98.6
96.7

99.4
99.0

99.4
99.7

99.6
99.8

DCMV-BJ 99.4
-

99.1
98.8

99.6
99.4

99.2
95.8

99.3
99.4

99.5
99.6

99.5
99.4

DCMV-TW NA
-

97.9
97.5

97.2
96.3

99.7
99.2

98.8
98.2

99.1
99.1

99.3
98.8

3.4. Phylogenetic and Recombination Analyses

The complete genome sequences of four DCMV isolates containing DCMV-IN in this
work, and other 13 representative caulimoviruses, were subjected to phylogenetic analysis.
In the constructed phylogenetic ML tree (Figure 2), the four DCMV isolates (DCMV-IN,
DCMV-BJ, DCMV-NZ and DCMV-JP) were clearly clustered in a single branch. The cluster
of DCMV formed a clade together with DMV, mirabilis mosaic virus (MMV) and figwort
mosaic virus (FMV), and DCMV was closest to DMV. The phylogenetic tree based on
complete genomes in this work showed a similar topology with those based on ORF II,
ORF III, ORF IV and ORF VI [4,9]. No putative recombination event was identified from
the genome of the four DCMV isolates.
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sequences of DCMV and other caulimoviruses. DCMV-IN determined in this study is marked in bold.

Both the results of pairwise alignment and phylogenetic analysis showed that the
reported DCMV isolates around the world had low genetic diversity, suggesting that
asexual propagation of dahlia plants by vegetative tuberous roots may be the main route of
DCMV transmission. This work not only provides a background for an in-depth study on
the epidemic and evolution of DCMV, but also highlights the necessity of virus detection in
propagating materials for prevention and control of dahlia mosaic disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14101833/s1, Table S1: Summary of the contigs de novo
assembled from virus-associated clean reads.
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